1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
|
//===-- X86DisassemblerDecoderInternal.h - Disassembler decoder -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler.
// It contains the public interface of the instruction decoder.
// Documentation for the disassembler can be found in X86Disassembler.h.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODER_H
#define LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODER_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/X86DisassemblerDecoderCommon.h"
namespace llvm {
class MCInstrInfo;
namespace X86Disassembler {
// Accessor functions for various fields of an Intel instruction
#define modFromModRM(modRM) (((modRM) & 0xc0) >> 6)
#define regFromModRM(modRM) (((modRM) & 0x38) >> 3)
#define rmFromModRM(modRM) ((modRM) & 0x7)
#define scaleFromSIB(sib) (((sib) & 0xc0) >> 6)
#define indexFromSIB(sib) (((sib) & 0x38) >> 3)
#define baseFromSIB(sib) ((sib) & 0x7)
#define wFromREX(rex) (((rex) & 0x8) >> 3)
#define rFromREX(rex) (((rex) & 0x4) >> 2)
#define xFromREX(rex) (((rex) & 0x2) >> 1)
#define bFromREX(rex) ((rex) & 0x1)
#define rFromEVEX2of4(evex) (((~(evex)) & 0x80) >> 7)
#define xFromEVEX2of4(evex) (((~(evex)) & 0x40) >> 6)
#define bFromEVEX2of4(evex) (((~(evex)) & 0x20) >> 5)
#define r2FromEVEX2of4(evex) (((~(evex)) & 0x10) >> 4)
#define mmFromEVEX2of4(evex) ((evex) & 0x3)
#define wFromEVEX3of4(evex) (((evex) & 0x80) >> 7)
#define vvvvFromEVEX3of4(evex) (((~(evex)) & 0x78) >> 3)
#define ppFromEVEX3of4(evex) ((evex) & 0x3)
#define zFromEVEX4of4(evex) (((evex) & 0x80) >> 7)
#define l2FromEVEX4of4(evex) (((evex) & 0x40) >> 6)
#define lFromEVEX4of4(evex) (((evex) & 0x20) >> 5)
#define bFromEVEX4of4(evex) (((evex) & 0x10) >> 4)
#define v2FromEVEX4of4(evex) (((~evex) & 0x8) >> 3)
#define aaaFromEVEX4of4(evex) ((evex) & 0x7)
#define rFromVEX2of3(vex) (((~(vex)) & 0x80) >> 7)
#define xFromVEX2of3(vex) (((~(vex)) & 0x40) >> 6)
#define bFromVEX2of3(vex) (((~(vex)) & 0x20) >> 5)
#define mmmmmFromVEX2of3(vex) ((vex) & 0x1f)
#define wFromVEX3of3(vex) (((vex) & 0x80) >> 7)
#define vvvvFromVEX3of3(vex) (((~(vex)) & 0x78) >> 3)
#define lFromVEX3of3(vex) (((vex) & 0x4) >> 2)
#define ppFromVEX3of3(vex) ((vex) & 0x3)
#define rFromVEX2of2(vex) (((~(vex)) & 0x80) >> 7)
#define vvvvFromVEX2of2(vex) (((~(vex)) & 0x78) >> 3)
#define lFromVEX2of2(vex) (((vex) & 0x4) >> 2)
#define ppFromVEX2of2(vex) ((vex) & 0x3)
#define rFromXOP2of3(xop) (((~(xop)) & 0x80) >> 7)
#define xFromXOP2of3(xop) (((~(xop)) & 0x40) >> 6)
#define bFromXOP2of3(xop) (((~(xop)) & 0x20) >> 5)
#define mmmmmFromXOP2of3(xop) ((xop) & 0x1f)
#define wFromXOP3of3(xop) (((xop) & 0x80) >> 7)
#define vvvvFromXOP3of3(vex) (((~(vex)) & 0x78) >> 3)
#define lFromXOP3of3(xop) (((xop) & 0x4) >> 2)
#define ppFromXOP3of3(xop) ((xop) & 0x3)
// These enums represent Intel registers for use by the decoder.
#define REGS_8BIT \
ENTRY(AL) \
ENTRY(CL) \
ENTRY(DL) \
ENTRY(BL) \
ENTRY(AH) \
ENTRY(CH) \
ENTRY(DH) \
ENTRY(BH) \
ENTRY(R8B) \
ENTRY(R9B) \
ENTRY(R10B) \
ENTRY(R11B) \
ENTRY(R12B) \
ENTRY(R13B) \
ENTRY(R14B) \
ENTRY(R15B) \
ENTRY(SPL) \
ENTRY(BPL) \
ENTRY(SIL) \
ENTRY(DIL)
#define EA_BASES_16BIT \
ENTRY(BX_SI) \
ENTRY(BX_DI) \
ENTRY(BP_SI) \
ENTRY(BP_DI) \
ENTRY(SI) \
ENTRY(DI) \
ENTRY(BP) \
ENTRY(BX) \
ENTRY(R8W) \
ENTRY(R9W) \
ENTRY(R10W) \
ENTRY(R11W) \
ENTRY(R12W) \
ENTRY(R13W) \
ENTRY(R14W) \
ENTRY(R15W)
#define REGS_16BIT \
ENTRY(AX) \
ENTRY(CX) \
ENTRY(DX) \
ENTRY(BX) \
ENTRY(SP) \
ENTRY(BP) \
ENTRY(SI) \
ENTRY(DI) \
ENTRY(R8W) \
ENTRY(R9W) \
ENTRY(R10W) \
ENTRY(R11W) \
ENTRY(R12W) \
ENTRY(R13W) \
ENTRY(R14W) \
ENTRY(R15W)
#define EA_BASES_32BIT \
ENTRY(EAX) \
ENTRY(ECX) \
ENTRY(EDX) \
ENTRY(EBX) \
ENTRY(sib) \
ENTRY(EBP) \
ENTRY(ESI) \
ENTRY(EDI) \
ENTRY(R8D) \
ENTRY(R9D) \
ENTRY(R10D) \
ENTRY(R11D) \
ENTRY(R12D) \
ENTRY(R13D) \
ENTRY(R14D) \
ENTRY(R15D)
#define REGS_32BIT \
ENTRY(EAX) \
ENTRY(ECX) \
ENTRY(EDX) \
ENTRY(EBX) \
ENTRY(ESP) \
ENTRY(EBP) \
ENTRY(ESI) \
ENTRY(EDI) \
ENTRY(R8D) \
ENTRY(R9D) \
ENTRY(R10D) \
ENTRY(R11D) \
ENTRY(R12D) \
ENTRY(R13D) \
ENTRY(R14D) \
ENTRY(R15D)
#define EA_BASES_64BIT \
ENTRY(RAX) \
ENTRY(RCX) \
ENTRY(RDX) \
ENTRY(RBX) \
ENTRY(sib64) \
ENTRY(RBP) \
ENTRY(RSI) \
ENTRY(RDI) \
ENTRY(R8) \
ENTRY(R9) \
ENTRY(R10) \
ENTRY(R11) \
ENTRY(R12) \
ENTRY(R13) \
ENTRY(R14) \
ENTRY(R15)
#define REGS_64BIT \
ENTRY(RAX) \
ENTRY(RCX) \
ENTRY(RDX) \
ENTRY(RBX) \
ENTRY(RSP) \
ENTRY(RBP) \
ENTRY(RSI) \
ENTRY(RDI) \
ENTRY(R8) \
ENTRY(R9) \
ENTRY(R10) \
ENTRY(R11) \
ENTRY(R12) \
ENTRY(R13) \
ENTRY(R14) \
ENTRY(R15)
#define REGS_MMX \
ENTRY(MM0) \
ENTRY(MM1) \
ENTRY(MM2) \
ENTRY(MM3) \
ENTRY(MM4) \
ENTRY(MM5) \
ENTRY(MM6) \
ENTRY(MM7)
#define REGS_XMM \
ENTRY(XMM0) \
ENTRY(XMM1) \
ENTRY(XMM2) \
ENTRY(XMM3) \
ENTRY(XMM4) \
ENTRY(XMM5) \
ENTRY(XMM6) \
ENTRY(XMM7) \
ENTRY(XMM8) \
ENTRY(XMM9) \
ENTRY(XMM10) \
ENTRY(XMM11) \
ENTRY(XMM12) \
ENTRY(XMM13) \
ENTRY(XMM14) \
ENTRY(XMM15) \
ENTRY(XMM16) \
ENTRY(XMM17) \
ENTRY(XMM18) \
ENTRY(XMM19) \
ENTRY(XMM20) \
ENTRY(XMM21) \
ENTRY(XMM22) \
ENTRY(XMM23) \
ENTRY(XMM24) \
ENTRY(XMM25) \
ENTRY(XMM26) \
ENTRY(XMM27) \
ENTRY(XMM28) \
ENTRY(XMM29) \
ENTRY(XMM30) \
ENTRY(XMM31)
#define REGS_YMM \
ENTRY(YMM0) \
ENTRY(YMM1) \
ENTRY(YMM2) \
ENTRY(YMM3) \
ENTRY(YMM4) \
ENTRY(YMM5) \
ENTRY(YMM6) \
ENTRY(YMM7) \
ENTRY(YMM8) \
ENTRY(YMM9) \
ENTRY(YMM10) \
ENTRY(YMM11) \
ENTRY(YMM12) \
ENTRY(YMM13) \
ENTRY(YMM14) \
ENTRY(YMM15) \
ENTRY(YMM16) \
ENTRY(YMM17) \
ENTRY(YMM18) \
ENTRY(YMM19) \
ENTRY(YMM20) \
ENTRY(YMM21) \
ENTRY(YMM22) \
ENTRY(YMM23) \
ENTRY(YMM24) \
ENTRY(YMM25) \
ENTRY(YMM26) \
ENTRY(YMM27) \
ENTRY(YMM28) \
ENTRY(YMM29) \
ENTRY(YMM30) \
ENTRY(YMM31)
#define REGS_ZMM \
ENTRY(ZMM0) \
ENTRY(ZMM1) \
ENTRY(ZMM2) \
ENTRY(ZMM3) \
ENTRY(ZMM4) \
ENTRY(ZMM5) \
ENTRY(ZMM6) \
ENTRY(ZMM7) \
ENTRY(ZMM8) \
ENTRY(ZMM9) \
ENTRY(ZMM10) \
ENTRY(ZMM11) \
ENTRY(ZMM12) \
ENTRY(ZMM13) \
ENTRY(ZMM14) \
ENTRY(ZMM15) \
ENTRY(ZMM16) \
ENTRY(ZMM17) \
ENTRY(ZMM18) \
ENTRY(ZMM19) \
ENTRY(ZMM20) \
ENTRY(ZMM21) \
ENTRY(ZMM22) \
ENTRY(ZMM23) \
ENTRY(ZMM24) \
ENTRY(ZMM25) \
ENTRY(ZMM26) \
ENTRY(ZMM27) \
ENTRY(ZMM28) \
ENTRY(ZMM29) \
ENTRY(ZMM30) \
ENTRY(ZMM31)
#define REGS_MASKS \
ENTRY(K0) \
ENTRY(K1) \
ENTRY(K2) \
ENTRY(K3) \
ENTRY(K4) \
ENTRY(K5) \
ENTRY(K6) \
ENTRY(K7)
#define REGS_MASK_PAIRS \
ENTRY(K0_K1) \
ENTRY(K2_K3) \
ENTRY(K4_K5) \
ENTRY(K6_K7)
#define REGS_SEGMENT \
ENTRY(ES) \
ENTRY(CS) \
ENTRY(SS) \
ENTRY(DS) \
ENTRY(FS) \
ENTRY(GS)
#define REGS_DEBUG \
ENTRY(DR0) \
ENTRY(DR1) \
ENTRY(DR2) \
ENTRY(DR3) \
ENTRY(DR4) \
ENTRY(DR5) \
ENTRY(DR6) \
ENTRY(DR7) \
ENTRY(DR8) \
ENTRY(DR9) \
ENTRY(DR10) \
ENTRY(DR11) \
ENTRY(DR12) \
ENTRY(DR13) \
ENTRY(DR14) \
ENTRY(DR15)
#define REGS_CONTROL \
ENTRY(CR0) \
ENTRY(CR1) \
ENTRY(CR2) \
ENTRY(CR3) \
ENTRY(CR4) \
ENTRY(CR5) \
ENTRY(CR6) \
ENTRY(CR7) \
ENTRY(CR8) \
ENTRY(CR9) \
ENTRY(CR10) \
ENTRY(CR11) \
ENTRY(CR12) \
ENTRY(CR13) \
ENTRY(CR14) \
ENTRY(CR15)
#define REGS_BOUND \
ENTRY(BND0) \
ENTRY(BND1) \
ENTRY(BND2) \
ENTRY(BND3)
#define ALL_EA_BASES \
EA_BASES_16BIT \
EA_BASES_32BIT \
EA_BASES_64BIT
#define ALL_SIB_BASES \
REGS_32BIT \
REGS_64BIT
#define ALL_REGS \
REGS_8BIT \
REGS_16BIT \
REGS_32BIT \
REGS_64BIT \
REGS_MMX \
REGS_XMM \
REGS_YMM \
REGS_ZMM \
REGS_MASKS \
REGS_MASK_PAIRS \
REGS_SEGMENT \
REGS_DEBUG \
REGS_CONTROL \
REGS_BOUND \
ENTRY(RIP)
/// All possible values of the base field for effective-address
/// computations, a.k.a. the Mod and R/M fields of the ModR/M byte.
/// We distinguish between bases (EA_BASE_*) and registers that just happen
/// to be referred to when Mod == 0b11 (EA_REG_*).
enum EABase {
EA_BASE_NONE,
#define ENTRY(x) EA_BASE_##x,
ALL_EA_BASES
#undef ENTRY
#define ENTRY(x) EA_REG_##x,
ALL_REGS
#undef ENTRY
EA_max
};
/// All possible values of the SIB index field.
/// borrows entries from ALL_EA_BASES with the special case that
/// sib is synonymous with NONE.
/// Vector SIB: index can be XMM or YMM.
enum SIBIndex {
SIB_INDEX_NONE,
#define ENTRY(x) SIB_INDEX_##x,
ALL_EA_BASES
REGS_XMM
REGS_YMM
REGS_ZMM
#undef ENTRY
SIB_INDEX_max
};
/// All possible values of the SIB base field.
enum SIBBase {
SIB_BASE_NONE,
#define ENTRY(x) SIB_BASE_##x,
ALL_SIB_BASES
#undef ENTRY
SIB_BASE_max
};
/// Possible displacement types for effective-address computations.
enum EADisplacement {
EA_DISP_NONE,
EA_DISP_8,
EA_DISP_16,
EA_DISP_32
};
/// All possible values of the reg field in the ModR/M byte.
enum Reg {
#define ENTRY(x) MODRM_REG_##x,
ALL_REGS
#undef ENTRY
MODRM_REG_max
};
/// All possible segment overrides.
enum SegmentOverride {
SEG_OVERRIDE_NONE,
SEG_OVERRIDE_CS,
SEG_OVERRIDE_SS,
SEG_OVERRIDE_DS,
SEG_OVERRIDE_ES,
SEG_OVERRIDE_FS,
SEG_OVERRIDE_GS,
SEG_OVERRIDE_max
};
/// Possible values for the VEX.m-mmmm field
enum VEXLeadingOpcodeByte {
VEX_LOB_0F = 0x1,
VEX_LOB_0F38 = 0x2,
VEX_LOB_0F3A = 0x3
};
enum XOPMapSelect {
XOP_MAP_SELECT_8 = 0x8,
XOP_MAP_SELECT_9 = 0x9,
XOP_MAP_SELECT_A = 0xA
};
/// Possible values for the VEX.pp/EVEX.pp field
enum VEXPrefixCode {
VEX_PREFIX_NONE = 0x0,
VEX_PREFIX_66 = 0x1,
VEX_PREFIX_F3 = 0x2,
VEX_PREFIX_F2 = 0x3
};
enum VectorExtensionType {
TYPE_NO_VEX_XOP = 0x0,
TYPE_VEX_2B = 0x1,
TYPE_VEX_3B = 0x2,
TYPE_EVEX = 0x3,
TYPE_XOP = 0x4
};
/// The specification for how to extract and interpret a full instruction and
/// its operands.
struct InstructionSpecifier {
uint16_t operands;
};
/// The x86 internal instruction, which is produced by the decoder.
struct InternalInstruction {
// Opaque value passed to the reader
llvm::ArrayRef<uint8_t> bytes;
// The address of the next byte to read via the reader
uint64_t readerCursor;
// General instruction information
// The mode to disassemble for (64-bit, protected, real)
DisassemblerMode mode;
// The start of the instruction, usable with the reader
uint64_t startLocation;
// The length of the instruction, in bytes
size_t length;
// Prefix state
// The possible mandatory prefix
uint8_t mandatoryPrefix;
// The value of the vector extension prefix(EVEX/VEX/XOP), if present
uint8_t vectorExtensionPrefix[4];
// The type of the vector extension prefix
VectorExtensionType vectorExtensionType;
// The value of the REX prefix, if present
uint8_t rexPrefix;
// The segment override type
SegmentOverride segmentOverride;
// 1 if the prefix byte, 0xf2 or 0xf3 is xacquire or xrelease
bool xAcquireRelease;
// Address-size override
bool hasAdSize;
// Operand-size override
bool hasOpSize;
// Lock prefix
bool hasLockPrefix;
// The repeat prefix if any
uint8_t repeatPrefix;
// Sizes of various critical pieces of data, in bytes
uint8_t registerSize;
uint8_t addressSize;
uint8_t displacementSize;
uint8_t immediateSize;
// Offsets from the start of the instruction to the pieces of data, which is
// needed to find relocation entries for adding symbolic operands.
uint8_t displacementOffset;
uint8_t immediateOffset;
// opcode state
// The last byte of the opcode, not counting any ModR/M extension
uint8_t opcode;
// decode state
// The type of opcode, used for indexing into the array of decode tables
OpcodeType opcodeType;
// The instruction ID, extracted from the decode table
uint16_t instructionID;
// The specifier for the instruction, from the instruction info table
const InstructionSpecifier *spec;
// state for additional bytes, consumed during operand decode. Pattern:
// consumed___ indicates that the byte was already consumed and does not
// need to be consumed again.
// The VEX.vvvv field, which contains a third register operand for some AVX
// instructions.
Reg vvvv;
// The writemask for AVX-512 instructions which is contained in EVEX.aaa
Reg writemask;
// The ModR/M byte, which contains most register operands and some portion of
// all memory operands.
bool consumedModRM;
uint8_t modRM;
// The SIB byte, used for more complex 32- or 64-bit memory operands
uint8_t sib;
// The displacement, used for memory operands
int32_t displacement;
// Immediates. There can be two in some cases
uint8_t numImmediatesConsumed;
uint8_t numImmediatesTranslated;
uint64_t immediates[2];
// A register or immediate operand encoded into the opcode
Reg opcodeRegister;
// Portions of the ModR/M byte
// These fields determine the allowable values for the ModR/M fields, which
// depend on operand and address widths.
EABase eaRegBase;
Reg regBase;
// The Mod and R/M fields can encode a base for an effective address, or a
// register. These are separated into two fields here.
EABase eaBase;
EADisplacement eaDisplacement;
// The reg field always encodes a register
Reg reg;
// SIB state
SIBIndex sibIndexBase;
SIBIndex sibIndex;
uint8_t sibScale;
SIBBase sibBase;
// Embedded rounding control.
uint8_t RC;
ArrayRef<OperandSpecifier> operands;
};
} // namespace X86Disassembler
} // namespace llvm
#endif
|