aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/tools/llvm-xray/xray-converter.cpp
blob: 7258245b95cc703ee3e487980de680180d1dfbaa (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
//===- xray-converter.cpp: XRay Trace Conversion --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements the trace conversion functions.
//
//===----------------------------------------------------------------------===//
#include "xray-converter.h"

#include "trie-node.h"
#include "xray-registry.h"
#include "llvm/DebugInfo/Symbolize/Symbolize.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/XRay/InstrumentationMap.h"
#include "llvm/XRay/Trace.h"
#include "llvm/XRay/YAMLXRayRecord.h"

using namespace llvm;
using namespace xray;

// llvm-xray convert
// ----------------------------------------------------------------------------
static cl::SubCommand Convert("convert", "Trace Format Conversion");
static cl::opt<std::string> ConvertInput(cl::Positional,
                                         cl::desc("<xray log file>"),
                                         cl::Required, cl::sub(Convert));
enum class ConvertFormats { BINARY, YAML, CHROME_TRACE_EVENT };
static cl::opt<ConvertFormats> ConvertOutputFormat(
    "output-format", cl::desc("output format"),
    cl::values(clEnumValN(ConvertFormats::BINARY, "raw", "output in binary"),
               clEnumValN(ConvertFormats::YAML, "yaml", "output in yaml"),
               clEnumValN(ConvertFormats::CHROME_TRACE_EVENT, "trace_event",
                          "Output in chrome's trace event format. "
                          "May be visualized with the Catapult trace viewer.")),
    cl::sub(Convert));
static cl::alias ConvertOutputFormat2("f", cl::aliasopt(ConvertOutputFormat),
                                      cl::desc("Alias for -output-format"),
                                      cl::sub(Convert));
static cl::opt<std::string>
    ConvertOutput("output", cl::value_desc("output file"), cl::init("-"),
                  cl::desc("output file; use '-' for stdout"),
                  cl::sub(Convert));
static cl::alias ConvertOutput2("o", cl::aliasopt(ConvertOutput),
                                cl::desc("Alias for -output"),
                                cl::sub(Convert));

static cl::opt<bool>
    ConvertSymbolize("symbolize",
                     cl::desc("symbolize function ids from the input log"),
                     cl::init(false), cl::sub(Convert));
static cl::alias ConvertSymbolize2("y", cl::aliasopt(ConvertSymbolize),
                                   cl::desc("Alias for -symbolize"),
                                   cl::sub(Convert));

static cl::opt<std::string>
    ConvertInstrMap("instr_map",
                    cl::desc("binary with the instrumentation map, or "
                             "a separate instrumentation map"),
                    cl::value_desc("binary with xray_instr_map"),
                    cl::sub(Convert), cl::init(""));
static cl::alias ConvertInstrMap2("m", cl::aliasopt(ConvertInstrMap),
                                  cl::desc("Alias for -instr_map"),
                                  cl::sub(Convert));
static cl::opt<bool> ConvertSortInput(
    "sort",
    cl::desc("determines whether to sort input log records by timestamp"),
    cl::sub(Convert), cl::init(true));
static cl::alias ConvertSortInput2("s", cl::aliasopt(ConvertSortInput),
                                   cl::desc("Alias for -sort"),
                                   cl::sub(Convert));

using llvm::yaml::Output;

void TraceConverter::exportAsYAML(const Trace &Records, raw_ostream &OS) {
  YAMLXRayTrace Trace;
  const auto &FH = Records.getFileHeader();
  Trace.Header = {FH.Version, FH.Type, FH.ConstantTSC, FH.NonstopTSC,
                  FH.CycleFrequency};
  Trace.Records.reserve(Records.size());
  for (const auto &R : Records) {
    Trace.Records.push_back({R.RecordType, R.CPU, R.Type, R.FuncId,
                             Symbolize ? FuncIdHelper.SymbolOrNumber(R.FuncId)
                                       : llvm::to_string(R.FuncId),
                             R.TSC, R.TId, R.PId, R.CallArgs, R.Data});
  }
  Output Out(OS, nullptr, 0);
  Out.setWriteDefaultValues(false);
  Out << Trace;
}

void TraceConverter::exportAsRAWv1(const Trace &Records, raw_ostream &OS) {
  // First write out the file header, in the correct endian-appropriate format
  // (XRay assumes currently little endian).
  support::endian::Writer Writer(OS, support::endianness::little);
  const auto &FH = Records.getFileHeader();
  Writer.write(FH.Version);
  Writer.write(FH.Type);
  uint32_t Bitfield{0};
  if (FH.ConstantTSC)
    Bitfield |= 1uL;
  if (FH.NonstopTSC)
    Bitfield |= 1uL << 1;
  Writer.write(Bitfield);
  Writer.write(FH.CycleFrequency);

  // There's 16 bytes of padding at the end of the file header.
  static constexpr uint32_t Padding4B = 0;
  Writer.write(Padding4B);
  Writer.write(Padding4B);
  Writer.write(Padding4B);
  Writer.write(Padding4B);

  // Then write out the rest of the records, still in an endian-appropriate
  // format.
  for (const auto &R : Records) {
    switch (R.Type) {
    case RecordTypes::ENTER:
    case RecordTypes::ENTER_ARG:
      Writer.write(R.RecordType);
      Writer.write(static_cast<uint8_t>(R.CPU));
      Writer.write(uint8_t{0});
      break;
    case RecordTypes::EXIT:
      Writer.write(R.RecordType);
      Writer.write(static_cast<uint8_t>(R.CPU));
      Writer.write(uint8_t{1});
      break;
    case RecordTypes::TAIL_EXIT:
      Writer.write(R.RecordType);
      Writer.write(static_cast<uint8_t>(R.CPU));
      Writer.write(uint8_t{2});
      break;
    case RecordTypes::CUSTOM_EVENT:
    case RecordTypes::TYPED_EVENT:
      // Skip custom and typed event records for v1 logs.
      continue;
    }
    Writer.write(R.FuncId);
    Writer.write(R.TSC);
    Writer.write(R.TId);

    if (FH.Version >= 3)
      Writer.write(R.PId);
    else
      Writer.write(Padding4B);

    Writer.write(Padding4B);
    Writer.write(Padding4B);
  }
}

namespace {

// A structure that allows building a dictionary of stack ids for the Chrome
// trace event format.
struct StackIdData {
  // Each Stack of function calls has a unique ID.
  unsigned id;

  // Bookkeeping so that IDs can be maintained uniquely across threads.
  // Traversal keeps sibling pointers to other threads stacks. This is helpful
  // to determine when a thread encounters a new stack and should assign a new
  // unique ID.
  SmallVector<TrieNode<StackIdData> *, 4> siblings;
};

using StackTrieNode = TrieNode<StackIdData>;

// A helper function to find the sibling nodes for an encountered function in a
// thread of execution. Relies on the invariant that each time a new node is
// traversed in a thread, sibling bidirectional pointers are maintained.
SmallVector<StackTrieNode *, 4>
findSiblings(StackTrieNode *parent, int32_t FnId, uint32_t TId,
             const DenseMap<uint32_t, SmallVector<StackTrieNode *, 4>>
                 &StackRootsByThreadId) {

  SmallVector<StackTrieNode *, 4> Siblings{};

  if (parent == nullptr) {
    for (auto map_iter : StackRootsByThreadId) {
      // Only look for siblings in other threads.
      if (map_iter.first != TId)
        for (auto node_iter : map_iter.second) {
          if (node_iter->FuncId == FnId)
            Siblings.push_back(node_iter);
        }
    }
    return Siblings;
  }

  for (auto *ParentSibling : parent->ExtraData.siblings)
    for (auto node_iter : ParentSibling->Callees)
      if (node_iter->FuncId == FnId)
        Siblings.push_back(node_iter);

  return Siblings;
}

// Given a function being invoked in a thread with id TId, finds and returns the
// StackTrie representing the function call stack. If no node exists, creates
// the node. Assigns unique IDs to stacks newly encountered among all threads
// and keeps sibling links up to when creating new nodes.
StackTrieNode *findOrCreateStackNode(
    StackTrieNode *Parent, int32_t FuncId, uint32_t TId,
    DenseMap<uint32_t, SmallVector<StackTrieNode *, 4>> &StackRootsByThreadId,
    DenseMap<unsigned, StackTrieNode *> &StacksByStackId, unsigned *id_counter,
    std::forward_list<StackTrieNode> &NodeStore) {
  SmallVector<StackTrieNode *, 4> &ParentCallees =
      Parent == nullptr ? StackRootsByThreadId[TId] : Parent->Callees;
  auto match = find_if(ParentCallees, [FuncId](StackTrieNode *ParentCallee) {
    return FuncId == ParentCallee->FuncId;
  });
  if (match != ParentCallees.end())
    return *match;

  SmallVector<StackTrieNode *, 4> siblings =
      findSiblings(Parent, FuncId, TId, StackRootsByThreadId);
  if (siblings.empty()) {
    NodeStore.push_front({FuncId, Parent, {}, {(*id_counter)++, {}}});
    StackTrieNode *CurrentStack = &NodeStore.front();
    StacksByStackId[*id_counter - 1] = CurrentStack;
    ParentCallees.push_back(CurrentStack);
    return CurrentStack;
  }
  unsigned stack_id = siblings[0]->ExtraData.id;
  NodeStore.push_front({FuncId, Parent, {}, {stack_id, std::move(siblings)}});
  StackTrieNode *CurrentStack = &NodeStore.front();
  for (auto *sibling : CurrentStack->ExtraData.siblings)
    sibling->ExtraData.siblings.push_back(CurrentStack);
  ParentCallees.push_back(CurrentStack);
  return CurrentStack;
}

void writeTraceViewerRecord(uint16_t Version, raw_ostream &OS, int32_t FuncId,
                            uint32_t TId, uint32_t PId, bool Symbolize,
                            const FuncIdConversionHelper &FuncIdHelper,
                            double EventTimestampUs,
                            const StackTrieNode &StackCursor,
                            StringRef FunctionPhenotype) {
  OS << "    ";
  if (Version >= 3) {
    OS << llvm::formatv(
        R"({ "name" : "{0}", "ph" : "{1}", "tid" : "{2}", "pid" : "{3}", )"
        R"("ts" : "{4:f4}", "sf" : "{5}" })",
        (Symbolize ? FuncIdHelper.SymbolOrNumber(FuncId)
                   : llvm::to_string(FuncId)),
        FunctionPhenotype, TId, PId, EventTimestampUs,
        StackCursor.ExtraData.id);
  } else {
    OS << llvm::formatv(
        R"({ "name" : "{0}", "ph" : "{1}", "tid" : "{2}", "pid" : "1", )"
        R"("ts" : "{3:f3}", "sf" : "{4}" })",
        (Symbolize ? FuncIdHelper.SymbolOrNumber(FuncId)
                   : llvm::to_string(FuncId)),
        FunctionPhenotype, TId, EventTimestampUs, StackCursor.ExtraData.id);
  }
}

} // namespace

void TraceConverter::exportAsChromeTraceEventFormat(const Trace &Records,
                                                    raw_ostream &OS) {
  const auto &FH = Records.getFileHeader();
  auto Version = FH.Version;
  auto CycleFreq = FH.CycleFrequency;

  unsigned id_counter = 0;

  OS << "{\n  \"traceEvents\": [";
  DenseMap<uint32_t, StackTrieNode *> StackCursorByThreadId{};
  DenseMap<uint32_t, SmallVector<StackTrieNode *, 4>> StackRootsByThreadId{};
  DenseMap<unsigned, StackTrieNode *> StacksByStackId{};
  std::forward_list<StackTrieNode> NodeStore{};
  int loop_count = 0;
  for (const auto &R : Records) {
    if (loop_count++ == 0)
      OS << "\n";
    else
      OS << ",\n";

    // Chrome trace event format always wants data in micros.
    // CyclesPerMicro = CycleHertz / 10^6
    // TSC / CyclesPerMicro == TSC * 10^6 / CycleHertz == MicroTimestamp
    // Could lose some precision here by converting the TSC to a double to
    // multiply by the period in micros. 52 bit mantissa is a good start though.
    // TODO: Make feature request to Chrome Trace viewer to accept ticks and a
    // frequency or do some more involved calculation to avoid dangers of
    // conversion.
    double EventTimestampUs = double(1000000) / CycleFreq * double(R.TSC);
    StackTrieNode *&StackCursor = StackCursorByThreadId[R.TId];
    switch (R.Type) {
    case RecordTypes::CUSTOM_EVENT:
    case RecordTypes::TYPED_EVENT:
      // TODO: Support typed and custom event rendering on Chrome Trace Viewer.
      break;
    case RecordTypes::ENTER:
    case RecordTypes::ENTER_ARG:
      StackCursor = findOrCreateStackNode(StackCursor, R.FuncId, R.TId,
                                          StackRootsByThreadId, StacksByStackId,
                                          &id_counter, NodeStore);
      // Each record is represented as a json dictionary with function name,
      // type of B for begin or E for end, thread id, process id,
      // timestamp in microseconds, and a stack frame id. The ids are logged
      // in an id dictionary after the events.
      writeTraceViewerRecord(Version, OS, R.FuncId, R.TId, R.PId, Symbolize,
                             FuncIdHelper, EventTimestampUs, *StackCursor, "B");
      break;
    case RecordTypes::EXIT:
    case RecordTypes::TAIL_EXIT:
      // No entries to record end for.
      if (StackCursor == nullptr)
        break;
      // Should we emit an END record anyway or account this condition?
      // (And/Or in loop termination below)
      StackTrieNode *PreviousCursor = nullptr;
      do {
        if (PreviousCursor != nullptr) {
          OS << ",\n";
        }
        writeTraceViewerRecord(Version, OS, StackCursor->FuncId, R.TId, R.PId,
                               Symbolize, FuncIdHelper, EventTimestampUs,
                               *StackCursor, "E");
        PreviousCursor = StackCursor;
        StackCursor = StackCursor->Parent;
      } while (PreviousCursor->FuncId != R.FuncId && StackCursor != nullptr);
      break;
    }
  }
  OS << "\n  ],\n"; // Close the Trace Events array.
  OS << "  "
     << "\"displayTimeUnit\": \"ns\",\n";

  // The stackFrames dictionary substantially reduces size of the output file by
  // avoiding repeating the entire call stack of function names for each entry.
  OS << R"(  "stackFrames": {)";
  int stack_frame_count = 0;
  for (auto map_iter : StacksByStackId) {
    if (stack_frame_count++ == 0)
      OS << "\n";
    else
      OS << ",\n";
    OS << "    ";
    OS << llvm::formatv(
        R"("{0}" : { "name" : "{1}")", map_iter.first,
        (Symbolize ? FuncIdHelper.SymbolOrNumber(map_iter.second->FuncId)
                   : llvm::to_string(map_iter.second->FuncId)));
    if (map_iter.second->Parent != nullptr)
      OS << llvm::formatv(R"(, "parent": "{0}")",
                          map_iter.second->Parent->ExtraData.id);
    OS << " }";
  }
  OS << "\n  }\n"; // Close the stack frames map.
  OS << "}\n";     // Close the JSON entry.
}

namespace llvm {
namespace xray {

static CommandRegistration Unused(&Convert, []() -> Error {
  // FIXME: Support conversion to BINARY when upgrading XRay trace versions.
  InstrumentationMap Map;
  if (!ConvertInstrMap.empty()) {
    auto InstrumentationMapOrError = loadInstrumentationMap(ConvertInstrMap);
    if (!InstrumentationMapOrError)
      return joinErrors(make_error<StringError>(
                            Twine("Cannot open instrumentation map '") +
                                ConvertInstrMap + "'",
                            std::make_error_code(std::errc::invalid_argument)),
                        InstrumentationMapOrError.takeError());
    Map = std::move(*InstrumentationMapOrError);
  }

  const auto &FunctionAddresses = Map.getFunctionAddresses();
  symbolize::LLVMSymbolizer Symbolizer;
  llvm::xray::FuncIdConversionHelper FuncIdHelper(ConvertInstrMap, Symbolizer,
                                                  FunctionAddresses);
  llvm::xray::TraceConverter TC(FuncIdHelper, ConvertSymbolize);
  std::error_code EC;
  raw_fd_ostream OS(ConvertOutput, EC,
                    ConvertOutputFormat == ConvertFormats::BINARY
                        ? sys::fs::OpenFlags::OF_None
                        : sys::fs::OpenFlags::OF_Text);
  if (EC)
    return make_error<StringError>(
        Twine("Cannot open file '") + ConvertOutput + "' for writing.", EC);

  auto TraceOrErr = loadTraceFile(ConvertInput, ConvertSortInput);
  if (!TraceOrErr)
    return joinErrors(
        make_error<StringError>(
            Twine("Failed loading input file '") + ConvertInput + "'.",
            std::make_error_code(std::errc::executable_format_error)),
        TraceOrErr.takeError());

  auto &T = *TraceOrErr;
  switch (ConvertOutputFormat) {
  case ConvertFormats::YAML:
    TC.exportAsYAML(T, OS);
    break;
  case ConvertFormats::BINARY:
    TC.exportAsRAWv1(T, OS);
    break;
  case ConvertFormats::CHROME_TRACE_EVENT:
    TC.exportAsChromeTraceEventFormat(T, OS);
    break;
  }
  return Error::success();
});

} // namespace xray
} // namespace llvm