aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/ARM/MVEVPTOptimisationsPass.cpp
blob: 00e4449769f462b615389a40ed7de313d9e4bc79 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
//===-- MVEVPTOptimisationsPass.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This pass does a few optimisations related to Tail predicated loops
/// and MVE VPT blocks before register allocation is performed. For VPT blocks
/// the goal is to maximize the sizes of the blocks that will be created by the
/// MVE VPT Block Insertion pass (which runs after register allocation). For
/// tail predicated loops we transform the loop into something that will
/// hopefully make the backend ARMLowOverheadLoops pass's job easier.
///
//===----------------------------------------------------------------------===//

#include "ARM.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "MVETailPredUtils.h"
#include "Thumb2InstrInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include <cassert>

using namespace llvm;

#define DEBUG_TYPE "arm-mve-vpt-opts"

static cl::opt<bool>
MergeEndDec("arm-enable-merge-loopenddec", cl::Hidden,
    cl::desc("Enable merging Loop End and Dec instructions."),
    cl::init(true));

namespace {
class MVEVPTOptimisations : public MachineFunctionPass {
public:
  static char ID;
  const Thumb2InstrInfo *TII;
  MachineRegisterInfo *MRI;

  MVEVPTOptimisations() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &Fn) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineLoopInfo>();
    AU.addPreserved<MachineLoopInfo>();
    AU.addRequired<MachineDominatorTree>();
    AU.addPreserved<MachineDominatorTree>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  StringRef getPassName() const override {
    return "ARM MVE TailPred and VPT Optimisation Pass";
  }

private:
  bool MergeLoopEnd(MachineLoop *ML);
  bool ConvertTailPredLoop(MachineLoop *ML, MachineDominatorTree *DT);
  MachineInstr &ReplaceRegisterUseWithVPNOT(MachineBasicBlock &MBB,
                                            MachineInstr &Instr,
                                            MachineOperand &User,
                                            Register Target);
  bool ReduceOldVCCRValueUses(MachineBasicBlock &MBB);
  bool ReplaceVCMPsByVPNOTs(MachineBasicBlock &MBB);
  bool ReplaceConstByVPNOTs(MachineBasicBlock &MBB, MachineDominatorTree *DT);
  bool ConvertVPSEL(MachineBasicBlock &MBB);
};

char MVEVPTOptimisations::ID = 0;

} // end anonymous namespace

INITIALIZE_PASS_BEGIN(MVEVPTOptimisations, DEBUG_TYPE,
                      "ARM MVE TailPred and VPT Optimisations pass", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(MVEVPTOptimisations, DEBUG_TYPE,
                    "ARM MVE TailPred and VPT Optimisations pass", false, false)

static MachineInstr *LookThroughCOPY(MachineInstr *MI,
                                     MachineRegisterInfo *MRI) {
  while (MI && MI->getOpcode() == TargetOpcode::COPY &&
         MI->getOperand(1).getReg().isVirtual())
    MI = MRI->getVRegDef(MI->getOperand(1).getReg());
  return MI;
}

// Given a loop ML, this attempts to find the t2LoopEnd, t2LoopDec and
// corresponding PHI that make up a low overhead loop. Only handles 'do' loops
// at the moment, returning a t2DoLoopStart in LoopStart.
static bool findLoopComponents(MachineLoop *ML, MachineRegisterInfo *MRI,
                               MachineInstr *&LoopStart, MachineInstr *&LoopPhi,
                               MachineInstr *&LoopDec, MachineInstr *&LoopEnd) {
  MachineBasicBlock *Header = ML->getHeader();
  MachineBasicBlock *Latch = ML->getLoopLatch();
  if (!Header || !Latch) {
    LLVM_DEBUG(dbgs() << "  no Loop Latch or Header\n");
    return false;
  }

  // Find the loop end from the terminators.
  LoopEnd = nullptr;
  for (auto &T : Latch->terminators()) {
    if (T.getOpcode() == ARM::t2LoopEnd && T.getOperand(1).getMBB() == Header) {
      LoopEnd = &T;
      break;
    }
    if (T.getOpcode() == ARM::t2LoopEndDec &&
        T.getOperand(2).getMBB() == Header) {
      LoopEnd = &T;
      break;
    }
  }
  if (!LoopEnd) {
    LLVM_DEBUG(dbgs() << "  no LoopEnd\n");
    return false;
  }
  LLVM_DEBUG(dbgs() << "  found loop end: " << *LoopEnd);

  // Find the dec from the use of the end. There may be copies between
  // instructions. We expect the loop to loop like:
  //   $vs = t2DoLoopStart ...
  // loop:
  //   $vp = phi [ $vs ], [ $vd ]
  //   ...
  //   $vd = t2LoopDec $vp
  //   ...
  //   t2LoopEnd $vd, loop
  if (LoopEnd->getOpcode() == ARM::t2LoopEndDec)
    LoopDec = LoopEnd;
  else {
    LoopDec =
        LookThroughCOPY(MRI->getVRegDef(LoopEnd->getOperand(0).getReg()), MRI);
    if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec) {
      LLVM_DEBUG(dbgs() << "  didn't find LoopDec where we expected!\n");
      return false;
    }
  }
  LLVM_DEBUG(dbgs() << "  found loop dec: " << *LoopDec);

  LoopPhi =
      LookThroughCOPY(MRI->getVRegDef(LoopDec->getOperand(1).getReg()), MRI);
  if (!LoopPhi || LoopPhi->getOpcode() != TargetOpcode::PHI ||
      LoopPhi->getNumOperands() != 5 ||
      (LoopPhi->getOperand(2).getMBB() != Latch &&
       LoopPhi->getOperand(4).getMBB() != Latch)) {
    LLVM_DEBUG(dbgs() << "  didn't find PHI where we expected!\n");
    return false;
  }
  LLVM_DEBUG(dbgs() << "  found loop phi: " << *LoopPhi);

  Register StartReg = LoopPhi->getOperand(2).getMBB() == Latch
                          ? LoopPhi->getOperand(3).getReg()
                          : LoopPhi->getOperand(1).getReg();
  LoopStart = LookThroughCOPY(MRI->getVRegDef(StartReg), MRI);
  if (!LoopStart || LoopStart->getOpcode() != ARM::t2DoLoopStart) {
    LLVM_DEBUG(dbgs() << "  didn't find Start where we expected!\n");
    return false;
  }
  LLVM_DEBUG(dbgs() << "  found loop start: " << *LoopStart);

  return true;
}

// This function converts loops with t2LoopEnd and t2LoopEnd instructions into
// a single t2LoopEndDec instruction. To do that it needs to make sure that LR
// will be valid to be used for the low overhead loop, which means nothing else
// is using LR (especially calls) and there are no superfluous copies in the
// loop. The t2LoopEndDec is a branching terminator that produces a value (the
// decrement) around the loop edge, which means we need to be careful that they
// will be valid to allocate without any spilling.
bool MVEVPTOptimisations::MergeLoopEnd(MachineLoop *ML) {
  if (!MergeEndDec)
    return false;

  LLVM_DEBUG(dbgs() << "MergeLoopEnd on loop " << ML->getHeader()->getName()
                    << "\n");

  MachineInstr *LoopEnd, *LoopPhi, *LoopStart, *LoopDec;
  if (!findLoopComponents(ML, MRI, LoopStart, LoopPhi, LoopDec, LoopEnd))
    return false;

  // Check if there is an illegal instruction (a call) in the low overhead loop
  // and if so revert it now before we get any further.
  for (MachineBasicBlock *MBB : ML->blocks()) {
    for (MachineInstr &MI : *MBB) {
      if (MI.isCall()) {
        LLVM_DEBUG(dbgs() << "Found call in loop, reverting: " << MI);
        RevertDoLoopStart(LoopStart, TII);
        RevertLoopDec(LoopDec, TII);
        RevertLoopEnd(LoopEnd, TII);
        return true;
      }
    }
  }

  // Remove any copies from the loop, to ensure the phi that remains is both
  // simpler and contains no extra uses. Because t2LoopEndDec is a terminator
  // that cannot spill, we need to be careful what remains in the loop.
  Register PhiReg = LoopPhi->getOperand(0).getReg();
  Register DecReg = LoopDec->getOperand(0).getReg();
  Register StartReg = LoopStart->getOperand(0).getReg();
  // Ensure the uses are expected, and collect any copies we want to remove.
  SmallVector<MachineInstr *, 4> Copies;
  auto CheckUsers = [&Copies](Register BaseReg,
                              ArrayRef<MachineInstr *> ExpectedUsers,
                              MachineRegisterInfo *MRI) {
    SmallVector<Register, 4> Worklist;
    Worklist.push_back(BaseReg);
    while (!Worklist.empty()) {
      Register Reg = Worklist.pop_back_val();
      for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
        if (count(ExpectedUsers, &MI))
          continue;
        if (MI.getOpcode() != TargetOpcode::COPY ||
            !MI.getOperand(0).getReg().isVirtual()) {
          LLVM_DEBUG(dbgs() << "Extra users of register found: " << MI);
          return false;
        }
        Worklist.push_back(MI.getOperand(0).getReg());
        Copies.push_back(&MI);
      }
    }
    return true;
  };
  if (!CheckUsers(PhiReg, {LoopDec}, MRI) ||
      !CheckUsers(DecReg, {LoopPhi, LoopEnd}, MRI) ||
      !CheckUsers(StartReg, {LoopPhi}, MRI))
    return false;

  MRI->constrainRegClass(StartReg, &ARM::GPRlrRegClass);
  MRI->constrainRegClass(PhiReg, &ARM::GPRlrRegClass);
  MRI->constrainRegClass(DecReg, &ARM::GPRlrRegClass);

  if (LoopPhi->getOperand(2).getMBB() == ML->getLoopLatch()) {
    LoopPhi->getOperand(3).setReg(StartReg);
    LoopPhi->getOperand(1).setReg(DecReg);
  } else {
    LoopPhi->getOperand(1).setReg(StartReg);
    LoopPhi->getOperand(3).setReg(DecReg);
  }

  // Replace the loop dec and loop end as a single instruction.
  MachineInstrBuilder MI =
      BuildMI(*LoopEnd->getParent(), *LoopEnd, LoopEnd->getDebugLoc(),
              TII->get(ARM::t2LoopEndDec), DecReg)
          .addReg(PhiReg)
          .add(LoopEnd->getOperand(1));
  (void)MI;
  LLVM_DEBUG(dbgs() << "Merged LoopDec and End into: " << *MI.getInstr());

  LoopDec->eraseFromParent();
  LoopEnd->eraseFromParent();
  for (auto *MI : Copies)
    MI->eraseFromParent();
  return true;
}

// Convert t2DoLoopStart to t2DoLoopStartTP if the loop contains VCTP
// instructions. This keeps the VCTP count reg operand on the t2DoLoopStartTP
// instruction, making the backend ARMLowOverheadLoops passes job of finding the
// VCTP operand much simpler.
bool MVEVPTOptimisations::ConvertTailPredLoop(MachineLoop *ML,
                                              MachineDominatorTree *DT) {
  LLVM_DEBUG(dbgs() << "ConvertTailPredLoop on loop "
                    << ML->getHeader()->getName() << "\n");

  // Find some loop components including the LoopEnd/Dec/Start, and any VCTP's
  // in the loop.
  MachineInstr *LoopEnd, *LoopPhi, *LoopStart, *LoopDec;
  if (!findLoopComponents(ML, MRI, LoopStart, LoopPhi, LoopDec, LoopEnd))
    return false;
  if (LoopDec != LoopEnd)
    return false;

  SmallVector<MachineInstr *, 4> VCTPs;
  for (MachineBasicBlock *BB : ML->blocks())
    for (MachineInstr &MI : *BB)
      if (isVCTP(&MI))
        VCTPs.push_back(&MI);

  if (VCTPs.empty()) {
    LLVM_DEBUG(dbgs() << "  no VCTPs\n");
    return false;
  }

  // Check all VCTPs are the same.
  MachineInstr *FirstVCTP = *VCTPs.begin();
  for (MachineInstr *VCTP : VCTPs) {
    LLVM_DEBUG(dbgs() << "  with VCTP " << *VCTP);
    if (VCTP->getOpcode() != FirstVCTP->getOpcode() ||
        VCTP->getOperand(0).getReg() != FirstVCTP->getOperand(0).getReg()) {
      LLVM_DEBUG(dbgs() << "  VCTP's are not identical\n");
      return false;
    }
  }

  // Check for the register being used can be setup before the loop. We expect
  // this to be:
  //   $vx = ...
  // loop:
  //   $vp = PHI [ $vx ], [ $vd ]
  //   ..
  //   $vpr = VCTP $vp
  //   ..
  //   $vd = t2SUBri $vp, #n
  //   ..
  Register CountReg = FirstVCTP->getOperand(1).getReg();
  if (!CountReg.isVirtual()) {
    LLVM_DEBUG(dbgs() << "  cannot determine VCTP PHI\n");
    return false;
  }
  MachineInstr *Phi = LookThroughCOPY(MRI->getVRegDef(CountReg), MRI);
  if (!Phi || Phi->getOpcode() != TargetOpcode::PHI ||
      Phi->getNumOperands() != 5 ||
      (Phi->getOperand(2).getMBB() != ML->getLoopLatch() &&
       Phi->getOperand(4).getMBB() != ML->getLoopLatch())) {
    LLVM_DEBUG(dbgs() << "  cannot determine VCTP Count\n");
    return false;
  }
  CountReg = Phi->getOperand(2).getMBB() == ML->getLoopLatch()
                 ? Phi->getOperand(3).getReg()
                 : Phi->getOperand(1).getReg();

  // Replace the t2DoLoopStart with the t2DoLoopStartTP, move it to the end of
  // the preheader and add the new CountReg to it. We attempt to place it late
  // in the preheader, but may need to move that earlier based on uses.
  MachineBasicBlock *MBB = LoopStart->getParent();
  MachineBasicBlock::iterator InsertPt = MBB->getFirstTerminator();
  for (MachineInstr &Use :
       MRI->use_instructions(LoopStart->getOperand(0).getReg()))
    if ((InsertPt != MBB->end() && !DT->dominates(&*InsertPt, &Use)) ||
        !DT->dominates(ML->getHeader(), Use.getParent())) {
      LLVM_DEBUG(dbgs() << "  InsertPt could not be a terminator!\n");
      return false;
    }

  MachineInstrBuilder MI = BuildMI(*MBB, InsertPt, LoopStart->getDebugLoc(),
                                   TII->get(ARM::t2DoLoopStartTP))
                               .add(LoopStart->getOperand(0))
                               .add(LoopStart->getOperand(1))
                               .addReg(CountReg);
  (void)MI;
  LLVM_DEBUG(dbgs() << "Replacing " << *LoopStart << "  with "
                    << *MI.getInstr());
  MRI->constrainRegClass(CountReg, &ARM::rGPRRegClass);
  LoopStart->eraseFromParent();

  return true;
}

// Returns true if Opcode is any VCMP Opcode.
static bool IsVCMP(unsigned Opcode) { return VCMPOpcodeToVPT(Opcode) != 0; }

// Returns true if a VCMP with this Opcode can have its operands swapped.
// There is 2 kind of VCMP that can't have their operands swapped: Float VCMPs,
// and VCMPr instructions (since the r is always on the right).
static bool CanHaveSwappedOperands(unsigned Opcode) {
  switch (Opcode) {
  default:
    return true;
  case ARM::MVE_VCMPf32:
  case ARM::MVE_VCMPf16:
  case ARM::MVE_VCMPf32r:
  case ARM::MVE_VCMPf16r:
  case ARM::MVE_VCMPi8r:
  case ARM::MVE_VCMPi16r:
  case ARM::MVE_VCMPi32r:
  case ARM::MVE_VCMPu8r:
  case ARM::MVE_VCMPu16r:
  case ARM::MVE_VCMPu32r:
  case ARM::MVE_VCMPs8r:
  case ARM::MVE_VCMPs16r:
  case ARM::MVE_VCMPs32r:
    return false;
  }
}

// Returns the CondCode of a VCMP Instruction.
static ARMCC::CondCodes GetCondCode(MachineInstr &Instr) {
  assert(IsVCMP(Instr.getOpcode()) && "Inst must be a VCMP");
  return ARMCC::CondCodes(Instr.getOperand(3).getImm());
}

// Returns true if Cond is equivalent to a VPNOT instruction on the result of
// Prev. Cond and Prev must be VCMPs.
static bool IsVPNOTEquivalent(MachineInstr &Cond, MachineInstr &Prev) {
  assert(IsVCMP(Cond.getOpcode()) && IsVCMP(Prev.getOpcode()));

  // Opcodes must match.
  if (Cond.getOpcode() != Prev.getOpcode())
    return false;

  MachineOperand &CondOP1 = Cond.getOperand(1), &CondOP2 = Cond.getOperand(2);
  MachineOperand &PrevOP1 = Prev.getOperand(1), &PrevOP2 = Prev.getOperand(2);

  // If the VCMP has the opposite condition with the same operands, we can
  // replace it with a VPNOT
  ARMCC::CondCodes ExpectedCode = GetCondCode(Cond);
  ExpectedCode = ARMCC::getOppositeCondition(ExpectedCode);
  if (ExpectedCode == GetCondCode(Prev))
    if (CondOP1.isIdenticalTo(PrevOP1) && CondOP2.isIdenticalTo(PrevOP2))
      return true;
  // Check again with operands swapped if possible
  if (!CanHaveSwappedOperands(Cond.getOpcode()))
    return false;
  ExpectedCode = ARMCC::getSwappedCondition(ExpectedCode);
  return ExpectedCode == GetCondCode(Prev) && CondOP1.isIdenticalTo(PrevOP2) &&
         CondOP2.isIdenticalTo(PrevOP1);
}

// Returns true if Instr writes to VCCR.
static bool IsWritingToVCCR(MachineInstr &Instr) {
  if (Instr.getNumOperands() == 0)
    return false;
  MachineOperand &Dst = Instr.getOperand(0);
  if (!Dst.isReg())
    return false;
  Register DstReg = Dst.getReg();
  if (!DstReg.isVirtual())
    return false;
  MachineRegisterInfo &RegInfo = Instr.getMF()->getRegInfo();
  const TargetRegisterClass *RegClass = RegInfo.getRegClassOrNull(DstReg);
  return RegClass && (RegClass->getID() == ARM::VCCRRegClassID);
}

// Transforms
//    <Instr that uses %A ('User' Operand)>
// Into
//    %K = VPNOT %Target
//    <Instr that uses %K ('User' Operand)>
// And returns the newly inserted VPNOT.
// This optimization is done in the hopes of preventing spills/reloads of VPR by
// reducing the number of VCCR values with overlapping lifetimes.
MachineInstr &MVEVPTOptimisations::ReplaceRegisterUseWithVPNOT(
    MachineBasicBlock &MBB, MachineInstr &Instr, MachineOperand &User,
    Register Target) {
  Register NewResult = MRI->createVirtualRegister(MRI->getRegClass(Target));

  MachineInstrBuilder MIBuilder =
      BuildMI(MBB, &Instr, Instr.getDebugLoc(), TII->get(ARM::MVE_VPNOT))
          .addDef(NewResult)
          .addReg(Target);
  addUnpredicatedMveVpredNOp(MIBuilder);

  // Make the user use NewResult instead, and clear its kill flag.
  User.setReg(NewResult);
  User.setIsKill(false);

  LLVM_DEBUG(dbgs() << "  Inserting VPNOT (for spill prevention): ";
             MIBuilder.getInstr()->dump());

  return *MIBuilder.getInstr();
}

// Moves a VPNOT before its first user if an instruction that uses Reg is found
// in-between the VPNOT and its user.
// Returns true if there is at least one user of the VPNOT in the block.
static bool MoveVPNOTBeforeFirstUser(MachineBasicBlock &MBB,
                                     MachineBasicBlock::iterator Iter,
                                     Register Reg) {
  assert(Iter->getOpcode() == ARM::MVE_VPNOT && "Not a VPNOT!");
  assert(getVPTInstrPredicate(*Iter) == ARMVCC::None &&
         "The VPNOT cannot be predicated");

  MachineInstr &VPNOT = *Iter;
  Register VPNOTResult = VPNOT.getOperand(0).getReg();
  Register VPNOTOperand = VPNOT.getOperand(1).getReg();

  // Whether the VPNOT will need to be moved, and whether we found a user of the
  // VPNOT.
  bool MustMove = false, HasUser = false;
  MachineOperand *VPNOTOperandKiller = nullptr;
  for (; Iter != MBB.end(); ++Iter) {
    if (MachineOperand *MO =
            Iter->findRegisterUseOperand(VPNOTOperand, /*isKill*/ true)) {
      // If we find the operand that kills the VPNOTOperand's result, save it.
      VPNOTOperandKiller = MO;
    }

    if (Iter->findRegisterUseOperandIdx(Reg) != -1) {
      MustMove = true;
      continue;
    }

    if (Iter->findRegisterUseOperandIdx(VPNOTResult) == -1)
      continue;

    HasUser = true;
    if (!MustMove)
      break;

    // Move the VPNOT right before Iter
    LLVM_DEBUG(dbgs() << "Moving: "; VPNOT.dump(); dbgs() << "  Before: ";
               Iter->dump());
    MBB.splice(Iter, &MBB, VPNOT.getIterator());
    // If we move the instr, and its operand was killed earlier, remove the kill
    // flag.
    if (VPNOTOperandKiller)
      VPNOTOperandKiller->setIsKill(false);

    break;
  }
  return HasUser;
}

// This optimisation attempts to reduce the number of overlapping lifetimes of
// VCCR values by replacing uses of old VCCR values with VPNOTs. For example,
// this replaces
//    %A:vccr = (something)
//    %B:vccr = VPNOT %A
//    %Foo = (some op that uses %B)
//    %Bar = (some op that uses %A)
// With
//    %A:vccr = (something)
//    %B:vccr = VPNOT %A
//    %Foo = (some op that uses %B)
//    %TMP2:vccr = VPNOT %B
//    %Bar = (some op that uses %A)
bool MVEVPTOptimisations::ReduceOldVCCRValueUses(MachineBasicBlock &MBB) {
  MachineBasicBlock::iterator Iter = MBB.begin(), End = MBB.end();
  SmallVector<MachineInstr *, 4> DeadInstructions;
  bool Modified = false;

  while (Iter != End) {
    Register VCCRValue, OppositeVCCRValue;
    // The first loop looks for 2 unpredicated instructions:
    //    %A:vccr = (instr)     ; A is stored in VCCRValue
    //    %B:vccr = VPNOT %A    ; B is stored in OppositeVCCRValue
    for (; Iter != End; ++Iter) {
      // We're only interested in unpredicated instructions that write to VCCR.
      if (!IsWritingToVCCR(*Iter) ||
          getVPTInstrPredicate(*Iter) != ARMVCC::None)
        continue;
      Register Dst = Iter->getOperand(0).getReg();

      // If we already have a VCCRValue, and this is a VPNOT on VCCRValue, we've
      // found what we were looking for.
      if (VCCRValue && Iter->getOpcode() == ARM::MVE_VPNOT &&
          Iter->findRegisterUseOperandIdx(VCCRValue) != -1) {
        // Move the VPNOT closer to its first user if needed, and ignore if it
        // has no users.
        if (!MoveVPNOTBeforeFirstUser(MBB, Iter, VCCRValue))
          continue;

        OppositeVCCRValue = Dst;
        ++Iter;
        break;
      }

      // Else, just set VCCRValue.
      VCCRValue = Dst;
    }

    // If the first inner loop didn't find anything, stop here.
    if (Iter == End)
      break;

    assert(VCCRValue && OppositeVCCRValue &&
           "VCCRValue and OppositeVCCRValue shouldn't be empty if the loop "
           "stopped before the end of the block!");
    assert(VCCRValue != OppositeVCCRValue &&
           "VCCRValue should not be equal to OppositeVCCRValue!");

    // LastVPNOTResult always contains the same value as OppositeVCCRValue.
    Register LastVPNOTResult = OppositeVCCRValue;

    // This second loop tries to optimize the remaining instructions.
    for (; Iter != End; ++Iter) {
      bool IsInteresting = false;

      if (MachineOperand *MO = Iter->findRegisterUseOperand(VCCRValue)) {
        IsInteresting = true;

        // - If the instruction is a VPNOT, it can be removed, and we can just
        //   replace its uses with LastVPNOTResult.
        // - Else, insert a new VPNOT on LastVPNOTResult to recompute VCCRValue.
        if (Iter->getOpcode() == ARM::MVE_VPNOT) {
          Register Result = Iter->getOperand(0).getReg();

          MRI->replaceRegWith(Result, LastVPNOTResult);
          DeadInstructions.push_back(&*Iter);
          Modified = true;

          LLVM_DEBUG(dbgs()
                     << "Replacing all uses of '" << printReg(Result)
                     << "' with '" << printReg(LastVPNOTResult) << "'\n");
        } else {
          MachineInstr &VPNOT =
              ReplaceRegisterUseWithVPNOT(MBB, *Iter, *MO, LastVPNOTResult);
          Modified = true;

          LastVPNOTResult = VPNOT.getOperand(0).getReg();
          std::swap(VCCRValue, OppositeVCCRValue);

          LLVM_DEBUG(dbgs() << "Replacing use of '" << printReg(VCCRValue)
                            << "' with '" << printReg(LastVPNOTResult)
                            << "' in instr: " << *Iter);
        }
      } else {
        // If the instr uses OppositeVCCRValue, make it use LastVPNOTResult
        // instead as they contain the same value.
        if (MachineOperand *MO =
                Iter->findRegisterUseOperand(OppositeVCCRValue)) {
          IsInteresting = true;

          // This is pointless if LastVPNOTResult == OppositeVCCRValue.
          if (LastVPNOTResult != OppositeVCCRValue) {
            LLVM_DEBUG(dbgs() << "Replacing usage of '"
                              << printReg(OppositeVCCRValue) << "' with '"
                              << printReg(LastVPNOTResult) << " for instr: ";
                       Iter->dump());
            MO->setReg(LastVPNOTResult);
            Modified = true;
          }

          MO->setIsKill(false);
        }

        // If this is an unpredicated VPNOT on
        // LastVPNOTResult/OppositeVCCRValue, we can act like we inserted it.
        if (Iter->getOpcode() == ARM::MVE_VPNOT &&
            getVPTInstrPredicate(*Iter) == ARMVCC::None) {
          Register VPNOTOperand = Iter->getOperand(1).getReg();
          if (VPNOTOperand == LastVPNOTResult ||
              VPNOTOperand == OppositeVCCRValue) {
            IsInteresting = true;

            std::swap(VCCRValue, OppositeVCCRValue);
            LastVPNOTResult = Iter->getOperand(0).getReg();
          }
        }
      }

      // If this instruction was not interesting, and it writes to VCCR, stop.
      if (!IsInteresting && IsWritingToVCCR(*Iter))
        break;
    }
  }

  for (MachineInstr *DeadInstruction : DeadInstructions)
    DeadInstruction->eraseFromParent();

  return Modified;
}

// This optimisation replaces VCMPs with VPNOTs when they are equivalent.
bool MVEVPTOptimisations::ReplaceVCMPsByVPNOTs(MachineBasicBlock &MBB) {
  SmallVector<MachineInstr *, 4> DeadInstructions;

  // The last VCMP that we have seen and that couldn't be replaced.
  // This is reset when an instruction that writes to VCCR/VPR is found, or when
  // a VCMP is replaced with a VPNOT.
  // We'll only replace VCMPs with VPNOTs when this is not null, and when the
  // current VCMP is the opposite of PrevVCMP.
  MachineInstr *PrevVCMP = nullptr;
  // If we find an instruction that kills the result of PrevVCMP, we save the
  // operand here to remove the kill flag in case we need to use PrevVCMP's
  // result.
  MachineOperand *PrevVCMPResultKiller = nullptr;

  for (MachineInstr &Instr : MBB.instrs()) {
    if (PrevVCMP) {
      if (MachineOperand *MO = Instr.findRegisterUseOperand(
              PrevVCMP->getOperand(0).getReg(), /*isKill*/ true)) {
        // If we come accross the instr that kills PrevVCMP's result, record it
        // so we can remove the kill flag later if we need to.
        PrevVCMPResultKiller = MO;
      }
    }

    // Ignore predicated instructions.
    if (getVPTInstrPredicate(Instr) != ARMVCC::None)
      continue;

    // Only look at VCMPs
    if (!IsVCMP(Instr.getOpcode())) {
      // If the instruction writes to VCCR, forget the previous VCMP.
      if (IsWritingToVCCR(Instr))
        PrevVCMP = nullptr;
      continue;
    }

    if (!PrevVCMP || !IsVPNOTEquivalent(Instr, *PrevVCMP)) {
      PrevVCMP = &Instr;
      continue;
    }

    // The register containing the result of the VCMP that we're going to
    // replace.
    Register PrevVCMPResultReg = PrevVCMP->getOperand(0).getReg();

    // Build a VPNOT to replace the VCMP, reusing its operands.
    MachineInstrBuilder MIBuilder =
        BuildMI(MBB, &Instr, Instr.getDebugLoc(), TII->get(ARM::MVE_VPNOT))
            .add(Instr.getOperand(0))
            .addReg(PrevVCMPResultReg);
    addUnpredicatedMveVpredNOp(MIBuilder);
    LLVM_DEBUG(dbgs() << "Inserting VPNOT (to replace VCMP): ";
               MIBuilder.getInstr()->dump(); dbgs() << "  Removed VCMP: ";
               Instr.dump());

    // If we found an instruction that uses, and kills PrevVCMP's result,
    // remove the kill flag.
    if (PrevVCMPResultKiller)
      PrevVCMPResultKiller->setIsKill(false);

    // Finally, mark the old VCMP for removal and reset
    // PrevVCMP/PrevVCMPResultKiller.
    DeadInstructions.push_back(&Instr);
    PrevVCMP = nullptr;
    PrevVCMPResultKiller = nullptr;
  }

  for (MachineInstr *DeadInstruction : DeadInstructions)
    DeadInstruction->eraseFromParent();

  return !DeadInstructions.empty();
}

bool MVEVPTOptimisations::ReplaceConstByVPNOTs(MachineBasicBlock &MBB,
                                               MachineDominatorTree *DT) {
  // Scan through the block, looking for instructions that use constants moves
  // into VPR that are the negative of one another. These are expected to be
  // COPY's to VCCRRegClass, from a t2MOVi or t2MOVi16. The last seen constant
  // mask is kept it or and VPNOT's of it are added or reused as we scan through
  // the function.
  unsigned LastVPTImm = 0;
  Register LastVPTReg = 0;
  SmallSet<MachineInstr *, 4> DeadInstructions;

  for (MachineInstr &Instr : MBB.instrs()) {
    // Look for predicated MVE instructions.
    int PIdx = llvm::findFirstVPTPredOperandIdx(Instr);
    if (PIdx == -1)
      continue;
    Register VPR = Instr.getOperand(PIdx + 1).getReg();
    if (!VPR.isVirtual())
      continue;

    // From that we are looking for an instruction like %11:vccr = COPY %9:rgpr.
    MachineInstr *Copy = MRI->getVRegDef(VPR);
    if (!Copy || Copy->getOpcode() != TargetOpcode::COPY ||
        !Copy->getOperand(1).getReg().isVirtual() ||
        MRI->getRegClass(Copy->getOperand(1).getReg()) == &ARM::VCCRRegClass) {
      LastVPTReg = 0;
      continue;
    }
    Register GPR = Copy->getOperand(1).getReg();

    // Find the Immediate used by the copy.
    auto getImm = [&](Register GPR) -> unsigned {
      MachineInstr *Def = MRI->getVRegDef(GPR);
      if (Def && (Def->getOpcode() == ARM::t2MOVi ||
                  Def->getOpcode() == ARM::t2MOVi16))
        return Def->getOperand(1).getImm();
      return -1U;
    };
    unsigned Imm = getImm(GPR);
    if (Imm == -1U) {
      LastVPTReg = 0;
      continue;
    }

    unsigned NotImm = ~Imm & 0xffff;
    if (LastVPTReg != 0 && LastVPTReg != VPR && LastVPTImm == Imm) {
      Instr.getOperand(PIdx + 1).setReg(LastVPTReg);
      if (MRI->use_empty(VPR)) {
        DeadInstructions.insert(Copy);
        if (MRI->hasOneUse(GPR))
          DeadInstructions.insert(MRI->getVRegDef(GPR));
      }
      LLVM_DEBUG(dbgs() << "Reusing predicate: in  " << Instr);
    } else if (LastVPTReg != 0 && LastVPTImm == NotImm) {
      // We have found the not of a previous constant. Create a VPNot of the
      // earlier predicate reg and use it instead of the copy.
      Register NewVPR = MRI->createVirtualRegister(&ARM::VCCRRegClass);
      auto VPNot = BuildMI(MBB, &Instr, Instr.getDebugLoc(),
                           TII->get(ARM::MVE_VPNOT), NewVPR)
                       .addReg(LastVPTReg);
      addUnpredicatedMveVpredNOp(VPNot);

      // Use the new register and check if the def is now dead.
      Instr.getOperand(PIdx + 1).setReg(NewVPR);
      if (MRI->use_empty(VPR)) {
        DeadInstructions.insert(Copy);
        if (MRI->hasOneUse(GPR))
          DeadInstructions.insert(MRI->getVRegDef(GPR));
      }
      LLVM_DEBUG(dbgs() << "Adding VPNot: " << *VPNot << "  to replace use at "
                        << Instr);
      VPR = NewVPR;
    }

    LastVPTImm = Imm;
    LastVPTReg = VPR;
  }

  for (MachineInstr *DI : DeadInstructions)
    DI->eraseFromParent();

  return !DeadInstructions.empty();
}

// Replace VPSEL with a predicated VMOV in blocks with a VCTP. This is a
// somewhat blunt approximation to allow tail predicated with vpsel
// instructions. We turn a vselect into a VPSEL in ISEL, but they have slightly
// different semantics under tail predication. Until that is modelled we just
// convert to a VMOVT (via a predicated VORR) instead.
bool MVEVPTOptimisations::ConvertVPSEL(MachineBasicBlock &MBB) {
  bool HasVCTP = false;
  SmallVector<MachineInstr *, 4> DeadInstructions;

  for (MachineInstr &MI : MBB.instrs()) {
    if (isVCTP(&MI)) {
      HasVCTP = true;
      continue;
    }

    if (!HasVCTP || MI.getOpcode() != ARM::MVE_VPSEL)
      continue;

    MachineInstrBuilder MIBuilder =
        BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(ARM::MVE_VORR))
            .add(MI.getOperand(0))
            .add(MI.getOperand(1))
            .add(MI.getOperand(1))
            .addImm(ARMVCC::Then)
            .add(MI.getOperand(4))
            .add(MI.getOperand(2));
    // Silence unused variable warning in release builds.
    (void)MIBuilder;
    LLVM_DEBUG(dbgs() << "Replacing VPSEL: "; MI.dump();
               dbgs() << "     with VMOVT: "; MIBuilder.getInstr()->dump());
    DeadInstructions.push_back(&MI);
  }

  for (MachineInstr *DeadInstruction : DeadInstructions)
    DeadInstruction->eraseFromParent();

  return !DeadInstructions.empty();
}

bool MVEVPTOptimisations::runOnMachineFunction(MachineFunction &Fn) {
  const ARMSubtarget &STI =
      static_cast<const ARMSubtarget &>(Fn.getSubtarget());

  if (!STI.isThumb2() || !STI.hasLOB())
    return false;

  TII = static_cast<const Thumb2InstrInfo *>(STI.getInstrInfo());
  MRI = &Fn.getRegInfo();
  MachineLoopInfo *MLI = &getAnalysis<MachineLoopInfo>();
  MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();

  LLVM_DEBUG(dbgs() << "********** ARM MVE VPT Optimisations **********\n"
                    << "********** Function: " << Fn.getName() << '\n');

  bool Modified = false;
  for (MachineLoop *ML : MLI->getBase().getLoopsInPreorder()) {
    Modified |= MergeLoopEnd(ML);
    Modified |= ConvertTailPredLoop(ML, DT);
  }

  for (MachineBasicBlock &MBB : Fn) {
    Modified |= ReplaceConstByVPNOTs(MBB, DT);
    Modified |= ReplaceVCMPsByVPNOTs(MBB);
    Modified |= ReduceOldVCCRValueUses(MBB);
    Modified |= ConvertVPSEL(MBB);
  }

  LLVM_DEBUG(dbgs() << "**************************************\n");
  return Modified;
}

/// createMVEVPTOptimisationsPass
FunctionPass *llvm::createMVEVPTOptimisationsPass() {
  return new MVEVPTOptimisations();
}