aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopFlatten.cpp
blob: aaff68436c1351f784de4bf6460eaaf25b88fd19 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
//===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass flattens pairs nested loops into a single loop.
//
// The intention is to optimise loop nests like this, which together access an
// array linearly:
//   for (int i = 0; i < N; ++i)
//     for (int j = 0; j < M; ++j)
//       f(A[i*M+j]);
// into one loop:
//   for (int i = 0; i < (N*M); ++i)
//     f(A[i]);
//
// It can also flatten loops where the induction variables are not used in the
// loop. This is only worth doing if the induction variables are only used in an
// expression like i*M+j. If they had any other uses, we would have to insert a
// div/mod to reconstruct the original values, so this wouldn't be profitable.
//
// We also need to prove that N*M will not overflow.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopFlatten.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include "llvm/Transforms/Utils/SimplifyIndVar.h"

#define DEBUG_TYPE "loop-flatten"

using namespace llvm;
using namespace llvm::PatternMatch;

static cl::opt<unsigned> RepeatedInstructionThreshold(
    "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
    cl::desc("Limit on the cost of instructions that can be repeated due to "
             "loop flattening"));

static cl::opt<bool>
    AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
                     cl::init(false),
                     cl::desc("Assume that the product of the two iteration "
                              "limits will never overflow"));

static cl::opt<bool>
    WidenIV("loop-flatten-widen-iv", cl::Hidden,
            cl::init(true),
            cl::desc("Widen the loop induction variables, if possible, so "
                     "overflow checks won't reject flattening"));

struct FlattenInfo {
  Loop *OuterLoop = nullptr;
  Loop *InnerLoop = nullptr;
  PHINode *InnerInductionPHI = nullptr;
  PHINode *OuterInductionPHI = nullptr;
  Value *InnerLimit = nullptr;
  Value *OuterLimit = nullptr;
  BinaryOperator *InnerIncrement = nullptr;
  BinaryOperator *OuterIncrement = nullptr;
  BranchInst *InnerBranch = nullptr;
  BranchInst *OuterBranch = nullptr;
  SmallPtrSet<Value *, 4> LinearIVUses;
  SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;

  // Whether this holds the flatten info before or after widening.
  bool Widened = false;

  FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {};
};

// Finds the induction variable, increment and limit for a simple loop that we
// can flatten.
static bool findLoopComponents(
    Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
    PHINode *&InductionPHI, Value *&Limit, BinaryOperator *&Increment,
    BranchInst *&BackBranch, ScalarEvolution *SE) {
  LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");

  if (!L->isLoopSimplifyForm()) {
    LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
    return false;
  }

  // There must be exactly one exiting block, and it must be the same at the
  // latch.
  BasicBlock *Latch = L->getLoopLatch();
  if (L->getExitingBlock() != Latch) {
    LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
    return false;
  }
  // Latch block must end in a conditional branch.
  BackBranch = dyn_cast<BranchInst>(Latch->getTerminator());
  if (!BackBranch || !BackBranch->isConditional()) {
    LLVM_DEBUG(dbgs() << "Could not find back-branch\n");
    return false;
  }
  IterationInstructions.insert(BackBranch);
  LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
  bool ContinueOnTrue = L->contains(BackBranch->getSuccessor(0));

  // Find the induction PHI. If there is no induction PHI, we can't do the
  // transformation. TODO: could other variables trigger this? Do we have to
  // search for the best one?
  InductionPHI = nullptr;
  for (PHINode &PHI : L->getHeader()->phis()) {
    InductionDescriptor ID;
    if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) {
      InductionPHI = &PHI;
      LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
      break;
    }
  }
  if (!InductionPHI) {
    LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
    return false;
  }

  auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
    if (ContinueOnTrue)
      return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
    else
      return Pred == CmpInst::ICMP_EQ;
  };

  // Find Compare and make sure it is valid
  ICmpInst *Compare = dyn_cast<ICmpInst>(BackBranch->getCondition());
  if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
      Compare->hasNUsesOrMore(2)) {
    LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
    return false;
  }
  IterationInstructions.insert(Compare);
  LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());

  // Find increment and limit from the compare
  Increment = nullptr;
  if (match(Compare->getOperand(0),
            m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
    Increment = dyn_cast<BinaryOperator>(Compare->getOperand(0));
    Limit = Compare->getOperand(1);
  } else if (Compare->getUnsignedPredicate() == CmpInst::ICMP_NE &&
             match(Compare->getOperand(1),
                   m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
    Increment = dyn_cast<BinaryOperator>(Compare->getOperand(1));
    Limit = Compare->getOperand(0);
  }
  if (!Increment || Increment->hasNUsesOrMore(3)) {
    LLVM_DEBUG(dbgs() << "Cound not find valid increment\n");
    return false;
  }
  IterationInstructions.insert(Increment);
  LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump());
  LLVM_DEBUG(dbgs() << "Found limit: "; Limit->dump());

  assert(InductionPHI->getNumIncomingValues() == 2);
  assert(InductionPHI->getIncomingValueForBlock(Latch) == Increment &&
         "PHI value is not increment inst");

  auto *CI = dyn_cast<ConstantInt>(
      InductionPHI->getIncomingValueForBlock(L->getLoopPreheader()));
  if (!CI || !CI->isZero()) {
    LLVM_DEBUG(dbgs() << "PHI value is not zero: "; CI->dump());
    return false;
  }

  LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
  return true;
}

static bool checkPHIs(struct FlattenInfo &FI,
                      const TargetTransformInfo *TTI) {
  // All PHIs in the inner and outer headers must either be:
  // - The induction PHI, which we are going to rewrite as one induction in
  //   the new loop. This is already checked by findLoopComponents.
  // - An outer header PHI with all incoming values from outside the loop.
  //   LoopSimplify guarantees we have a pre-header, so we don't need to
  //   worry about that here.
  // - Pairs of PHIs in the inner and outer headers, which implement a
  //   loop-carried dependency that will still be valid in the new loop. To
  //   be valid, this variable must be modified only in the inner loop.

  // The set of PHI nodes in the outer loop header that we know will still be
  // valid after the transformation. These will not need to be modified (with
  // the exception of the induction variable), but we do need to check that
  // there are no unsafe PHI nodes.
  SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
  SafeOuterPHIs.insert(FI.OuterInductionPHI);

  // Check that all PHI nodes in the inner loop header match one of the valid
  // patterns.
  for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
    // The induction PHIs break these rules, and that's OK because we treat
    // them specially when doing the transformation.
    if (&InnerPHI == FI.InnerInductionPHI)
      continue;

    // Each inner loop PHI node must have two incoming values/blocks - one
    // from the pre-header, and one from the latch.
    assert(InnerPHI.getNumIncomingValues() == 2);
    Value *PreHeaderValue =
        InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
    Value *LatchValue =
        InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());

    // The incoming value from the outer loop must be the PHI node in the
    // outer loop header, with no modifications made in the top of the outer
    // loop.
    PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
    if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
      LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
      return false;
    }

    // The other incoming value must come from the inner loop, without any
    // modifications in the tail end of the outer loop. We are in LCSSA form,
    // so this will actually be a PHI in the inner loop's exit block, which
    // only uses values from inside the inner loop.
    PHINode *LCSSAPHI = dyn_cast<PHINode>(
        OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
    if (!LCSSAPHI) {
      LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
      return false;
    }

    // The value used by the LCSSA PHI must be the same one that the inner
    // loop's PHI uses.
    if (LCSSAPHI->hasConstantValue() != LatchValue) {
      LLVM_DEBUG(
          dbgs() << "LCSSA PHI incoming value does not match latch value\n");
      return false;
    }

    LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
    LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
    LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
    SafeOuterPHIs.insert(OuterPHI);
    FI.InnerPHIsToTransform.insert(&InnerPHI);
  }

  for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
    if (!SafeOuterPHIs.count(&OuterPHI)) {
      LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
      return false;
    }
  }

  LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
  return true;
}

static bool
checkOuterLoopInsts(struct FlattenInfo &FI,
                    SmallPtrSetImpl<Instruction *> &IterationInstructions,
                    const TargetTransformInfo *TTI) {
  // Check for instructions in the outer but not inner loop. If any of these
  // have side-effects then this transformation is not legal, and if there is
  // a significant amount of code here which can't be optimised out that it's
  // not profitable (as these instructions would get executed for each
  // iteration of the inner loop).
  unsigned RepeatedInstrCost = 0;
  for (auto *B : FI.OuterLoop->getBlocks()) {
    if (FI.InnerLoop->contains(B))
      continue;

    for (auto &I : *B) {
      if (!isa<PHINode>(&I) && !I.isTerminator() &&
          !isSafeToSpeculativelyExecute(&I)) {
        LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
                             "side effects: ";
                   I.dump());
        return false;
      }
      // The execution count of the outer loop's iteration instructions
      // (increment, compare and branch) will be increased, but the
      // equivalent instructions will be removed from the inner loop, so
      // they make a net difference of zero.
      if (IterationInstructions.count(&I))
        continue;
      // The uncoditional branch to the inner loop's header will turn into
      // a fall-through, so adds no cost.
      BranchInst *Br = dyn_cast<BranchInst>(&I);
      if (Br && Br->isUnconditional() &&
          Br->getSuccessor(0) == FI.InnerLoop->getHeader())
        continue;
      // Multiplies of the outer iteration variable and inner iteration
      // count will be optimised out.
      if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
                            m_Specific(FI.InnerLimit))))
        continue;
      int Cost = TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
      LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
      RepeatedInstrCost += Cost;
    }
  }

  LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
                    << RepeatedInstrCost << "\n");
  // Bail out if flattening the loops would cause instructions in the outer
  // loop but not in the inner loop to be executed extra times.
  if (RepeatedInstrCost > RepeatedInstructionThreshold) {
    LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
  return true;
}

static bool checkIVUsers(struct FlattenInfo &FI) {
  // We require all uses of both induction variables to match this pattern:
  //
  //   (OuterPHI * InnerLimit) + InnerPHI
  //
  // Any uses of the induction variables not matching that pattern would
  // require a div/mod to reconstruct in the flattened loop, so the
  // transformation wouldn't be profitable.

  Value *InnerLimit = FI.InnerLimit;
  if (FI.Widened &&
      (isa<SExtInst>(InnerLimit) || isa<ZExtInst>(InnerLimit)))
    InnerLimit = cast<Instruction>(InnerLimit)->getOperand(0);

  // Check that all uses of the inner loop's induction variable match the
  // expected pattern, recording the uses of the outer IV.
  SmallPtrSet<Value *, 4> ValidOuterPHIUses;
  for (User *U : FI.InnerInductionPHI->users()) {
    if (U == FI.InnerIncrement)
      continue;

    // After widening the IVs, a trunc instruction might have been introduced, so
    // look through truncs.
    if (isa<TruncInst>(U)) {
      if (!U->hasOneUse())
        return false;
      U = *U->user_begin();
    }

    LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());

    Value *MatchedMul;
    Value *MatchedItCount;
    bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI),
                                  m_Value(MatchedMul))) &&
                 match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI),
                                           m_Value(MatchedItCount)));

    // Matches the same pattern as above, except it also looks for truncs
    // on the phi, which can be the result of widening the induction variables.
    bool IsAddTrunc = match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)),
                                       m_Value(MatchedMul))) &&
                      match(MatchedMul,
                            m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)),
                            m_Value(MatchedItCount)));

    if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerLimit) {
      LLVM_DEBUG(dbgs() << "Use is optimisable\n");
      ValidOuterPHIUses.insert(MatchedMul);
      FI.LinearIVUses.insert(U);
    } else {
      LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
      return false;
    }
  }

  // Check that there are no uses of the outer IV other than the ones found
  // as part of the pattern above.
  for (User *U : FI.OuterInductionPHI->users()) {
    if (U == FI.OuterIncrement)
      continue;

    auto IsValidOuterPHIUses = [&] (User *U) -> bool {
      LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
      if (!ValidOuterPHIUses.count(U)) {
        LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
        return false;
      }
      LLVM_DEBUG(dbgs() << "Use is optimisable\n");
      return true;
    };

    if (auto *V = dyn_cast<TruncInst>(U)) {
      for (auto *K : V->users()) {
        if (!IsValidOuterPHIUses(K))
          return false;
      }
      continue;
    }

    if (!IsValidOuterPHIUses(U))
      return false;
  }

  LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
             dbgs() << "Found " << FI.LinearIVUses.size()
                    << " value(s) that can be replaced:\n";
             for (Value *V : FI.LinearIVUses) {
               dbgs() << "  ";
               V->dump();
             });
  return true;
}

// Return an OverflowResult dependant on if overflow of the multiplication of
// InnerLimit and OuterLimit can be assumed not to happen.
static OverflowResult checkOverflow(struct FlattenInfo &FI,
                                    DominatorTree *DT, AssumptionCache *AC) {
  Function *F = FI.OuterLoop->getHeader()->getParent();
  const DataLayout &DL = F->getParent()->getDataLayout();

  // For debugging/testing.
  if (AssumeNoOverflow)
    return OverflowResult::NeverOverflows;

  // Check if the multiply could not overflow due to known ranges of the
  // input values.
  OverflowResult OR = computeOverflowForUnsignedMul(
      FI.InnerLimit, FI.OuterLimit, DL, AC,
      FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
  if (OR != OverflowResult::MayOverflow)
    return OR;

  for (Value *V : FI.LinearIVUses) {
    for (Value *U : V->users()) {
      if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
        // The IV is used as the operand of a GEP, and the IV is at least as
        // wide as the address space of the GEP. In this case, the GEP would
        // wrap around the address space before the IV increment wraps, which
        // would be UB.
        if (GEP->isInBounds() &&
            V->getType()->getIntegerBitWidth() >=
                DL.getPointerTypeSizeInBits(GEP->getType())) {
          LLVM_DEBUG(
              dbgs() << "use of linear IV would be UB if overflow occurred: ";
              GEP->dump());
          return OverflowResult::NeverOverflows;
        }
      }
    }
  }

  return OverflowResult::MayOverflow;
}

static bool CanFlattenLoopPair(struct FlattenInfo &FI, DominatorTree *DT,
                               LoopInfo *LI, ScalarEvolution *SE,
                               AssumptionCache *AC, const TargetTransformInfo *TTI) {
  SmallPtrSet<Instruction *, 8> IterationInstructions;
  if (!findLoopComponents(FI.InnerLoop, IterationInstructions, FI.InnerInductionPHI,
                          FI.InnerLimit, FI.InnerIncrement, FI.InnerBranch, SE))
    return false;
  if (!findLoopComponents(FI.OuterLoop, IterationInstructions, FI.OuterInductionPHI,
                          FI.OuterLimit, FI.OuterIncrement, FI.OuterBranch, SE))
    return false;

  // Both of the loop limit values must be invariant in the outer loop
  // (non-instructions are all inherently invariant).
  if (!FI.OuterLoop->isLoopInvariant(FI.InnerLimit)) {
    LLVM_DEBUG(dbgs() << "inner loop limit not invariant\n");
    return false;
  }
  if (!FI.OuterLoop->isLoopInvariant(FI.OuterLimit)) {
    LLVM_DEBUG(dbgs() << "outer loop limit not invariant\n");
    return false;
  }

  if (!checkPHIs(FI, TTI))
    return false;

  // FIXME: it should be possible to handle different types correctly.
  if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
    return false;

  if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
    return false;

  // Find the values in the loop that can be replaced with the linearized
  // induction variable, and check that there are no other uses of the inner
  // or outer induction variable. If there were, we could still do this
  // transformation, but we'd have to insert a div/mod to calculate the
  // original IVs, so it wouldn't be profitable.
  if (!checkIVUsers(FI))
    return false;

  LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
  return true;
}

static bool DoFlattenLoopPair(struct FlattenInfo &FI, DominatorTree *DT,
                              LoopInfo *LI, ScalarEvolution *SE,
                              AssumptionCache *AC,
                              const TargetTransformInfo *TTI) {
  Function *F = FI.OuterLoop->getHeader()->getParent();
  LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
  {
    using namespace ore;
    OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
                              FI.InnerLoop->getHeader());
    OptimizationRemarkEmitter ORE(F);
    Remark << "Flattened into outer loop";
    ORE.emit(Remark);
  }

  Value *NewTripCount =
      BinaryOperator::CreateMul(FI.InnerLimit, FI.OuterLimit, "flatten.tripcount",
                                FI.OuterLoop->getLoopPreheader()->getTerminator());
  LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
             NewTripCount->dump());

  // Fix up PHI nodes that take values from the inner loop back-edge, which
  // we are about to remove.
  FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());

  // The old Phi will be optimised away later, but for now we can't leave
  // leave it in an invalid state, so are updating them too.
  for (PHINode *PHI : FI.InnerPHIsToTransform)
    PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());

  // Modify the trip count of the outer loop to be the product of the two
  // trip counts.
  cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);

  // Replace the inner loop backedge with an unconditional branch to the exit.
  BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
  BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
  InnerExitingBlock->getTerminator()->eraseFromParent();
  BranchInst::Create(InnerExitBlock, InnerExitingBlock);
  DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());

  // Replace all uses of the polynomial calculated from the two induction
  // variables with the one new one.
  IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
  for (Value *V : FI.LinearIVUses) {
    Value *OuterValue = FI.OuterInductionPHI;
    if (FI.Widened)
      OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
                                       "flatten.trunciv");

    LLVM_DEBUG(dbgs() << "Replacing: "; V->dump();
               dbgs() << "with:      "; OuterValue->dump());
    V->replaceAllUsesWith(OuterValue);
  }

  // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
  // deleted, and any information that have about the outer loop invalidated.
  SE->forgetLoop(FI.OuterLoop);
  SE->forgetLoop(FI.InnerLoop);
  LI->erase(FI.InnerLoop);
  return true;
}

static bool CanWidenIV(struct FlattenInfo &FI, DominatorTree *DT,
                       LoopInfo *LI, ScalarEvolution *SE,
                       AssumptionCache *AC, const TargetTransformInfo *TTI) {
  if (!WidenIV) {
    LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
  Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
  auto &DL = M->getDataLayout();
  auto *InnerType = FI.InnerInductionPHI->getType();
  auto *OuterType = FI.OuterInductionPHI->getType();
  unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
  auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());

  // If both induction types are less than the maximum legal integer width,
  // promote both to the widest type available so we know calculating
  // (OuterLimit * InnerLimit) as the new trip count is safe.
  if (InnerType != OuterType ||
      InnerType->getScalarSizeInBits() >= MaxLegalSize ||
      MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) {
    LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
    return false;
  }

  SCEVExpander Rewriter(*SE, DL, "loopflatten");
  SmallVector<WideIVInfo, 2> WideIVs;
  SmallVector<WeakTrackingVH, 4> DeadInsts;
  WideIVs.push_back( {FI.InnerInductionPHI, MaxLegalType, false });
  WideIVs.push_back( {FI.OuterInductionPHI, MaxLegalType, false });
  unsigned ElimExt;
  unsigned Widened;

  for (unsigned i = 0; i < WideIVs.size(); i++) {
    PHINode *WidePhi = createWideIV(WideIVs[i], LI, SE, Rewriter, DT, DeadInsts,
                                    ElimExt, Widened, true /* HasGuards */,
                                    true /* UsePostIncrementRanges */);
    if (!WidePhi)
      return false;
    LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
    LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIVs[i].NarrowIV->dump());
    RecursivelyDeleteDeadPHINode(WideIVs[i].NarrowIV);
  }
  // After widening, rediscover all the loop components.
  assert(Widened && "Widenend IV expected");
  FI.Widened = true;
  return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
}

static bool FlattenLoopPair(struct FlattenInfo &FI, DominatorTree *DT,
                            LoopInfo *LI, ScalarEvolution *SE,
                            AssumptionCache *AC,
                            const TargetTransformInfo *TTI) {
  LLVM_DEBUG(
      dbgs() << "Loop flattening running on outer loop "
             << FI.OuterLoop->getHeader()->getName() << " and inner loop "
             << FI.InnerLoop->getHeader()->getName() << " in "
             << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");

  if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
    return false;

  // Check if we can widen the induction variables to avoid overflow checks.
  if (CanWidenIV(FI, DT, LI, SE, AC, TTI))
    return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);

  // Check if the new iteration variable might overflow. In this case, we
  // need to version the loop, and select the original version at runtime if
  // the iteration space is too large.
  // TODO: We currently don't version the loop.
  OverflowResult OR = checkOverflow(FI, DT, AC);
  if (OR == OverflowResult::AlwaysOverflowsHigh ||
      OR == OverflowResult::AlwaysOverflowsLow) {
    LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
    return false;
  } else if (OR == OverflowResult::MayOverflow) {
    LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
  return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
}

bool Flatten(DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
             AssumptionCache *AC, TargetTransformInfo *TTI) {
  bool Changed = false;
  for (auto *InnerLoop : LI->getLoopsInPreorder()) {
    auto *OuterLoop = InnerLoop->getParentLoop();
    if (!OuterLoop)
      continue;
    struct FlattenInfo FI(OuterLoop, InnerLoop);
    Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI);
  }
  return Changed;
}

PreservedAnalyses LoopFlattenPass::run(Function &F,
                                       FunctionAnalysisManager &AM) {
  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
  auto *LI = &AM.getResult<LoopAnalysis>(F);
  auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
  auto *AC = &AM.getResult<AssumptionAnalysis>(F);
  auto *TTI = &AM.getResult<TargetIRAnalysis>(F);

  if (!Flatten(DT, LI, SE, AC, TTI))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  return PA;
}

namespace {
class LoopFlattenLegacyPass : public FunctionPass {
public:
  static char ID; // Pass ID, replacement for typeid
  LoopFlattenLegacyPass() : FunctionPass(ID) {
    initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  // Possibly flatten loop L into its child.
  bool runOnFunction(Function &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    getLoopAnalysisUsage(AU);
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addPreserved<TargetTransformInfoWrapperPass>();
    AU.addRequired<AssumptionCacheTracker>();
    AU.addPreserved<AssumptionCacheTracker>();
  }
};
} // namespace

char LoopFlattenLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
                    false, false)

FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); }

bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
  ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
  auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
  auto *TTI = &TTIP.getTTI(F);
  auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  return Flatten(DT, LI, SE, AC, TTI);
}