aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp
blob: bea4e157a1316f8eb01db3716be2ea916ac472e4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
//===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "ARMTargetTransformInfo.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "armtti"

static cl::opt<bool> EnableMaskedLoadStores(
  "enable-arm-maskedldst", cl::Hidden, cl::init(true),
  cl::desc("Enable the generation of masked loads and stores"));

static cl::opt<bool> DisableLowOverheadLoops(
  "disable-arm-loloops", cl::Hidden, cl::init(false),
  cl::desc("Disable the generation of low-overhead loops"));

extern cl::opt<TailPredication::Mode> EnableTailPredication;

extern cl::opt<bool> EnableMaskedGatherScatters;

bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
                                     const Function *Callee) const {
  const TargetMachine &TM = getTLI()->getTargetMachine();
  const FeatureBitset &CallerBits =
      TM.getSubtargetImpl(*Caller)->getFeatureBits();
  const FeatureBitset &CalleeBits =
      TM.getSubtargetImpl(*Callee)->getFeatureBits();

  // To inline a callee, all features not in the allowed list must match exactly.
  bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) ==
                    (CalleeBits & ~InlineFeaturesAllowed);
  // For features in the allowed list, the callee's features must be a subset of
  // the callers'.
  bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) ==
                     (CalleeBits & InlineFeaturesAllowed);
  return MatchExact && MatchSubset;
}

bool ARMTTIImpl::shouldFavorBackedgeIndex(const Loop *L) const {
  if (L->getHeader()->getParent()->hasOptSize())
    return false;
  if (ST->hasMVEIntegerOps())
    return false;
  return ST->isMClass() && ST->isThumb2() && L->getNumBlocks() == 1;
}

bool ARMTTIImpl::shouldFavorPostInc() const {
  if (ST->hasMVEIntegerOps())
    return true;
  return false;
}

int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
                              TTI::TargetCostKind CostKind) {
  assert(Ty->isIntegerTy());

 unsigned Bits = Ty->getPrimitiveSizeInBits();
 if (Bits == 0 || Imm.getActiveBits() >= 64)
   return 4;

  int64_t SImmVal = Imm.getSExtValue();
  uint64_t ZImmVal = Imm.getZExtValue();
  if (!ST->isThumb()) {
    if ((SImmVal >= 0 && SImmVal < 65536) ||
        (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
        (ARM_AM::getSOImmVal(~ZImmVal) != -1))
      return 1;
    return ST->hasV6T2Ops() ? 2 : 3;
  }
  if (ST->isThumb2()) {
    if ((SImmVal >= 0 && SImmVal < 65536) ||
        (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
        (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
      return 1;
    return ST->hasV6T2Ops() ? 2 : 3;
  }
  // Thumb1, any i8 imm cost 1.
  if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
    return 1;
  if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
    return 2;
  // Load from constantpool.
  return 3;
}

// Constants smaller than 256 fit in the immediate field of
// Thumb1 instructions so we return a zero cost and 1 otherwise.
int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
                                      const APInt &Imm, Type *Ty) {
  if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
    return 0;

  return 1;
}

int ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm,
                                  Type *Ty, TTI::TargetCostKind CostKind) {
  // Division by a constant can be turned into multiplication, but only if we
  // know it's constant. So it's not so much that the immediate is cheap (it's
  // not), but that the alternative is worse.
  // FIXME: this is probably unneeded with GlobalISel.
  if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
       Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
      Idx == 1)
    return 0;

  if (Opcode == Instruction::And) {
    // UXTB/UXTH
    if (Imm == 255 || Imm == 65535)
      return 0;
    // Conversion to BIC is free, and means we can use ~Imm instead.
    return std::min(getIntImmCost(Imm, Ty, CostKind),
                    getIntImmCost(~Imm, Ty, CostKind));
  }

  if (Opcode == Instruction::Add)
    // Conversion to SUB is free, and means we can use -Imm instead.
    return std::min(getIntImmCost(Imm, Ty, CostKind),
                    getIntImmCost(-Imm, Ty, CostKind));

  if (Opcode == Instruction::ICmp && Imm.isNegative() &&
      Ty->getIntegerBitWidth() == 32) {
    int64_t NegImm = -Imm.getSExtValue();
    if (ST->isThumb2() && NegImm < 1<<12)
      // icmp X, #-C -> cmn X, #C
      return 0;
    if (ST->isThumb() && NegImm < 1<<8)
      // icmp X, #-C -> adds X, #C
      return 0;
  }

  // xor a, -1 can always be folded to MVN
  if (Opcode == Instruction::Xor && Imm.isAllOnesValue())
    return 0;

  return getIntImmCost(Imm, Ty, CostKind);
}

int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                                 TTI::TargetCostKind CostKind,
                                 const Instruction *I) {
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  // TODO: Allow non-throughput costs that aren't binary.
  auto AdjustCost = [&CostKind](int Cost) {
    if (CostKind != TTI::TCK_RecipThroughput)
      return Cost == 0 ? 0 : 1;
    return Cost;
  };

  EVT SrcTy = TLI->getValueType(DL, Src);
  EVT DstTy = TLI->getValueType(DL, Dst);

  if (!SrcTy.isSimple() || !DstTy.isSimple())
    return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I));

  // The extend of a load is free
  if (I && isa<LoadInst>(I->getOperand(0))) {
    static const TypeConversionCostTblEntry LoadConversionTbl[] = {
        {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0},
        {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0},
        {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0},
        {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0},
        {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0},
        {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0},
        {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1},
        {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1},
        {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1},
        {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1},
        {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1},
        {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1},
    };
    if (const auto *Entry = ConvertCostTableLookup(
            LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
      return AdjustCost(Entry->Cost);

    static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
        {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0},
        {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0},
        {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0},
        {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0},
        {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0},
        {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0},
        // The following extend from a legal type to an illegal type, so need to
        // split the load. This introduced an extra load operation, but the
        // extend is still "free".
        {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1},
        {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1},
        {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3},
        {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3},
        {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1},
        {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1},
    };
    if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
      if (const auto *Entry =
              ConvertCostTableLookup(MVELoadConversionTbl, ISD,
                                     DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
        return AdjustCost(Entry->Cost * ST->getMVEVectorCostFactor());
    }

    static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = {
        // FPExtends are similar but also require the VCVT instructions.
        {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1},
        {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3},
    };
    if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
      if (const auto *Entry =
              ConvertCostTableLookup(MVEFLoadConversionTbl, ISD,
                                     DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
        return AdjustCost(Entry->Cost * ST->getMVEVectorCostFactor());
    }
  }

  // The truncate of a store is free. This is the mirror of extends above.
  if (I && I->hasOneUse() && isa<StoreInst>(*I->user_begin())) {
    static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
        {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0},
        {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0},
        {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0},
        {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1},
        {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3},
        {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1},
    };
    if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
      if (const auto *Entry =
              ConvertCostTableLookup(MVELoadConversionTbl, ISD, SrcTy.getSimpleVT(),
                                     DstTy.getSimpleVT()))
        return AdjustCost(Entry->Cost * ST->getMVEVectorCostFactor());
    }

    static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = {
        {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1},
        {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3},
    };
    if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
      if (const auto *Entry =
              ConvertCostTableLookup(MVEFLoadConversionTbl, ISD, SrcTy.getSimpleVT(),
                                     DstTy.getSimpleVT()))
        return AdjustCost(Entry->Cost * ST->getMVEVectorCostFactor());
    }
  }

  // NEON vector operations that can extend their inputs.
  if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) &&
      I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) {
    static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = {
      // vaddl
      { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 },
      { ISD::ADD, MVT::v8i16, MVT::v8i8,  0 },
      // vsubl
      { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 },
      { ISD::SUB, MVT::v8i16, MVT::v8i8,  0 },
      // vmull
      { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 },
      { ISD::MUL, MVT::v8i16, MVT::v8i8,  0 },
      // vshll
      { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 },
      { ISD::SHL, MVT::v8i16, MVT::v8i8,  0 },
    };

    auto *User = cast<Instruction>(*I->user_begin());
    int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode());
    if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD,
                                             DstTy.getSimpleVT(),
                                             SrcTy.getSimpleVT())) {
      return AdjustCost(Entry->Cost);
    }
  }

  // Single to/from double precision conversions.
  if (Src->isVectorTy() && ST->hasNEON() &&
      ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 &&
        DstTy.getScalarType() == MVT::f32) ||
       (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 &&
        DstTy.getScalarType() == MVT::f64))) {
    static const CostTblEntry NEONFltDblTbl[] = {
        // Vector fptrunc/fpext conversions.
        {ISD::FP_ROUND, MVT::v2f64, 2},
        {ISD::FP_EXTEND, MVT::v2f32, 2},
        {ISD::FP_EXTEND, MVT::v4f32, 4}};

    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
    if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
      return AdjustCost(LT.first * Entry->Cost);
  }

  // Some arithmetic, load and store operations have specific instructions
  // to cast up/down their types automatically at no extra cost.
  // TODO: Get these tables to know at least what the related operations are.
  static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
    { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
    { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
    { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
    { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
    { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
    { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },

    // The number of vmovl instructions for the extension.
    { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8,  1 },
    { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8,  1 },
    { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8,  2 },
    { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8,  2 },
    { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8,  3 },
    { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8,  3 },
    { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
    { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
    { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
    { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
    { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
    { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
    { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
    { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
    { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },

    // Operations that we legalize using splitting.
    { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
    { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },

    // Vector float <-> i32 conversions.
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },

    { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
    { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
    { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
    { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
    { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
    { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
    { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
    { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
    { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
    { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },

    { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
    { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
    { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
    { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
    { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
    { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },

    // Vector double <-> i32 conversions.
    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },

    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },

    { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
    { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
    { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
    { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
    { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
    { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
  };

  if (SrcTy.isVector() && ST->hasNEON()) {
    if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
                                                   DstTy.getSimpleVT(),
                                                   SrcTy.getSimpleVT()))
      return AdjustCost(Entry->Cost);
  }

  // Scalar float to integer conversions.
  static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
    { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
    { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
    { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
    { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
    { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
    { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
    { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
    { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
    { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
    { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
    { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
    { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
    { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
    { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
    { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
    { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
    { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
    { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
    { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
    { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
  };
  if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
    if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
                                                   DstTy.getSimpleVT(),
                                                   SrcTy.getSimpleVT()))
      return AdjustCost(Entry->Cost);
  }

  // Scalar integer to float conversions.
  static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
    { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
    { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
    { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
    { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
    { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
    { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
    { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
    { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
    { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
    { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
    { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
    { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
    { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
    { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
    { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
    { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
    { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
    { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
    { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
    { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
  };

  if (SrcTy.isInteger() && ST->hasNEON()) {
    if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
                                                   ISD, DstTy.getSimpleVT(),
                                                   SrcTy.getSimpleVT()))
      return AdjustCost(Entry->Cost);
  }

  // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
  // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
  // are linearised so take more.
  static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = {
    { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
    { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
    { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
    { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
    { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 },
    { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 },
    { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
    { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
    { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 },
    { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
    { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 },
    { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 },
  };

  if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
    if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl,
                                                   ISD, DstTy.getSimpleVT(),
                                                   SrcTy.getSimpleVT()))
      return AdjustCost(Entry->Cost * ST->getMVEVectorCostFactor());
  }

  if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) {
    // As general rule, fp converts that were not matched above are scalarized
    // and cost 1 vcvt for each lane, so long as the instruction is available.
    // If not it will become a series of function calls.
    const int CallCost = getCallInstrCost(nullptr, Dst, {Src}, CostKind);
    int Lanes = 1;
    if (SrcTy.isFixedLengthVector())
      Lanes = SrcTy.getVectorNumElements();
    auto IsLegal = [this](EVT VT) {
      EVT EltVT = VT.getScalarType();
      return (EltVT == MVT::f32 && ST->hasVFP2Base()) ||
             (EltVT == MVT::f64 && ST->hasFP64()) ||
             (EltVT == MVT::f16 && ST->hasFullFP16());
    };

    if (IsLegal(SrcTy) && IsLegal(DstTy))
      return Lanes;
    else
      return Lanes * CallCost;
  }

  // Scalar integer conversion costs.
  static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
    // i16 -> i64 requires two dependent operations.
    { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },

    // Truncates on i64 are assumed to be free.
    { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
    { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
    { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
    { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
  };

  if (SrcTy.isInteger()) {
    if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
                                                   DstTy.getSimpleVT(),
                                                   SrcTy.getSimpleVT()))
      return AdjustCost(Entry->Cost);
  }

  int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
                     ? ST->getMVEVectorCostFactor()
                     : 1;
  return AdjustCost(
    BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I));
}

int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
                                   unsigned Index) {
  // Penalize inserting into an D-subregister. We end up with a three times
  // lower estimated throughput on swift.
  if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
      ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
    return 3;

  if (ST->hasNEON() && (Opcode == Instruction::InsertElement ||
                        Opcode == Instruction::ExtractElement)) {
    // Cross-class copies are expensive on many microarchitectures,
    // so assume they are expensive by default.
    if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy())
      return 3;

    // Even if it's not a cross class copy, this likely leads to mixing
    // of NEON and VFP code and should be therefore penalized.
    if (ValTy->isVectorTy() &&
        ValTy->getScalarSizeInBits() <= 32)
      return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
  }

  if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement ||
                                 Opcode == Instruction::ExtractElement)) {
    // We say MVE moves costs at least the MVEVectorCostFactor, even though
    // they are scalar instructions. This helps prevent mixing scalar and
    // vector, to prevent vectorising where we end up just scalarising the
    // result anyway.
    return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index),
                    ST->getMVEVectorCostFactor()) *
           cast<FixedVectorType>(ValTy)->getNumElements() / 2;
  }

  return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
}

int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
                                   TTI::TargetCostKind CostKind,
                                   const Instruction *I) {
  // TODO: Handle other cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  // On NEON a vector select gets lowered to vbsl.
  if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
    // Lowering of some vector selects is currently far from perfect.
    static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
      { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
      { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
      { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
    };

    EVT SelCondTy = TLI->getValueType(DL, CondTy);
    EVT SelValTy = TLI->getValueType(DL, ValTy);
    if (SelCondTy.isSimple() && SelValTy.isSimple()) {
      if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
                                                     SelCondTy.getSimpleVT(),
                                                     SelValTy.getSimpleVT()))
        return Entry->Cost;
    }

    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
    return LT.first;
  }

  int BaseCost = ST->hasMVEIntegerOps() && ValTy->isVectorTy()
                     ? ST->getMVEVectorCostFactor()
                     : 1;
  return BaseCost * BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind,
                                              I);
}

int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
                                          const SCEV *Ptr) {
  // Address computations in vectorized code with non-consecutive addresses will
  // likely result in more instructions compared to scalar code where the
  // computation can more often be merged into the index mode. The resulting
  // extra micro-ops can significantly decrease throughput.
  unsigned NumVectorInstToHideOverhead = 10;
  int MaxMergeDistance = 64;

  if (ST->hasNEON()) {
    if (Ty->isVectorTy() && SE &&
        !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
      return NumVectorInstToHideOverhead;

    // In many cases the address computation is not merged into the instruction
    // addressing mode.
    return 1;
  }
  return BaseT::getAddressComputationCost(Ty, SE, Ptr);
}

bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) {
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    // If a VCTP is part of a chain, it's already profitable and shouldn't be
    // optimized, else LSR may block tail-predication.
    switch (II->getIntrinsicID()) {
    case Intrinsic::arm_mve_vctp8:
    case Intrinsic::arm_mve_vctp16:
    case Intrinsic::arm_mve_vctp32:
    case Intrinsic::arm_mve_vctp64:
      return true;
    default:
      break;
    }
  }
  return false;
}

bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
  if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps())
    return false;

  if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) {
    // Don't support v2i1 yet.
    if (VecTy->getNumElements() == 2)
      return false;

    // We don't support extending fp types.
     unsigned VecWidth = DataTy->getPrimitiveSizeInBits();
    if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy())
      return false;
  }

  unsigned EltWidth = DataTy->getScalarSizeInBits();
  return (EltWidth == 32 && Alignment >= 4) ||
         (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8);
}

bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) {
  if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps())
    return false;

  // This method is called in 2 places:
  //  - from the vectorizer with a scalar type, in which case we need to get
  //  this as good as we can with the limited info we have (and rely on the cost
  //  model for the rest).
  //  - from the masked intrinsic lowering pass with the actual vector type.
  // For MVE, we have a custom lowering pass that will already have custom
  // legalised any gathers that we can to MVE intrinsics, and want to expand all
  // the rest. The pass runs before the masked intrinsic lowering pass, so if we
  // are here, we know we want to expand.
  if (isa<VectorType>(Ty))
    return false;

  unsigned EltWidth = Ty->getScalarSizeInBits();
  return ((EltWidth == 32 && Alignment >= 4) ||
          (EltWidth == 16 && Alignment >= 2) || EltWidth == 8);
}

int ARMTTIImpl::getMemcpyCost(const Instruction *I) {
  const MemCpyInst *MI = dyn_cast<MemCpyInst>(I);
  assert(MI && "MemcpyInst expected");
  ConstantInt *C = dyn_cast<ConstantInt>(MI->getLength());

  // To model the cost of a library call, we assume 1 for the call, and
  // 3 for the argument setup.
  const unsigned LibCallCost = 4;

  // If 'size' is not a constant, a library call will be generated.
  if (!C)
    return LibCallCost;

  const unsigned Size = C->getValue().getZExtValue();
  const Align DstAlign = *MI->getDestAlign();
  const Align SrcAlign = *MI->getSourceAlign();
  const Function *F = I->getParent()->getParent();
  const unsigned Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
  std::vector<EVT> MemOps;

  // MemOps will be poplulated with a list of data types that needs to be
  // loaded and stored. That's why we multiply the number of elements by 2 to
  // get the cost for this memcpy.
  if (getTLI()->findOptimalMemOpLowering(
          MemOps, Limit,
          MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign,
                      /*IsVolatile*/ true),
          MI->getDestAddressSpace(), MI->getSourceAddressSpace(),
          F->getAttributes()))
    return MemOps.size() * 2;

  // If we can't find an optimal memop lowering, return the default cost
  return LibCallCost;
}

int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
                               int Index, VectorType *SubTp) {
  if (ST->hasNEON()) {
    if (Kind == TTI::SK_Broadcast) {
      static const CostTblEntry NEONDupTbl[] = {
          // VDUP handles these cases.
          {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},

          {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};

      std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);

      if (const auto *Entry =
              CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second))
        return LT.first * Entry->Cost;
    }
    if (Kind == TTI::SK_Reverse) {
      static const CostTblEntry NEONShuffleTbl[] = {
          // Reverse shuffle cost one instruction if we are shuffling within a
          // double word (vrev) or two if we shuffle a quad word (vrev, vext).
          {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},

          {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
          {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
          {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
          {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};

      std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);

      if (const auto *Entry =
              CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
        return LT.first * Entry->Cost;
    }
    if (Kind == TTI::SK_Select) {
      static const CostTblEntry NEONSelShuffleTbl[] = {
          // Select shuffle cost table for ARM. Cost is the number of
          // instructions
          // required to create the shuffled vector.

          {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},

          {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
          {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
          {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},

          {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},

          {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};

      std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
      if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
                                              ISD::VECTOR_SHUFFLE, LT.second))
        return LT.first * Entry->Cost;
    }
  }
  if (ST->hasMVEIntegerOps()) {
    if (Kind == TTI::SK_Broadcast) {
      static const CostTblEntry MVEDupTbl[] = {
          // VDUP handles these cases.
          {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
          {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}};

      std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);

      if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE,
                                              LT.second))
        return LT.first * Entry->Cost * ST->getMVEVectorCostFactor();
    }
  }
  int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy()
                     ? ST->getMVEVectorCostFactor()
                     : 1;
  return BaseCost * BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
}

int ARMTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
                                       TTI::TargetCostKind CostKind,
                                       TTI::OperandValueKind Op1Info,
                                       TTI::OperandValueKind Op2Info,
                                       TTI::OperandValueProperties Opd1PropInfo,
                                       TTI::OperandValueProperties Opd2PropInfo,
                                       ArrayRef<const Value *> Args,
                                       const Instruction *CxtI) {
  // TODO: Handle more cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
                                         Op2Info, Opd1PropInfo,
                                         Opd2PropInfo, Args, CxtI);

  int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);

  if (ST->hasNEON()) {
    const unsigned FunctionCallDivCost = 20;
    const unsigned ReciprocalDivCost = 10;
    static const CostTblEntry CostTbl[] = {
      // Division.
      // These costs are somewhat random. Choose a cost of 20 to indicate that
      // vectorizing devision (added function call) is going to be very expensive.
      // Double registers types.
      { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
      { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
      { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
      { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
      { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
      { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
      { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
      { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
      { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
      { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
      { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
      { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
      { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
      { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
      { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
      { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
      // Quad register types.
      { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
      { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
      { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
      { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
      { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
      { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
      { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
      { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
      { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
      { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
      { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
      { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
      { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
      { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
      { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
      { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
      // Multiplication.
    };

    if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
      return LT.first * Entry->Cost;

    int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
                                             Op2Info,
                                             Opd1PropInfo, Opd2PropInfo);

    // This is somewhat of a hack. The problem that we are facing is that SROA
    // creates a sequence of shift, and, or instructions to construct values.
    // These sequences are recognized by the ISel and have zero-cost. Not so for
    // the vectorized code. Because we have support for v2i64 but not i64 those
    // sequences look particularly beneficial to vectorize.
    // To work around this we increase the cost of v2i64 operations to make them
    // seem less beneficial.
    if (LT.second == MVT::v2i64 &&
        Op2Info == TargetTransformInfo::OK_UniformConstantValue)
      Cost += 4;

    return Cost;
  }

  // If this operation is a shift on arm/thumb2, it might well be folded into
  // the following instruction, hence having a cost of 0.
  auto LooksLikeAFreeShift = [&]() {
    if (ST->isThumb1Only() || Ty->isVectorTy())
      return false;

    if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift())
      return false;
    if (Op2Info != TargetTransformInfo::OK_UniformConstantValue)
      return false;

    // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB
    switch (cast<Instruction>(CxtI->user_back())->getOpcode()) {
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::And:
    case Instruction::Xor:
    case Instruction::Or:
    case Instruction::ICmp:
      return true;
    default:
      return false;
    }
  };
  if (LooksLikeAFreeShift())
    return 0;

  int BaseCost = ST->hasMVEIntegerOps() && Ty->isVectorTy()
                     ? ST->getMVEVectorCostFactor()
                     : 1;

  // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
  // without treating floats as more expensive that scalars or increasing the
  // costs for custom operations. The results is also multiplied by the
  // MVEVectorCostFactor where appropriate.
  if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second))
    return LT.first * BaseCost;

  // Else this is expand, assume that we need to scalarize this op.
  if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
    unsigned Num = VTy->getNumElements();
    unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType(),
                                           CostKind);
    // Return the cost of multiple scalar invocation plus the cost of
    // inserting and extracting the values.
    return BaseT::getScalarizationOverhead(VTy, Args) + Num * Cost;
  }

  return BaseCost;
}

int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
                                MaybeAlign Alignment, unsigned AddressSpace,
                                TTI::TargetCostKind CostKind,
                                const Instruction *I) {
  // TODO: Handle other cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return 1;

  // Type legalization can't handle structs
  if (TLI->getValueType(DL, Src, true) == MVT::Other)
    return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
                                  CostKind);

  if (ST->hasNEON() && Src->isVectorTy() &&
      (Alignment && *Alignment != Align(16)) &&
      cast<VectorType>(Src)->getElementType()->isDoubleTy()) {
    // Unaligned loads/stores are extremely inefficient.
    // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
    return LT.first * 4;
  }

  // MVE can optimize a fpext(load(4xhalf)) using an extending integer load.
  // Same for stores.
  if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I &&
      ((Opcode == Instruction::Load && I->hasOneUse() &&
        isa<FPExtInst>(*I->user_begin())) ||
       (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) {
    FixedVectorType *SrcVTy = cast<FixedVectorType>(Src);
    Type *DstTy =
        Opcode == Instruction::Load
            ? (*I->user_begin())->getType()
            : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType();
    if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() &&
        DstTy->getScalarType()->isFloatTy())
      return ST->getMVEVectorCostFactor();
  }

  int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
                     ? ST->getMVEVectorCostFactor()
                     : 1;
  return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
                                           CostKind, I);
}

int ARMTTIImpl::getInterleavedMemoryOpCost(
    unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
    Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
    bool UseMaskForCond, bool UseMaskForGaps) {
  assert(Factor >= 2 && "Invalid interleave factor");
  assert(isa<VectorType>(VecTy) && "Expect a vector type");

  // vldN/vstN doesn't support vector types of i64/f64 element.
  bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;

  if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
      !UseMaskForCond && !UseMaskForGaps) {
    unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
    auto *SubVecTy =
        FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);

    // vldN/vstN only support legal vector types of size 64 or 128 in bits.
    // Accesses having vector types that are a multiple of 128 bits can be
    // matched to more than one vldN/vstN instruction.
    int BaseCost = ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor() : 1;
    if (NumElts % Factor == 0 &&
        TLI->isLegalInterleavedAccessType(Factor, SubVecTy, DL))
      return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL);

    // Some smaller than legal interleaved patterns are cheap as we can make
    // use of the vmovn or vrev patterns to interleave a standard load. This is
    // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is
    // promoted differently). The cost of 2 here is then a load and vrev or
    // vmovn.
    if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 &&
        VecTy->isIntOrIntVectorTy() && DL.getTypeSizeInBits(SubVecTy) <= 64)
      return 2 * BaseCost;
  }

  return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
                                           Alignment, AddressSpace, CostKind,
                                           UseMaskForCond, UseMaskForGaps);
}

unsigned ARMTTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
                                            const Value *Ptr, bool VariableMask,
                                            Align Alignment,
                                            TTI::TargetCostKind CostKind,
                                            const Instruction *I) {
  using namespace PatternMatch;
  if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters)
    return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
                                         Alignment, CostKind, I);

  assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!");
  auto *VTy = cast<FixedVectorType>(DataTy);

  // TODO: Splitting, once we do that.

  unsigned NumElems = VTy->getNumElements();
  unsigned EltSize = VTy->getScalarSizeInBits();
  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, DataTy);

  // For now, it is assumed that for the MVE gather instructions the loads are
  // all effectively serialised. This means the cost is the scalar cost
  // multiplied by the number of elements being loaded. This is possibly very
  // conservative, but even so we still end up vectorising loops because the
  // cost per iteration for many loops is lower than for scalar loops.
  unsigned VectorCost = NumElems * LT.first;
  // The scalarization cost should be a lot higher. We use the number of vector
  // elements plus the scalarization overhead.
  unsigned ScalarCost =
      NumElems * LT.first + BaseT::getScalarizationOverhead(VTy, {});

  if (Alignment < EltSize / 8)
    return ScalarCost;

  unsigned ExtSize = EltSize;
  // Check whether there's a single user that asks for an extended type
  if (I != nullptr) {
    // Dependent of the caller of this function, a gather instruction will
    // either have opcode Instruction::Load or be a call to the masked_gather
    // intrinsic
    if ((I->getOpcode() == Instruction::Load ||
         match(I, m_Intrinsic<Intrinsic::masked_gather>())) &&
        I->hasOneUse()) {
      const User *Us = *I->users().begin();
      if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) {
        // only allow valid type combinations
        unsigned TypeSize =
            cast<Instruction>(Us)->getType()->getScalarSizeInBits();
        if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) ||
             (TypeSize == 16 && EltSize == 8)) &&
            TypeSize * NumElems == 128) {
          ExtSize = TypeSize;
        }
      }
    }
    // Check whether the input data needs to be truncated
    TruncInst *T;
    if ((I->getOpcode() == Instruction::Store ||
         match(I, m_Intrinsic<Intrinsic::masked_scatter>())) &&
        (T = dyn_cast<TruncInst>(I->getOperand(0)))) {
      // Only allow valid type combinations
      unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits();
      if (((EltSize == 16 && TypeSize == 32) ||
           (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) &&
          TypeSize * NumElems == 128)
        ExtSize = TypeSize;
    }
  }

  if (ExtSize * NumElems != 128 || NumElems < 4)
    return ScalarCost;

  // Any (aligned) i32 gather will not need to be scalarised.
  if (ExtSize == 32)
    return VectorCost;
  // For smaller types, we need to ensure that the gep's inputs are correctly
  // extended from a small enough value. Other sizes (including i64) are
  // scalarized for now.
  if (ExtSize != 8 && ExtSize != 16)
    return ScalarCost;

  if (const auto *BC = dyn_cast<BitCastInst>(Ptr))
    Ptr = BC->getOperand(0);
  if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
    if (GEP->getNumOperands() != 2)
      return ScalarCost;
    unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType());
    // Scale needs to be correct (which is only relevant for i16s).
    if (Scale != 1 && Scale * 8 != ExtSize)
      return ScalarCost;
    // And we need to zext (not sext) the indexes from a small enough type.
    if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) {
      if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize)
        return VectorCost;
    }
    return ScalarCost;
  }
  return ScalarCost;
}

bool ARMTTIImpl::isLoweredToCall(const Function *F) {
  if (!F->isIntrinsic())
    BaseT::isLoweredToCall(F);

  // Assume all Arm-specific intrinsics map to an instruction.
  if (F->getName().startswith("llvm.arm"))
    return false;

  switch (F->getIntrinsicID()) {
  default: break;
  case Intrinsic::powi:
  case Intrinsic::sin:
  case Intrinsic::cos:
  case Intrinsic::pow:
  case Intrinsic::log:
  case Intrinsic::log10:
  case Intrinsic::log2:
  case Intrinsic::exp:
  case Intrinsic::exp2:
    return true;
  case Intrinsic::sqrt:
  case Intrinsic::fabs:
  case Intrinsic::copysign:
  case Intrinsic::floor:
  case Intrinsic::ceil:
  case Intrinsic::trunc:
  case Intrinsic::rint:
  case Intrinsic::nearbyint:
  case Intrinsic::round:
  case Intrinsic::canonicalize:
  case Intrinsic::lround:
  case Intrinsic::llround:
  case Intrinsic::lrint:
  case Intrinsic::llrint:
    if (F->getReturnType()->isDoubleTy() && !ST->hasFP64())
      return true;
    if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16())
      return true;
    // Some operations can be handled by vector instructions and assume
    // unsupported vectors will be expanded into supported scalar ones.
    // TODO Handle scalar operations properly.
    return !ST->hasFPARMv8Base() && !ST->hasVFP2Base();
  case Intrinsic::masked_store:
  case Intrinsic::masked_load:
  case Intrinsic::masked_gather:
  case Intrinsic::masked_scatter:
    return !ST->hasMVEIntegerOps();
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
  case Intrinsic::sadd_sat:
  case Intrinsic::uadd_sat:
  case Intrinsic::ssub_sat:
  case Intrinsic::usub_sat:
    return false;
  }

  return BaseT::isLoweredToCall(F);
}

bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
                                          AssumptionCache &AC,
                                          TargetLibraryInfo *LibInfo,
                                          HardwareLoopInfo &HWLoopInfo) {
  // Low-overhead branches are only supported in the 'low-overhead branch'
  // extension of v8.1-m.
  if (!ST->hasLOB() || DisableLowOverheadLoops) {
    LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n");
    return false;
  }

  if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
    LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n");
    return false;
  }

  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
    LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n");
    return false;
  }

  const SCEV *TripCountSCEV =
    SE.getAddExpr(BackedgeTakenCount,
                  SE.getOne(BackedgeTakenCount->getType()));

  // We need to store the trip count in LR, a 32-bit register.
  if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) {
    LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n");
    return false;
  }

  // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
  // point in generating a hardware loop if that's going to happen.
  auto MaybeCall = [this](Instruction &I) {
    const ARMTargetLowering *TLI = getTLI();
    unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode());
    EVT VT = TLI->getValueType(DL, I.getType(), true);
    if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall)
      return true;

    // Check if an intrinsic will be lowered to a call and assume that any
    // other CallInst will generate a bl.
    if (auto *Call = dyn_cast<CallInst>(&I)) {
      if (isa<IntrinsicInst>(Call)) {
        if (const Function *F = Call->getCalledFunction())
          return isLoweredToCall(F);
      }
      return true;
    }

    // FPv5 provides conversions between integer, double-precision,
    // single-precision, and half-precision formats.
    switch (I.getOpcode()) {
    default:
      break;
    case Instruction::FPToSI:
    case Instruction::FPToUI:
    case Instruction::SIToFP:
    case Instruction::UIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
      return !ST->hasFPARMv8Base();
    }

    // FIXME: Unfortunately the approach of checking the Operation Action does
    // not catch all cases of Legalization that use library calls. Our
    // Legalization step categorizes some transformations into library calls as
    // Custom, Expand or even Legal when doing type legalization. So for now
    // we have to special case for instance the SDIV of 64bit integers and the
    // use of floating point emulation.
    if (VT.isInteger() && VT.getSizeInBits() >= 64) {
      switch (ISD) {
      default:
        break;
      case ISD::SDIV:
      case ISD::UDIV:
      case ISD::SREM:
      case ISD::UREM:
      case ISD::SDIVREM:
      case ISD::UDIVREM:
        return true;
      }
    }

    // Assume all other non-float operations are supported.
    if (!VT.isFloatingPoint())
      return false;

    // We'll need a library call to handle most floats when using soft.
    if (TLI->useSoftFloat()) {
      switch (I.getOpcode()) {
      default:
        return true;
      case Instruction::Alloca:
      case Instruction::Load:
      case Instruction::Store:
      case Instruction::Select:
      case Instruction::PHI:
        return false;
      }
    }

    // We'll need a libcall to perform double precision operations on a single
    // precision only FPU.
    if (I.getType()->isDoubleTy() && !ST->hasFP64())
      return true;

    // Likewise for half precision arithmetic.
    if (I.getType()->isHalfTy() && !ST->hasFullFP16())
      return true;

    return false;
  };

  auto IsHardwareLoopIntrinsic = [](Instruction &I) {
    if (auto *Call = dyn_cast<IntrinsicInst>(&I)) {
      switch (Call->getIntrinsicID()) {
      default:
        break;
      case Intrinsic::set_loop_iterations:
      case Intrinsic::test_set_loop_iterations:
      case Intrinsic::loop_decrement:
      case Intrinsic::loop_decrement_reg:
        return true;
      }
    }
    return false;
  };

  // Scan the instructions to see if there's any that we know will turn into a
  // call or if this loop is already a low-overhead loop.
  auto ScanLoop = [&](Loop *L) {
    for (auto *BB : L->getBlocks()) {
      for (auto &I : *BB) {
        if (MaybeCall(I) || IsHardwareLoopIntrinsic(I)) {
          LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n");
          return false;
        }
      }
    }
    return true;
  };

  // Visit inner loops.
  for (auto Inner : *L)
    if (!ScanLoop(Inner))
      return false;

  if (!ScanLoop(L))
    return false;

  // TODO: Check whether the trip count calculation is expensive. If L is the
  // inner loop but we know it has a low trip count, calculating that trip
  // count (in the parent loop) may be detrimental.

  LLVMContext &C = L->getHeader()->getContext();
  HWLoopInfo.CounterInReg = true;
  HWLoopInfo.IsNestingLegal = false;
  HWLoopInfo.PerformEntryTest = true;
  HWLoopInfo.CountType = Type::getInt32Ty(C);
  HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
  return true;
}

static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) {
  // We don't allow icmp's, and because we only look at single block loops,
  // we simply count the icmps, i.e. there should only be 1 for the backedge.
  if (isa<ICmpInst>(&I) && ++ICmpCount > 1)
    return false;

  if (isa<FCmpInst>(&I))
    return false;

  // We could allow extending/narrowing FP loads/stores, but codegen is
  // too inefficient so reject this for now.
  if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I))
    return false;

  // Extends have to be extending-loads
  if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) )
    if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0)))
      return false;

  // Truncs have to be narrowing-stores
  if (isa<TruncInst>(&I) )
    if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin()))
      return false;

  return true;
}

// To set up a tail-predicated loop, we need to know the total number of
// elements processed by that loop. Thus, we need to determine the element
// size and:
// 1) it should be uniform for all operations in the vector loop, so we
//    e.g. don't want any widening/narrowing operations.
// 2) it should be smaller than i64s because we don't have vector operations
//    that work on i64s.
// 3) we don't want elements to be reversed or shuffled, to make sure the
//    tail-predication masks/predicates the right lanes.
//
static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
                                 const DataLayout &DL,
                                 const LoopAccessInfo *LAI) {
  LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n");

  // If there are live-out values, it is probably a reduction, which needs a
  // final reduction step after the loop. MVE has a VADDV instruction to reduce
  // integer vectors, but doesn't have an equivalent one for float vectors. A
  // live-out value that is not recognised as a reduction will result in the
  // tail-predicated loop to be reverted to a non-predicated loop and this is
  // very expensive, i.e. it has a significant performance impact. So, in this
  // case it's better not to tail-predicate the loop, which is what we check
  // here. Thus, we allow only 1 live-out value, which has to be an integer
  // reduction, which matches the loops supported by ARMLowOverheadLoops.
  // It is important to keep ARMLowOverheadLoops and canTailPredicateLoop in
  // sync with each other.
  SmallVector< Instruction *, 8 > LiveOuts;
  LiveOuts = llvm::findDefsUsedOutsideOfLoop(L);
  bool IntReductionsDisabled =
      EnableTailPredication == TailPredication::EnabledNoReductions ||
      EnableTailPredication == TailPredication::ForceEnabledNoReductions;

  for (auto *I : LiveOuts) {
    if (!I->getType()->isIntegerTy()) {
      LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer "
                           "live-out value\n");
      return false;
    }
    if (I->getOpcode() != Instruction::Add) {
      LLVM_DEBUG(dbgs() << "Only add reductions supported\n");
      return false;
    }
    if (IntReductionsDisabled) {
      LLVM_DEBUG(dbgs() << "Integer add reductions not enabled\n");
      return false;
    }
  }

  // Next, check that all instructions can be tail-predicated.
  PredicatedScalarEvolution PSE = LAI->getPSE();
  SmallVector<Instruction *, 16> LoadStores;
  int ICmpCount = 0;
  int Stride = 0;

  for (BasicBlock *BB : L->blocks()) {
    for (Instruction &I : BB->instructionsWithoutDebug()) {
      if (isa<PHINode>(&I))
        continue;
      if (!canTailPredicateInstruction(I, ICmpCount)) {
        LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump());
        return false;
      }

      Type *T  = I.getType();
      if (T->isPointerTy())
        T = T->getPointerElementType();

      if (T->getScalarSizeInBits() > 32) {
        LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump());
        return false;
      }

      if (isa<StoreInst>(I) || isa<LoadInst>(I)) {
        Value *Ptr = isa<LoadInst>(I) ? I.getOperand(0) : I.getOperand(1);
        int64_t NextStride = getPtrStride(PSE, Ptr, L);
        // TODO: for now only allow consecutive strides of 1. We could support
        // other strides as long as it is uniform, but let's keep it simple for
        // now.
        if (Stride == 0 && NextStride == 1) {
          Stride = NextStride;
          continue;
        }
        if (Stride != NextStride) {
          LLVM_DEBUG(dbgs() << "Different strides found, can't "
                               "tail-predicate\n.");
          return false;
        }
      }
    }
  }

  LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n");
  return true;
}

bool ARMTTIImpl::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI,
                                             ScalarEvolution &SE,
                                             AssumptionCache &AC,
                                             TargetLibraryInfo *TLI,
                                             DominatorTree *DT,
                                             const LoopAccessInfo *LAI) {
  if (!EnableTailPredication) {
    LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n");
    return false;
  }

  // Creating a predicated vector loop is the first step for generating a
  // tail-predicated hardware loop, for which we need the MVE masked
  // load/stores instructions:
  if (!ST->hasMVEIntegerOps())
    return false;

  // For now, restrict this to single block loops.
  if (L->getNumBlocks() > 1) {
    LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block "
                         "loop.\n");
    return false;
  }

  assert(L->empty() && "preferPredicateOverEpilogue: inner-loop expected");

  HardwareLoopInfo HWLoopInfo(L);
  if (!HWLoopInfo.canAnalyze(*LI)) {
    LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
                         "analyzable.\n");
    return false;
  }

  // This checks if we have the low-overhead branch architecture
  // extension, and if we will create a hardware-loop:
  if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) {
    LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
                         "profitable.\n");
    return false;
  }

  if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) {
    LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
                         "a candidate.\n");
    return false;
  }

  return canTailPredicateLoop(L, LI, SE, DL, LAI);
}

bool ARMTTIImpl::emitGetActiveLaneMask() const {
  if (!ST->hasMVEIntegerOps() || !EnableTailPredication)
    return false;

  // Intrinsic @llvm.get.active.lane.mask is supported.
  // It is used in the MVETailPredication pass, which requires the number of
  // elements processed by this vector loop to setup the tail-predicated
  // loop.
  return true;
}
void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                                         TTI::UnrollingPreferences &UP) {
  // Only currently enable these preferences for M-Class cores.
  if (!ST->isMClass())
    return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP);

  // Disable loop unrolling for Oz and Os.
  UP.OptSizeThreshold = 0;
  UP.PartialOptSizeThreshold = 0;
  if (L->getHeader()->getParent()->hasOptSize())
    return;

  // Only enable on Thumb-2 targets.
  if (!ST->isThumb2())
    return;

  SmallVector<BasicBlock*, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);
  LLVM_DEBUG(dbgs() << "Loop has:\n"
                    << "Blocks: " << L->getNumBlocks() << "\n"
                    << "Exit blocks: " << ExitingBlocks.size() << "\n");

  // Only allow another exit other than the latch. This acts as an early exit
  // as it mirrors the profitability calculation of the runtime unroller.
  if (ExitingBlocks.size() > 2)
    return;

  // Limit the CFG of the loop body for targets with a branch predictor.
  // Allowing 4 blocks permits if-then-else diamonds in the body.
  if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
    return;

  // Scan the loop: don't unroll loops with calls as this could prevent
  // inlining.
  unsigned Cost = 0;
  for (auto *BB : L->getBlocks()) {
    for (auto &I : *BB) {
      // Don't unroll vectorised loop. MVE does not benefit from it as much as
      // scalar code.
      if (I.getType()->isVectorTy())
        return;

      if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
        if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
          if (!isLoweredToCall(F))
            continue;
        }
        return;
      }

      SmallVector<const Value*, 4> Operands(I.value_op_begin(),
                                            I.value_op_end());
      Cost += getUserCost(&I, Operands, TargetTransformInfo::TCK_CodeSize);
    }
  }

  LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");

  UP.Partial = true;
  UP.Runtime = true;
  UP.UpperBound = true;
  UP.UnrollRemainder = true;
  UP.DefaultUnrollRuntimeCount = 4;
  UP.UnrollAndJam = true;
  UP.UnrollAndJamInnerLoopThreshold = 60;

  // Force unrolling small loops can be very useful because of the branch
  // taken cost of the backedge.
  if (Cost < 12)
    UP.Force = true;
}

void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
                                       TTI::PeelingPreferences &PP) {
  BaseT::getPeelingPreferences(L, SE, PP);
}

bool ARMTTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
                                       TTI::ReductionFlags Flags) const {
  return ST->hasMVEIntegerOps();
}