aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/X86/X86LowerAMXType.cpp
blob: 85166decd8cdf3d9a0f59f50628cd676fcf23c23 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
//===- llvm/CodeGen/TileShapeInfo.h - ---------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Pass to transform <256 x i32> load/store
/// <256 x i32> is bitcasted to x86_amx on X86, and AMX instruction set only
/// provides simple operation on x86_amx. The basic elementwise operation
/// is not supported by AMX. Since x86_amx is bitcasted from vector <256 x i32>
/// and only AMX intrinsics can operate on the type, we need transform
/// load/store <256 x i32> instruction to AMX load/store. If the bitcast can
/// not be combined with load/store, we transform the bitcast to amx load/store
/// and <256 x i32> store/load.
//
//===----------------------------------------------------------------------===//
//
#include "X86.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "lower-amx-type"

static AllocaInst *CreateAllocaInst(IRBuilder<> &Builder, BasicBlock *BB) {
  Function &F = *BB->getParent();
  Module *M = BB->getModule();
  const DataLayout &DL = M->getDataLayout();

  Type *V256I32Ty = VectorType::get(Builder.getInt32Ty(), 256, false);
  LLVMContext &Ctx = Builder.getContext();
  auto AllocaAlignment = DL.getPrefTypeAlign(Type::getX86_AMXTy(Ctx));
  unsigned AllocaAS = DL.getAllocaAddrSpace();
  AllocaInst *AllocaRes =
      new AllocaInst(V256I32Ty, AllocaAS, "", &F.getEntryBlock().front());
  AllocaRes->setAlignment(AllocaAlignment);
  return AllocaRes;
}

static std::pair<Value *, Value *> getShape(IntrinsicInst *II, unsigned OpNo) {
  Value *Row = nullptr, *Col = nullptr;
  switch (II->getIntrinsicID()) {
  default:
    llvm_unreachable("Expect amx intrinsics");
  case Intrinsic::x86_tileloadd64_internal:
  case Intrinsic::x86_tilestored64_internal: {
    Row = II->getArgOperand(0);
    Col = II->getArgOperand(1);
    break;
  }
  // a * b + c
  // The shape depends on which operand.
  case Intrinsic::x86_tdpbssd_internal: {
    switch (OpNo) {
    case 3:
      Row = II->getArgOperand(0);
      Col = II->getArgOperand(1);
      break;
    case 4:
      Row = II->getArgOperand(0);
      Col = II->getArgOperand(2);
      break;
    case 5:
      Row = II->getArgOperand(2);
      Col = II->getArgOperand(1);
      break;
    }
    break;
  }
  }

  return std::make_pair(Row, Col);
}

// %src = load <256 x i32>, <256 x i32>* %addr, align 64
// %2 = bitcast <256 x i32> %src to x86_amx
// -->
// %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
// i8* %addr, i64 %stride64)
static void combineLoadBitcast(LoadInst *LD, BitCastInst *Bitcast) {
  Value *Row = nullptr, *Col = nullptr;
  Use &U = *(Bitcast->use_begin());
  unsigned OpNo = U.getOperandNo();
  auto *II = cast<IntrinsicInst>(U.getUser());
  std::tie(Row, Col) = getShape(II, OpNo);
  IRBuilder<> Builder(Bitcast);
  // Use the maximun column as stride.
  Value *Stride = Builder.getInt64(64);
  Value *I8Ptr =
      Builder.CreateBitCast(LD->getOperand(0), Builder.getInt8PtrTy());
  std::array<Value *, 4> Args = {Row, Col, I8Ptr, Stride};

  Value *NewInst =
      Builder.CreateIntrinsic(Intrinsic::x86_tileloadd64_internal, None, Args);
  Bitcast->replaceAllUsesWith(NewInst);
}

// %src = call x86_amx @llvm.x86.tileloadd64.internal(%row, %col, %addr,
//                                                    %stride);
// %13 = bitcast x86_amx %src to <256 x i32>
// store <256 x i32> %13, <256 x i32>* %addr, align 64
// -->
// call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
//                                           %stride64, %13)
static void combineBitcastStore(BitCastInst *Bitcast, StoreInst *ST) {

  Value *Tile = Bitcast->getOperand(0);
  auto *II = cast<IntrinsicInst>(Tile);
  // Tile is output from AMX intrinsic. The first operand of the
  // intrinsic is row, the second operand of the intrinsic is column.
  Value *Row = II->getOperand(0);
  Value *Col = II->getOperand(1);
  IRBuilder<> Builder(ST);
  // Use the maximum column as stride. It must be the same with load
  // stride.
  Value *Stride = Builder.getInt64(64);
  Value *I8Ptr =
      Builder.CreateBitCast(ST->getOperand(1), Builder.getInt8PtrTy());
  std::array<Value *, 5> Args = {Row, Col, I8Ptr, Stride, Tile};
  Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
  if (Bitcast->hasOneUse())
    return;
  // %13 = bitcast x86_amx %src to <256 x i32>
  // store <256 x i32> %13, <256 x i32>* %addr, align 64
  // %add = <256 x i32> %13, <256 x i32> %src2
  // -->
  // %13 = bitcast x86_amx %src to <256 x i32>
  // call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
  //                                           %stride64, %13)
  // %14 = load <256 x i32>, %addr
  // %add = <256 x i32> %14, <256 x i32> %src2
  Value *Vec = Builder.CreateLoad(Bitcast->getType(), ST->getOperand(1));
  Bitcast->replaceAllUsesWith(Vec);
}

// transform bitcast to <store, load> instructions.
static bool transformBitcast(BitCastInst *Bitcast) {
  IRBuilder<> Builder(Bitcast);
  AllocaInst *AllocaAddr;
  Value *I8Ptr, *Stride;
  auto *Src = Bitcast->getOperand(0);

  auto Prepare = [&]() {
    AllocaAddr = CreateAllocaInst(Builder, Bitcast->getParent());
    I8Ptr = Builder.CreateBitCast(AllocaAddr, Builder.getInt8PtrTy());
    Stride = Builder.getInt64(64);
  };

  if (Bitcast->getType()->isX86_AMXTy()) {
    // %2 = bitcast <256 x i32> %src to x86_amx
    // -->
    // %addr = alloca <256 x i32>, align 64
    // store <256 x i32> %src, <256 x i32>* %addr, align 64
    // %addr2 = bitcast <256 x i32>* to i8*
    // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
    //                                                  i8* %addr2,
    //                                                  i64 64)
    Use &U = *(Bitcast->use_begin());
    unsigned OpNo = U.getOperandNo();
    auto *II = dyn_cast<IntrinsicInst>(U.getUser());
    if (!II)
      return false; // May be bitcast from x86amx to <256 x i32>.
    Prepare();
    Builder.CreateStore(Src, AllocaAddr);
    // TODO we can pick an constant operand for the shape.
    Value *Row = nullptr, *Col = nullptr;
    std::tie(Row, Col) = getShape(II, OpNo);
    std::array<Value *, 4> Args = {Row, Col, I8Ptr, Stride};
    Value *NewInst = Builder.CreateIntrinsic(
        Intrinsic::x86_tileloadd64_internal, None, Args);
    Bitcast->replaceAllUsesWith(NewInst);
  } else {
    // %2 = bitcast x86_amx %src to <256 x i32>
    // -->
    // %addr = alloca <256 x i32>, align 64
    // %addr2 = bitcast <256 x i32>* to i8*
    // call void @llvm.x86.tilestored64.internal(i16 %row, i16 %col,
    //                                           i8* %addr2, i64 %stride)
    // %2 = load <256 x i32>, <256 x i32>* %addr, align 64
    auto *II = dyn_cast<IntrinsicInst>(Src);
    if (!II)
      return false; // May be bitcast from <256 x i32> to x86amx.
    Prepare();
    Value *Row = II->getOperand(0);
    Value *Col = II->getOperand(1);
    std::array<Value *, 5> Args = {Row, Col, I8Ptr, Stride, Src};
    Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
    Value *NewInst = Builder.CreateLoad(Bitcast->getType(), AllocaAddr);
    Bitcast->replaceAllUsesWith(NewInst);
  }

  return true;
}

namespace {
class X86LowerAMXType {
  Function &Func;

public:
  X86LowerAMXType(Function &F) : Func(F) {}
  bool visit();
};

bool X86LowerAMXType::visit() {
  SmallVector<Instruction *, 8> DeadInsts;

  for (BasicBlock *BB : post_order(&Func)) {
    for (BasicBlock::reverse_iterator II = BB->rbegin(), IE = BB->rend();
         II != IE;) {
      Instruction &Inst = *II++;
      auto *Bitcast = dyn_cast<BitCastInst>(&Inst);
      if (!Bitcast)
        continue;

      Value *Src = Bitcast->getOperand(0);
      if (Bitcast->getType()->isX86_AMXTy()) {
        if (Bitcast->user_empty()) {
          DeadInsts.push_back(Bitcast);
          continue;
        }
        LoadInst *LD = dyn_cast<LoadInst>(Src);
        if (!LD) {
          if (transformBitcast(Bitcast))
            DeadInsts.push_back(Bitcast);
          continue;
        }
        // If load has mutli-user, duplicate a vector load.
        // %src = load <256 x i32>, <256 x i32>* %addr, align 64
        // %2 = bitcast <256 x i32> %src to x86_amx
        // %add = add <256 x i32> %src, <256 x i32> %src2
        // -->
        // %src = load <256 x i32>, <256 x i32>* %addr, align 64
        // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
        //                                            i8* %addr, i64 %stride64)
        // %add = add <256 x i32> %src, <256 x i32> %src2

        // If load has one user, the load will be eliminated in DAG ISel.
        // %src = load <256 x i32>, <256 x i32>* %addr, align 64
        // %2 = bitcast <256 x i32> %src to x86_amx
        // -->
        // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
        //                                            i8* %addr, i64 %stride64)
        combineLoadBitcast(LD, Bitcast);
        DeadInsts.push_back(Bitcast);
        if (LD->hasOneUse())
          DeadInsts.push_back(LD);
      } else if (Src->getType()->isX86_AMXTy()) {
        if (Bitcast->user_empty()) {
          DeadInsts.push_back(Bitcast);
          continue;
        }
        StoreInst *ST = nullptr;
        for (auto UI = Bitcast->use_begin(), UE = Bitcast->use_end();
             UI != UE;) {
          Value *I = (UI++)->getUser();
          ST = dyn_cast<StoreInst>(I);
          if (ST)
            break;
        }
        if (!ST) {
          if (transformBitcast(Bitcast))
            DeadInsts.push_back(Bitcast);
          continue;
        }
        // If bitcast (%13) has one use, combine bitcast and store to amx store.
        // %src = call x86_amx @llvm.x86.tileloadd64.internal(%row, %col, %addr,
        //                                                    %stride);
        // %13 = bitcast x86_amx %src to <256 x i32>
        // store <256 x i32> %13, <256 x i32>* %addr, align 64
        // -->
        // call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
        //                                           %stride64, %13)
        //
        // If bitcast (%13) has multi-use, transform as below.
        // %13 = bitcast x86_amx %src to <256 x i32>
        // store <256 x i32> %13, <256 x i32>* %addr, align 64
        // %add = <256 x i32> %13, <256 x i32> %src2
        // -->
        // %13 = bitcast x86_amx %src to <256 x i32>
        // call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
        //                                           %stride64, %13)
        // %14 = load <256 x i32>, %addr
        // %add = <256 x i32> %14, <256 x i32> %src2
        //
        combineBitcastStore(Bitcast, ST);
        // Delete user first.
        DeadInsts.push_back(ST);
        DeadInsts.push_back(Bitcast);
      }
    }
  }

  bool C = !DeadInsts.empty();

  for (auto *Inst : DeadInsts)
    Inst->eraseFromParent();

  return C;
}
} // anonymous namespace

namespace {

class X86LowerAMXTypeLegacyPass : public FunctionPass {
public:
  static char ID;

  X86LowerAMXTypeLegacyPass() : FunctionPass(ID) {
    initializeX86LowerAMXTypeLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    X86LowerAMXType LAT(F);
    bool C = LAT.visit();
    return C;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
  }
};

} // anonymous namespace

static const char PassName[] = "Lower AMX type for load/store";
char X86LowerAMXTypeLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(X86LowerAMXTypeLegacyPass, DEBUG_TYPE, PassName, false,
                      false)
INITIALIZE_PASS_END(X86LowerAMXTypeLegacyPass, DEBUG_TYPE, PassName, false,
                    false)

FunctionPass *llvm::createX86LowerAMXTypePass() {
  return new X86LowerAMXTypeLegacyPass();
}