aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/BPF/BPFISelLowering.cpp
blob: a02556a399098d9e913ca45be647274c708ce581 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
//===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation  ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that BPF uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#include "BPFISelLowering.h"
#include "BPF.h"
#include "BPFSubtarget.h"
#include "BPFTargetMachine.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

#define DEBUG_TYPE "bpf-lower"

static cl::opt<bool> BPFExpandMemcpyInOrder("bpf-expand-memcpy-in-order",
  cl::Hidden, cl::init(false),
  cl::desc("Expand memcpy into load/store pairs in order"));

static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg) {
  MachineFunction &MF = DAG.getMachineFunction();
  DAG.getContext()->diagnose(
      DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
}

static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg,
                 SDValue Val) {
  MachineFunction &MF = DAG.getMachineFunction();
  std::string Str;
  raw_string_ostream OS(Str);
  OS << Msg;
  Val->print(OS);
  OS.flush();
  DAG.getContext()->diagnose(
      DiagnosticInfoUnsupported(MF.getFunction(), Str, DL.getDebugLoc()));
}

BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM,
                                     const BPFSubtarget &STI)
    : TargetLowering(TM) {

  // Set up the register classes.
  addRegisterClass(MVT::i64, &BPF::GPRRegClass);
  if (STI.getHasAlu32())
    addRegisterClass(MVT::i32, &BPF::GPR32RegClass);

  // Compute derived properties from the register classes
  computeRegisterProperties(STI.getRegisterInfo());

  setStackPointerRegisterToSaveRestore(BPF::R11);

  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
  setOperationAction(ISD::BRIND, MVT::Other, Expand);
  setOperationAction(ISD::BRCOND, MVT::Other, Expand);

  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);

  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);

  for (auto VT : { MVT::i32, MVT::i64 }) {
    if (VT == MVT::i32 && !STI.getHasAlu32())
      continue;

    setOperationAction(ISD::SDIVREM, VT, Expand);
    setOperationAction(ISD::UDIVREM, VT, Expand);
    setOperationAction(ISD::SREM, VT, Expand);
    setOperationAction(ISD::UREM, VT, Expand);
    setOperationAction(ISD::MULHU, VT, Expand);
    setOperationAction(ISD::MULHS, VT, Expand);
    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    setOperationAction(ISD::ROTR, VT, Expand);
    setOperationAction(ISD::ROTL, VT, Expand);
    setOperationAction(ISD::SHL_PARTS, VT, Expand);
    setOperationAction(ISD::SRL_PARTS, VT, Expand);
    setOperationAction(ISD::SRA_PARTS, VT, Expand);
    setOperationAction(ISD::CTPOP, VT, Expand);

    setOperationAction(ISD::SETCC, VT, Expand);
    setOperationAction(ISD::SELECT, VT, Expand);
    setOperationAction(ISD::SELECT_CC, VT, Custom);
  }

  if (STI.getHasAlu32()) {
    setOperationAction(ISD::BSWAP, MVT::i32, Promote);
    setOperationAction(ISD::BR_CC, MVT::i32,
                       STI.getHasJmp32() ? Custom : Promote);
  }

  setOperationAction(ISD::CTTZ, MVT::i64, Custom);
  setOperationAction(ISD::CTLZ, MVT::i64, Custom);
  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);

  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);

  // Extended load operations for i1 types must be promoted
  for (MVT VT : MVT::integer_valuetypes()) {
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);

    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
  }

  setBooleanContents(ZeroOrOneBooleanContent);

  // Function alignments
  setMinFunctionAlignment(Align(8));
  setPrefFunctionAlignment(Align(8));

  if (BPFExpandMemcpyInOrder) {
    // LLVM generic code will try to expand memcpy into load/store pairs at this
    // stage which is before quite a few IR optimization passes, therefore the
    // loads and stores could potentially be moved apart from each other which
    // will cause trouble to memcpy pattern matcher inside kernel eBPF JIT
    // compilers.
    //
    // When -bpf-expand-memcpy-in-order specified, we want to defer the expand
    // of memcpy to later stage in IR optimization pipeline so those load/store
    // pairs won't be touched and could be kept in order. Hence, we set
    // MaxStoresPerMem* to zero to disable the generic getMemcpyLoadsAndStores
    // code path, and ask LLVM to use target expander EmitTargetCodeForMemcpy.
    MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 0;
    MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 0;
    MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 0;
  } else {
    // inline memcpy() for kernel to see explicit copy
    unsigned CommonMaxStores =
      STI.getSelectionDAGInfo()->getCommonMaxStoresPerMemFunc();

    MaxStoresPerMemset = MaxStoresPerMemsetOptSize = CommonMaxStores;
    MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = CommonMaxStores;
    MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = CommonMaxStores;
  }

  // CPU/Feature control
  HasAlu32 = STI.getHasAlu32();
  HasJmp32 = STI.getHasJmp32();
  HasJmpExt = STI.getHasJmpExt();
}

bool BPFTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
  return false;
}

bool BPFTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
    return false;
  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
  return NumBits1 > NumBits2;
}

bool BPFTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
  if (!VT1.isInteger() || !VT2.isInteger())
    return false;
  unsigned NumBits1 = VT1.getSizeInBits();
  unsigned NumBits2 = VT2.getSizeInBits();
  return NumBits1 > NumBits2;
}

bool BPFTargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
  if (!getHasAlu32() || !Ty1->isIntegerTy() || !Ty2->isIntegerTy())
    return false;
  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
  return NumBits1 == 32 && NumBits2 == 64;
}

bool BPFTargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
  if (!getHasAlu32() || !VT1.isInteger() || !VT2.isInteger())
    return false;
  unsigned NumBits1 = VT1.getSizeInBits();
  unsigned NumBits2 = VT2.getSizeInBits();
  return NumBits1 == 32 && NumBits2 == 64;
}

std::pair<unsigned, const TargetRegisterClass *>
BPFTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                                StringRef Constraint,
                                                MVT VT) const {
  if (Constraint.size() == 1)
    // GCC Constraint Letters
    switch (Constraint[0]) {
    case 'r': // GENERAL_REGS
      return std::make_pair(0U, &BPF::GPRRegClass);
    default:
      break;
    }

  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}

SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  switch (Op.getOpcode()) {
  case ISD::BR_CC:
    return LowerBR_CC(Op, DAG);
  case ISD::GlobalAddress:
    return LowerGlobalAddress(Op, DAG);
  case ISD::SELECT_CC:
    return LowerSELECT_CC(Op, DAG);
  case ISD::DYNAMIC_STACKALLOC:
    report_fatal_error("Unsupported dynamic stack allocation");
  default:
    llvm_unreachable("unimplemented operand");
  }
}

// Calling Convention Implementation
#include "BPFGenCallingConv.inc"

SDValue BPFTargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  switch (CallConv) {
  default:
    report_fatal_error("Unsupported calling convention");
  case CallingConv::C:
  case CallingConv::Fast:
    break;
  }

  MachineFunction &MF = DAG.getMachineFunction();
  MachineRegisterInfo &RegInfo = MF.getRegInfo();

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
  CCInfo.AnalyzeFormalArguments(Ins, getHasAlu32() ? CC_BPF32 : CC_BPF64);

  for (auto &VA : ArgLocs) {
    if (VA.isRegLoc()) {
      // Arguments passed in registers
      EVT RegVT = VA.getLocVT();
      MVT::SimpleValueType SimpleTy = RegVT.getSimpleVT().SimpleTy;
      switch (SimpleTy) {
      default: {
        errs() << "LowerFormalArguments Unhandled argument type: "
               << RegVT.getEVTString() << '\n';
        llvm_unreachable(0);
      }
      case MVT::i32:
      case MVT::i64:
        Register VReg = RegInfo.createVirtualRegister(
            SimpleTy == MVT::i64 ? &BPF::GPRRegClass : &BPF::GPR32RegClass);
        RegInfo.addLiveIn(VA.getLocReg(), VReg);
        SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);

        // If this is an value that has been promoted to wider types, insert an
        // assert[sz]ext to capture this, then truncate to the right size.
        if (VA.getLocInfo() == CCValAssign::SExt)
          ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
                                 DAG.getValueType(VA.getValVT()));
        else if (VA.getLocInfo() == CCValAssign::ZExt)
          ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
                                 DAG.getValueType(VA.getValVT()));

        if (VA.getLocInfo() != CCValAssign::Full)
          ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);

        InVals.push_back(ArgValue);

	break;
      }
    } else {
      fail(DL, DAG, "defined with too many args");
      InVals.push_back(DAG.getConstant(0, DL, VA.getLocVT()));
    }
  }

  if (IsVarArg || MF.getFunction().hasStructRetAttr()) {
    fail(DL, DAG, "functions with VarArgs or StructRet are not supported");
  }

  return Chain;
}

const unsigned BPFTargetLowering::MaxArgs = 5;

SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
                                     SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG = CLI.DAG;
  auto &Outs = CLI.Outs;
  auto &OutVals = CLI.OutVals;
  auto &Ins = CLI.Ins;
  SDValue Chain = CLI.Chain;
  SDValue Callee = CLI.Callee;
  bool &IsTailCall = CLI.IsTailCall;
  CallingConv::ID CallConv = CLI.CallConv;
  bool IsVarArg = CLI.IsVarArg;
  MachineFunction &MF = DAG.getMachineFunction();

  // BPF target does not support tail call optimization.
  IsTailCall = false;

  switch (CallConv) {
  default:
    report_fatal_error("Unsupported calling convention");
  case CallingConv::Fast:
  case CallingConv::C:
    break;
  }

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());

  CCInfo.AnalyzeCallOperands(Outs, getHasAlu32() ? CC_BPF32 : CC_BPF64);

  unsigned NumBytes = CCInfo.getNextStackOffset();

  if (Outs.size() > MaxArgs)
    fail(CLI.DL, DAG, "too many args to ", Callee);

  for (auto &Arg : Outs) {
    ISD::ArgFlagsTy Flags = Arg.Flags;
    if (!Flags.isByVal())
      continue;

    fail(CLI.DL, DAG, "pass by value not supported ", Callee);
  }

  auto PtrVT = getPointerTy(MF.getDataLayout());
  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);

  SmallVector<std::pair<unsigned, SDValue>, MaxArgs> RegsToPass;

  // Walk arg assignments
  for (unsigned i = 0,
                e = std::min(static_cast<unsigned>(ArgLocs.size()), MaxArgs);
       i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    SDValue Arg = OutVals[i];

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown loc info");
    case CCValAssign::Full:
      break;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::AExt:
      Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg);
      break;
    }

    // Push arguments into RegsToPass vector
    if (VA.isRegLoc())
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
    else
      llvm_unreachable("call arg pass bug");
  }

  SDValue InFlag;

  // Build a sequence of copy-to-reg nodes chained together with token chain and
  // flag operands which copy the outgoing args into registers.  The InFlag in
  // necessary since all emitted instructions must be stuck together.
  for (auto &Reg : RegsToPass) {
    Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InFlag);
    InFlag = Chain.getValue(1);
  }

  // If the callee is a GlobalAddress node (quite common, every direct call is)
  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
  // Likewise ExternalSymbol -> TargetExternalSymbol.
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, PtrVT,
                                        G->getOffset(), 0);
  } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
    fail(CLI.DL, DAG, Twine("A call to built-in function '"
                            + StringRef(E->getSymbol())
                            + "' is not supported."));
  }

  // Returns a chain & a flag for retval copy to use.
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  SmallVector<SDValue, 8> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);

  // Add argument registers to the end of the list so that they are
  // known live into the call.
  for (auto &Reg : RegsToPass)
    Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));

  if (InFlag.getNode())
    Ops.push_back(InFlag);

  Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops);
  InFlag = Chain.getValue(1);

  // Create the CALLSEQ_END node.
  Chain = DAG.getCALLSEQ_END(
      Chain, DAG.getConstant(NumBytes, CLI.DL, PtrVT, true),
      DAG.getConstant(0, CLI.DL, PtrVT, true), InFlag, CLI.DL);
  InFlag = Chain.getValue(1);

  // Handle result values, copying them out of physregs into vregs that we
  // return.
  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, CLI.DL, DAG,
                         InVals);
}

SDValue
BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                               bool IsVarArg,
                               const SmallVectorImpl<ISD::OutputArg> &Outs,
                               const SmallVectorImpl<SDValue> &OutVals,
                               const SDLoc &DL, SelectionDAG &DAG) const {
  unsigned Opc = BPFISD::RET_FLAG;

  // CCValAssign - represent the assignment of the return value to a location
  SmallVector<CCValAssign, 16> RVLocs;
  MachineFunction &MF = DAG.getMachineFunction();

  // CCState - Info about the registers and stack slot.
  CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());

  if (MF.getFunction().getReturnType()->isAggregateType()) {
    fail(DL, DAG, "only integer returns supported");
    return DAG.getNode(Opc, DL, MVT::Other, Chain);
  }

  // Analize return values.
  CCInfo.AnalyzeReturn(Outs, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);

  SDValue Flag;
  SmallVector<SDValue, 4> RetOps(1, Chain);

  // Copy the result values into the output registers.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");

    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);

    // Guarantee that all emitted copies are stuck together,
    // avoiding something bad.
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
  }

  RetOps[0] = Chain; // Update chain.

  // Add the flag if we have it.
  if (Flag.getNode())
    RetOps.push_back(Flag);

  return DAG.getNode(Opc, DL, MVT::Other, RetOps);
}

SDValue BPFTargetLowering::LowerCallResult(
    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {

  MachineFunction &MF = DAG.getMachineFunction();
  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());

  if (Ins.size() >= 2) {
    fail(DL, DAG, "only small returns supported");
    for (unsigned i = 0, e = Ins.size(); i != e; ++i)
      InVals.push_back(DAG.getConstant(0, DL, Ins[i].VT));
    return DAG.getCopyFromReg(Chain, DL, 1, Ins[0].VT, InFlag).getValue(1);
  }

  CCInfo.AnalyzeCallResult(Ins, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);

  // Copy all of the result registers out of their specified physreg.
  for (auto &Val : RVLocs) {
    Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(),
                               Val.getValVT(), InFlag).getValue(1);
    InFlag = Chain.getValue(2);
    InVals.push_back(Chain.getValue(0));
  }

  return Chain;
}

static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
  switch (CC) {
  default:
    break;
  case ISD::SETULT:
  case ISD::SETULE:
  case ISD::SETLT:
  case ISD::SETLE:
    CC = ISD::getSetCCSwappedOperands(CC);
    std::swap(LHS, RHS);
    break;
  }
}

SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
  SDValue LHS = Op.getOperand(2);
  SDValue RHS = Op.getOperand(3);
  SDValue Dest = Op.getOperand(4);
  SDLoc DL(Op);

  if (!getHasJmpExt())
    NegateCC(LHS, RHS, CC);

  return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS,
                     DAG.getConstant(CC, DL, LHS.getValueType()), Dest);
}

SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  SDValue TrueV = Op.getOperand(2);
  SDValue FalseV = Op.getOperand(3);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
  SDLoc DL(Op);

  if (!getHasJmpExt())
    NegateCC(LHS, RHS, CC);

  SDValue TargetCC = DAG.getConstant(CC, DL, LHS.getValueType());
  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
  SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};

  return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops);
}

const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch ((BPFISD::NodeType)Opcode) {
  case BPFISD::FIRST_NUMBER:
    break;
  case BPFISD::RET_FLAG:
    return "BPFISD::RET_FLAG";
  case BPFISD::CALL:
    return "BPFISD::CALL";
  case BPFISD::SELECT_CC:
    return "BPFISD::SELECT_CC";
  case BPFISD::BR_CC:
    return "BPFISD::BR_CC";
  case BPFISD::Wrapper:
    return "BPFISD::Wrapper";
  case BPFISD::MEMCPY:
    return "BPFISD::MEMCPY";
  }
  return nullptr;
}

SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op,
                                              SelectionDAG &DAG) const {
  auto N = cast<GlobalAddressSDNode>(Op);
  assert(N->getOffset() == 0 && "Invalid offset for global address");

  SDLoc DL(Op);
  const GlobalValue *GV = N->getGlobal();
  SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i64);

  return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA);
}

unsigned
BPFTargetLowering::EmitSubregExt(MachineInstr &MI, MachineBasicBlock *BB,
                                 unsigned Reg, bool isSigned) const {
  const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
  const TargetRegisterClass *RC = getRegClassFor(MVT::i64);
  int RShiftOp = isSigned ? BPF::SRA_ri : BPF::SRL_ri;
  MachineFunction *F = BB->getParent();
  DebugLoc DL = MI.getDebugLoc();

  MachineRegisterInfo &RegInfo = F->getRegInfo();

  if (!isSigned) {
    Register PromotedReg0 = RegInfo.createVirtualRegister(RC);
    BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
    return PromotedReg0;
  }
  Register PromotedReg0 = RegInfo.createVirtualRegister(RC);
  Register PromotedReg1 = RegInfo.createVirtualRegister(RC);
  Register PromotedReg2 = RegInfo.createVirtualRegister(RC);
  BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
  BuildMI(BB, DL, TII.get(BPF::SLL_ri), PromotedReg1)
    .addReg(PromotedReg0).addImm(32);
  BuildMI(BB, DL, TII.get(RShiftOp), PromotedReg2)
    .addReg(PromotedReg1).addImm(32);

  return PromotedReg2;
}

MachineBasicBlock *
BPFTargetLowering::EmitInstrWithCustomInserterMemcpy(MachineInstr &MI,
                                                     MachineBasicBlock *BB)
                                                     const {
  MachineFunction *MF = MI.getParent()->getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  MachineInstrBuilder MIB(*MF, MI);
  unsigned ScratchReg;

  // This function does custom insertion during lowering BPFISD::MEMCPY which
  // only has two register operands from memcpy semantics, the copy source
  // address and the copy destination address.
  //
  // Because we will expand BPFISD::MEMCPY into load/store pairs, we will need
  // a third scratch register to serve as the destination register of load and
  // source register of store.
  //
  // The scratch register here is with the Define | Dead | EarlyClobber flags.
  // The EarlyClobber flag has the semantic property that the operand it is
  // attached to is clobbered before the rest of the inputs are read. Hence it
  // must be unique among the operands to the instruction. The Define flag is
  // needed to coerce the machine verifier that an Undef value isn't a problem
  // as we anyway is loading memory into it. The Dead flag is needed as the
  // value in scratch isn't supposed to be used by any other instruction.
  ScratchReg = MRI.createVirtualRegister(&BPF::GPRRegClass);
  MIB.addReg(ScratchReg,
             RegState::Define | RegState::Dead | RegState::EarlyClobber);

  return BB;
}

MachineBasicBlock *
BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
                                               MachineBasicBlock *BB) const {
  const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();
  unsigned Opc = MI.getOpcode();
  bool isSelectRROp = (Opc == BPF::Select ||
                       Opc == BPF::Select_64_32 ||
                       Opc == BPF::Select_32 ||
                       Opc == BPF::Select_32_64);

  bool isMemcpyOp = Opc == BPF::MEMCPY;

#ifndef NDEBUG
  bool isSelectRIOp = (Opc == BPF::Select_Ri ||
                       Opc == BPF::Select_Ri_64_32 ||
                       Opc == BPF::Select_Ri_32 ||
                       Opc == BPF::Select_Ri_32_64);


  assert((isSelectRROp || isSelectRIOp || isMemcpyOp) &&
         "Unexpected instr type to insert");
#endif

  if (isMemcpyOp)
    return EmitInstrWithCustomInserterMemcpy(MI, BB);

  bool is32BitCmp = (Opc == BPF::Select_32 ||
                     Opc == BPF::Select_32_64 ||
                     Opc == BPF::Select_Ri_32 ||
                     Opc == BPF::Select_Ri_32_64);

  // To "insert" a SELECT instruction, we actually have to insert the diamond
  // control-flow pattern.  The incoming instruction knows the destination vreg
  // to set, the condition code register to branch on, the true/false values to
  // select between, and a branch opcode to use.
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction::iterator I = ++BB->getIterator();

  // ThisMBB:
  // ...
  //  TrueVal = ...
  //  jmp_XX r1, r2 goto Copy1MBB
  //  fallthrough --> Copy0MBB
  MachineBasicBlock *ThisMBB = BB;
  MachineFunction *F = BB->getParent();
  MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);

  F->insert(I, Copy0MBB);
  F->insert(I, Copy1MBB);
  // Update machine-CFG edges by transferring all successors of the current
  // block to the new block which will contain the Phi node for the select.
  Copy1MBB->splice(Copy1MBB->begin(), BB,
                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
  Copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
  // Next, add the true and fallthrough blocks as its successors.
  BB->addSuccessor(Copy0MBB);
  BB->addSuccessor(Copy1MBB);

  // Insert Branch if Flag
  int CC = MI.getOperand(3).getImm();
  int NewCC;
  switch (CC) {
#define SET_NEWCC(X, Y) \
  case ISD::X: \
    if (is32BitCmp && HasJmp32) \
      NewCC = isSelectRROp ? BPF::Y##_rr_32 : BPF::Y##_ri_32; \
    else \
      NewCC = isSelectRROp ? BPF::Y##_rr : BPF::Y##_ri; \
    break
  SET_NEWCC(SETGT, JSGT);
  SET_NEWCC(SETUGT, JUGT);
  SET_NEWCC(SETGE, JSGE);
  SET_NEWCC(SETUGE, JUGE);
  SET_NEWCC(SETEQ, JEQ);
  SET_NEWCC(SETNE, JNE);
  SET_NEWCC(SETLT, JSLT);
  SET_NEWCC(SETULT, JULT);
  SET_NEWCC(SETLE, JSLE);
  SET_NEWCC(SETULE, JULE);
  default:
    report_fatal_error("unimplemented select CondCode " + Twine(CC));
  }

  Register LHS = MI.getOperand(1).getReg();
  bool isSignedCmp = (CC == ISD::SETGT ||
                      CC == ISD::SETGE ||
                      CC == ISD::SETLT ||
                      CC == ISD::SETLE);

  // eBPF at the moment only has 64-bit comparison. Any 32-bit comparison need
  // to be promoted, however if the 32-bit comparison operands are destination
  // registers then they are implicitly zero-extended already, there is no
  // need of explicit zero-extend sequence for them.
  //
  // We simply do extension for all situations in this method, but we will
  // try to remove those unnecessary in BPFMIPeephole pass.
  if (is32BitCmp && !HasJmp32)
    LHS = EmitSubregExt(MI, BB, LHS, isSignedCmp);

  if (isSelectRROp) {
    Register RHS = MI.getOperand(2).getReg();

    if (is32BitCmp && !HasJmp32)
      RHS = EmitSubregExt(MI, BB, RHS, isSignedCmp);

    BuildMI(BB, DL, TII.get(NewCC)).addReg(LHS).addReg(RHS).addMBB(Copy1MBB);
  } else {
    int64_t imm32 = MI.getOperand(2).getImm();
    // sanity check before we build J*_ri instruction.
    assert (isInt<32>(imm32));
    BuildMI(BB, DL, TII.get(NewCC))
        .addReg(LHS).addImm(imm32).addMBB(Copy1MBB);
  }

  // Copy0MBB:
  //  %FalseValue = ...
  //  # fallthrough to Copy1MBB
  BB = Copy0MBB;

  // Update machine-CFG edges
  BB->addSuccessor(Copy1MBB);

  // Copy1MBB:
  //  %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
  // ...
  BB = Copy1MBB;
  BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI.getOperand(0).getReg())
      .addReg(MI.getOperand(5).getReg())
      .addMBB(Copy0MBB)
      .addReg(MI.getOperand(4).getReg())
      .addMBB(ThisMBB);

  MI.eraseFromParent(); // The pseudo instruction is gone now.
  return BB;
}

EVT BPFTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
                                          EVT VT) const {
  return getHasAlu32() ? MVT::i32 : MVT::i64;
}

MVT BPFTargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
                                              EVT VT) const {
  return (getHasAlu32() && VT == MVT::i32) ? MVT::i32 : MVT::i64;
}