aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/X86/X86IndirectThunks.cpp
blob: 3d96d198b4096a78db4ec0ac1e4a49bcd310b117 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
//==- X86IndirectThunks.cpp - Construct indirect call/jump thunks for x86  --=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Pass that injects an MI thunk that is used to lower indirect calls in a way
/// that prevents speculation on some x86 processors and can be used to mitigate
/// security vulnerabilities due to targeted speculative execution and side
/// channels such as CVE-2017-5715.
///
/// Currently supported thunks include:
/// - Retpoline -- A RET-implemented trampoline that lowers indirect calls
/// - LVI Thunk -- A CALL/JMP-implemented thunk that forces load serialization
///   before making an indirect call/jump
///
/// Note that the reason that this is implemented as a MachineFunctionPass and
/// not a ModulePass is that ModulePasses at this point in the LLVM X86 pipeline
/// serialize all transformations, which can consume lots of memory.
///
/// TODO(chandlerc): All of this code could use better comments and
/// documentation.
///
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/IndirectThunks.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"

using namespace llvm;

#define DEBUG_TYPE "x86-retpoline-thunks"

static const char RetpolineNamePrefix[] = "__llvm_retpoline_";
static const char R11RetpolineName[] = "__llvm_retpoline_r11";
static const char EAXRetpolineName[] = "__llvm_retpoline_eax";
static const char ECXRetpolineName[] = "__llvm_retpoline_ecx";
static const char EDXRetpolineName[] = "__llvm_retpoline_edx";
static const char EDIRetpolineName[] = "__llvm_retpoline_edi";

static const char LVIThunkNamePrefix[] = "__llvm_lvi_thunk_";
static const char R11LVIThunkName[] = "__llvm_lvi_thunk_r11";

namespace {
struct RetpolineThunkInserter : ThunkInserter<RetpolineThunkInserter> {
  const char *getThunkPrefix() { return RetpolineNamePrefix; }
  bool mayUseThunk(const MachineFunction &MF) {
    const auto &STI = MF.getSubtarget<X86Subtarget>();
    return (STI.useRetpolineIndirectCalls() ||
            STI.useRetpolineIndirectBranches()) &&
           !STI.useRetpolineExternalThunk();
  }
  void insertThunks(MachineModuleInfo &MMI);
  void populateThunk(MachineFunction &MF);
};

struct LVIThunkInserter : ThunkInserter<LVIThunkInserter> {
  const char *getThunkPrefix() { return LVIThunkNamePrefix; }
  bool mayUseThunk(const MachineFunction &MF) {
    return MF.getSubtarget<X86Subtarget>().useLVIControlFlowIntegrity();
  }
  void insertThunks(MachineModuleInfo &MMI) {
    createThunkFunction(MMI, R11LVIThunkName);
  }
  void populateThunk(MachineFunction &MF) {
    assert (MF.size() == 1);
    MachineBasicBlock *Entry = &MF.front();
    Entry->clear();

    // This code mitigates LVI by replacing each indirect call/jump with a
    // direct call/jump to a thunk that looks like:
    // ```
    // lfence
    // jmpq *%r11
    // ```
    // This ensures that if the value in register %r11 was loaded from memory,
    // then the value in %r11 is (architecturally) correct prior to the jump.
    const TargetInstrInfo *TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
    BuildMI(&MF.front(), DebugLoc(), TII->get(X86::LFENCE));
    BuildMI(&MF.front(), DebugLoc(), TII->get(X86::JMP64r)).addReg(X86::R11);
    MF.front().addLiveIn(X86::R11);
  }
};

class X86IndirectThunks : public MachineFunctionPass {
public:
  static char ID;

  X86IndirectThunks() : MachineFunctionPass(ID) {}

  StringRef getPassName() const override { return "X86 Indirect Thunks"; }

  bool doInitialization(Module &M) override;
  bool runOnMachineFunction(MachineFunction &MF) override;

private:
  std::tuple<RetpolineThunkInserter, LVIThunkInserter> TIs;

  // FIXME: When LLVM moves to C++17, these can become folds
  template <typename... ThunkInserterT>
  static void initTIs(Module &M,
                      std::tuple<ThunkInserterT...> &ThunkInserters) {
    (void)std::initializer_list<int>{
        (std::get<ThunkInserterT>(ThunkInserters).init(M), 0)...};
  }
  template <typename... ThunkInserterT>
  static bool runTIs(MachineModuleInfo &MMI, MachineFunction &MF,
                     std::tuple<ThunkInserterT...> &ThunkInserters) {
    bool Modified = false;
    (void)std::initializer_list<int>{
        Modified |= std::get<ThunkInserterT>(ThunkInserters).run(MMI, MF)...};
    return Modified;
  }
};

} // end anonymous namespace

void RetpolineThunkInserter::insertThunks(MachineModuleInfo &MMI) {
  if (MMI.getTarget().getTargetTriple().getArch() == Triple::x86_64)
    createThunkFunction(MMI, R11RetpolineName);
  else
    for (StringRef Name : {EAXRetpolineName, ECXRetpolineName, EDXRetpolineName,
                           EDIRetpolineName})
      createThunkFunction(MMI, Name);
}

void RetpolineThunkInserter::populateThunk(MachineFunction &MF) {
  bool Is64Bit = MF.getTarget().getTargetTriple().getArch() == Triple::x86_64;
  Register ThunkReg;
  if (Is64Bit) {
    assert(MF.getName() == "__llvm_retpoline_r11" &&
           "Should only have an r11 thunk on 64-bit targets");

    // __llvm_retpoline_r11:
    //   callq .Lr11_call_target
    // .Lr11_capture_spec:
    //   pause
    //   lfence
    //   jmp .Lr11_capture_spec
    // .align 16
    // .Lr11_call_target:
    //   movq %r11, (%rsp)
    //   retq
    ThunkReg = X86::R11;
  } else {
    // For 32-bit targets we need to emit a collection of thunks for various
    // possible scratch registers as well as a fallback that uses EDI, which is
    // normally callee saved.
    //   __llvm_retpoline_eax:
    //         calll .Leax_call_target
    //   .Leax_capture_spec:
    //         pause
    //         jmp .Leax_capture_spec
    //   .align 16
    //   .Leax_call_target:
    //         movl %eax, (%esp)  # Clobber return addr
    //         retl
    //
    //   __llvm_retpoline_ecx:
    //   ... # Same setup
    //         movl %ecx, (%esp)
    //         retl
    //
    //   __llvm_retpoline_edx:
    //   ... # Same setup
    //         movl %edx, (%esp)
    //         retl
    //
    //   __llvm_retpoline_edi:
    //   ... # Same setup
    //         movl %edi, (%esp)
    //         retl
    if (MF.getName() == EAXRetpolineName)
      ThunkReg = X86::EAX;
    else if (MF.getName() == ECXRetpolineName)
      ThunkReg = X86::ECX;
    else if (MF.getName() == EDXRetpolineName)
      ThunkReg = X86::EDX;
    else if (MF.getName() == EDIRetpolineName)
      ThunkReg = X86::EDI;
    else
      llvm_unreachable("Invalid thunk name on x86-32!");
  }

  const TargetInstrInfo *TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
  assert (MF.size() == 1);
  MachineBasicBlock *Entry = &MF.front();
  Entry->clear();

  MachineBasicBlock *CaptureSpec =
      MF.CreateMachineBasicBlock(Entry->getBasicBlock());
  MachineBasicBlock *CallTarget =
      MF.CreateMachineBasicBlock(Entry->getBasicBlock());
  MCSymbol *TargetSym = MF.getContext().createTempSymbol();
  MF.push_back(CaptureSpec);
  MF.push_back(CallTarget);

  const unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
  const unsigned RetOpc = Is64Bit ? X86::RETQ : X86::RETL;

  Entry->addLiveIn(ThunkReg);
  BuildMI(Entry, DebugLoc(), TII->get(CallOpc)).addSym(TargetSym);

  // The MIR verifier thinks that the CALL in the entry block will fall through
  // to CaptureSpec, so mark it as the successor. Technically, CaptureTarget is
  // the successor, but the MIR verifier doesn't know how to cope with that.
  Entry->addSuccessor(CaptureSpec);

  // In the capture loop for speculation, we want to stop the processor from
  // speculating as fast as possible. On Intel processors, the PAUSE instruction
  // will block speculation without consuming any execution resources. On AMD
  // processors, the PAUSE instruction is (essentially) a nop, so we also use an
  // LFENCE instruction which they have advised will stop speculation as well
  // with minimal resource utilization. We still end the capture with a jump to
  // form an infinite loop to fully guarantee that no matter what implementation
  // of the x86 ISA, speculating this code path never escapes.
  BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::PAUSE));
  BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::LFENCE));
  BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::JMP_1)).addMBB(CaptureSpec);
  CaptureSpec->setHasAddressTaken();
  CaptureSpec->addSuccessor(CaptureSpec);

  CallTarget->addLiveIn(ThunkReg);
  CallTarget->setHasAddressTaken();
  CallTarget->setAlignment(Align(16));

  // Insert return address clobber
  const unsigned MovOpc = Is64Bit ? X86::MOV64mr : X86::MOV32mr;
  const Register SPReg = Is64Bit ? X86::RSP : X86::ESP;
  addRegOffset(BuildMI(CallTarget, DebugLoc(), TII->get(MovOpc)), SPReg, false,
               0)
      .addReg(ThunkReg);

  CallTarget->back().setPreInstrSymbol(MF, TargetSym);
  BuildMI(CallTarget, DebugLoc(), TII->get(RetOpc));
}

FunctionPass *llvm::createX86IndirectThunksPass() {
  return new X86IndirectThunks();
}

char X86IndirectThunks::ID = 0;

bool X86IndirectThunks::doInitialization(Module &M) {
  initTIs(M, TIs);
  return false;
}

bool X86IndirectThunks::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << getPassName() << '\n');
  auto &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
  return runTIs(MMI, MF, TIs);
}