aboutsummaryrefslogtreecommitdiff
path: root/crypto/modes/asm/ghash-sparcv9.pl
blob: ccebc74b4e9753786fff763c6f38d7f36313423e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
#! /usr/bin/env perl
# Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html


# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================

# March 2010
#
# The module implements "4-bit" GCM GHASH function and underlying
# single multiplication operation in GF(2^128). "4-bit" means that it
# uses 256 bytes per-key table [+128 bytes shared table]. Performance
# results are for streamed GHASH subroutine on UltraSPARC pre-Tx CPU
# and are expressed in cycles per processed byte, less is better:
#
#		gcc 3.3.x	cc 5.2		this assembler
#
# 32-bit build	81.4		43.3		12.6	(+546%/+244%)
# 64-bit build	20.2		21.2		12.6	(+60%/+68%)
#
# Here is data collected on UltraSPARC T1 system running Linux:
#
#		gcc 4.4.1			this assembler
#
# 32-bit build	566				50	(+1000%)
# 64-bit build	56				50	(+12%)
#
# I don't quite understand why difference between 32-bit and 64-bit
# compiler-generated code is so big. Compilers *were* instructed to
# generate code for UltraSPARC and should have used 64-bit registers
# for Z vector (see C code) even in 32-bit build... Oh well, it only
# means more impressive improvement coefficients for this assembler
# module;-) Loops are aggressively modulo-scheduled in respect to
# references to input data and Z.hi updates to achieve 12 cycles
# timing. To anchor to something else, sha1-sparcv9.pl spends 11.6
# cycles to process one byte on UltraSPARC pre-Tx CPU and ~24 on T1.
#
# October 2012
#
# Add VIS3 lookup-table-free implementation using polynomial
# multiplication xmulx[hi] and extended addition addxc[cc]
# instructions. 4.52/7.63x improvement on T3/T4 or in absolute
# terms 7.90/2.14 cycles per byte. On T4 multi-process benchmark
# saturates at ~15.5x single-process result on 8-core processor,
# or ~20.5GBps per 2.85GHz socket.

$output=pop;
open STDOUT,">$output";

$frame="STACK_FRAME";
$bias="STACK_BIAS";

$Zhi="%o0";	# 64-bit values
$Zlo="%o1";
$Thi="%o2";
$Tlo="%o3";
$rem="%o4";
$tmp="%o5";

$nhi="%l0";	# small values and pointers
$nlo="%l1";
$xi0="%l2";
$xi1="%l3";
$rem_4bit="%l4";
$remi="%l5";
$Htblo="%l6";
$cnt="%l7";

$Xi="%i0";	# input argument block
$Htbl="%i1";
$inp="%i2";
$len="%i3";

$code.=<<___;
#include "sparc_arch.h"

#ifdef  __arch64__
.register	%g2,#scratch
.register	%g3,#scratch
#endif

.section	".text",#alloc,#execinstr

.align	64
rem_4bit:
	.long	`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`,0
	.long	`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`,0
	.long	`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`,0
	.long	`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`,0
.type	rem_4bit,#object
.size	rem_4bit,(.-rem_4bit)

.globl	gcm_ghash_4bit
.align	32
gcm_ghash_4bit:
	save	%sp,-$frame,%sp
	ldub	[$inp+15],$nlo
	ldub	[$Xi+15],$xi0
	ldub	[$Xi+14],$xi1
	add	$len,$inp,$len
	add	$Htbl,8,$Htblo

1:	call	.+8
	add	%o7,rem_4bit-1b,$rem_4bit

.Louter:
	xor	$xi0,$nlo,$nlo
	and	$nlo,0xf0,$nhi
	and	$nlo,0x0f,$nlo
	sll	$nlo,4,$nlo
	ldx	[$Htblo+$nlo],$Zlo
	ldx	[$Htbl+$nlo],$Zhi

	ldub	[$inp+14],$nlo

	ldx	[$Htblo+$nhi],$Tlo
	and	$Zlo,0xf,$remi
	ldx	[$Htbl+$nhi],$Thi
	sll	$remi,3,$remi
	ldx	[$rem_4bit+$remi],$rem
	srlx	$Zlo,4,$Zlo
	mov	13,$cnt
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo

	xor	$xi1,$nlo,$nlo
	and	$Zlo,0xf,$remi
	and	$nlo,0xf0,$nhi
	and	$nlo,0x0f,$nlo
	ba	.Lghash_inner
	sll	$nlo,4,$nlo
.align	32
.Lghash_inner:
	ldx	[$Htblo+$nlo],$Tlo
	sll	$remi,3,$remi
	xor	$Thi,$Zhi,$Zhi
	ldx	[$Htbl+$nlo],$Thi
	srlx	$Zlo,4,$Zlo
	xor	$rem,$Zhi,$Zhi
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	ldub	[$inp+$cnt],$nlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	ldub	[$Xi+$cnt],$xi1
	xor	$Thi,$Zhi,$Zhi
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nhi],$Tlo
	sll	$remi,3,$remi
	xor	$rem,$Zhi,$Zhi
	ldx	[$Htbl+$nhi],$Thi
	srlx	$Zlo,4,$Zlo
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$xi1,$nlo,$nlo
	srlx	$Zhi,4,$Zhi
	and	$nlo,0xf0,$nhi
	addcc	$cnt,-1,$cnt
	xor	$Zlo,$tmp,$Zlo
	and	$nlo,0x0f,$nlo
	xor	$Tlo,$Zlo,$Zlo
	sll	$nlo,4,$nlo
	blu	.Lghash_inner
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nlo],$Tlo
	sll	$remi,3,$remi
	xor	$Thi,$Zhi,$Zhi
	ldx	[$Htbl+$nlo],$Thi
	srlx	$Zlo,4,$Zlo
	xor	$rem,$Zhi,$Zhi
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi

	add	$inp,16,$inp
	cmp	$inp,$len
	be,pn	SIZE_T_CC,.Ldone
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nhi],$Tlo
	sll	$remi,3,$remi
	xor	$rem,$Zhi,$Zhi
	ldx	[$Htbl+$nhi],$Thi
	srlx	$Zlo,4,$Zlo
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	ldub	[$inp+15],$nlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi
	stx	$Zlo,[$Xi+8]
	xor	$rem,$Zhi,$Zhi
	stx	$Zhi,[$Xi]
	srl	$Zlo,8,$xi1
	and	$Zlo,0xff,$xi0
	ba	.Louter
	and	$xi1,0xff,$xi1
.align	32
.Ldone:
	ldx	[$Htblo+$nhi],$Tlo
	sll	$remi,3,$remi
	xor	$rem,$Zhi,$Zhi
	ldx	[$Htbl+$nhi],$Thi
	srlx	$Zlo,4,$Zlo
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi
	stx	$Zlo,[$Xi+8]
	xor	$rem,$Zhi,$Zhi
	stx	$Zhi,[$Xi]

	ret
	restore
.type	gcm_ghash_4bit,#function
.size	gcm_ghash_4bit,(.-gcm_ghash_4bit)
___

undef $inp;
undef $len;

$code.=<<___;
.globl	gcm_gmult_4bit
.align	32
gcm_gmult_4bit:
	save	%sp,-$frame,%sp
	ldub	[$Xi+15],$nlo
	add	$Htbl,8,$Htblo

1:	call	.+8
	add	%o7,rem_4bit-1b,$rem_4bit

	and	$nlo,0xf0,$nhi
	and	$nlo,0x0f,$nlo
	sll	$nlo,4,$nlo
	ldx	[$Htblo+$nlo],$Zlo
	ldx	[$Htbl+$nlo],$Zhi

	ldub	[$Xi+14],$nlo

	ldx	[$Htblo+$nhi],$Tlo
	and	$Zlo,0xf,$remi
	ldx	[$Htbl+$nhi],$Thi
	sll	$remi,3,$remi
	ldx	[$rem_4bit+$remi],$rem
	srlx	$Zlo,4,$Zlo
	mov	13,$cnt
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo

	and	$Zlo,0xf,$remi
	and	$nlo,0xf0,$nhi
	and	$nlo,0x0f,$nlo
	ba	.Lgmult_inner
	sll	$nlo,4,$nlo
.align	32
.Lgmult_inner:
	ldx	[$Htblo+$nlo],$Tlo
	sll	$remi,3,$remi
	xor	$Thi,$Zhi,$Zhi
	ldx	[$Htbl+$nlo],$Thi
	srlx	$Zlo,4,$Zlo
	xor	$rem,$Zhi,$Zhi
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	ldub	[$Xi+$cnt],$nlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nhi],$Tlo
	sll	$remi,3,$remi
	xor	$rem,$Zhi,$Zhi
	ldx	[$Htbl+$nhi],$Thi
	srlx	$Zlo,4,$Zlo
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	srlx	$Zhi,4,$Zhi
	and	$nlo,0xf0,$nhi
	addcc	$cnt,-1,$cnt
	xor	$Zlo,$tmp,$Zlo
	and	$nlo,0x0f,$nlo
	xor	$Tlo,$Zlo,$Zlo
	sll	$nlo,4,$nlo
	blu	.Lgmult_inner
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nlo],$Tlo
	sll	$remi,3,$remi
	xor	$Thi,$Zhi,$Zhi
	ldx	[$Htbl+$nlo],$Thi
	srlx	$Zlo,4,$Zlo
	xor	$rem,$Zhi,$Zhi
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi
	and	$Zlo,0xf,$remi

	ldx	[$Htblo+$nhi],$Tlo
	sll	$remi,3,$remi
	xor	$rem,$Zhi,$Zhi
	ldx	[$Htbl+$nhi],$Thi
	srlx	$Zlo,4,$Zlo
	ldx	[$rem_4bit+$remi],$rem
	sllx	$Zhi,60,$tmp
	xor	$Tlo,$Zlo,$Zlo
	srlx	$Zhi,4,$Zhi
	xor	$Zlo,$tmp,$Zlo
	xor	$Thi,$Zhi,$Zhi
	stx	$Zlo,[$Xi+8]
	xor	$rem,$Zhi,$Zhi
	stx	$Zhi,[$Xi]

	ret
	restore
.type	gcm_gmult_4bit,#function
.size	gcm_gmult_4bit,(.-gcm_gmult_4bit)
___

{{{
# Straightforward 128x128-bit multiplication using Karatsuba algorithm
# followed by pair of 64-bit reductions [with a shortcut in first one,
# which allowed to break dependency between reductions and remove one
# multiplication from critical path]. While it might be suboptimal
# with regard to sheer number of multiplications, other methods [such
# as aggregate reduction] would require more 64-bit registers, which
# we don't have in 32-bit application context.

($Xip,$Htable,$inp,$len)=map("%i$_",(0..3));

($Hhl,$Hlo,$Hhi,$Xlo,$Xhi,$xE1,$sqr, $C0,$C1,$C2,$C3,$V)=
	(map("%o$_",(0..5,7)),map("%g$_",(1..5)));

($shl,$shr)=map("%l$_",(0..7));

# For details regarding "twisted H" see ghash-x86.pl.
$code.=<<___;
.globl	gcm_init_vis3
.align	32
gcm_init_vis3:
	save	%sp,-$frame,%sp

	ldx	[%i1+0],$Hhi
	ldx	[%i1+8],$Hlo
	mov	0xE1,$Xhi
	mov	1,$Xlo
	sllx	$Xhi,57,$Xhi
	srax	$Hhi,63,$C0		! broadcast carry
	addcc	$Hlo,$Hlo,$Hlo		! H<<=1
	addxc	$Hhi,$Hhi,$Hhi
	and	$C0,$Xlo,$Xlo
	and	$C0,$Xhi,$Xhi
	xor	$Xlo,$Hlo,$Hlo
	xor	$Xhi,$Hhi,$Hhi
	stx	$Hlo,[%i0+8]		! save twisted H
	stx	$Hhi,[%i0+0]

	sethi	%hi(0xA0406080),$V
	sethi	%hi(0x20C0E000),%l0
	or	$V,%lo(0xA0406080),$V
	or	%l0,%lo(0x20C0E000),%l0
	sllx	$V,32,$V
	or	%l0,$V,$V		! (0xE0·i)&0xff=0xA040608020C0E000
	stx	$V,[%i0+16]

	ret
	restore
.type	gcm_init_vis3,#function
.size	gcm_init_vis3,.-gcm_init_vis3

.globl	gcm_gmult_vis3
.align	32
gcm_gmult_vis3:
	save	%sp,-$frame,%sp

	ldx	[$Xip+8],$Xlo		! load Xi
	ldx	[$Xip+0],$Xhi
	ldx	[$Htable+8],$Hlo	! load twisted H
	ldx	[$Htable+0],$Hhi

	mov	0xE1,%l7
	sllx	%l7,57,$xE1		! 57 is not a typo
	ldx	[$Htable+16],$V		! (0xE0·i)&0xff=0xA040608020C0E000

	xor	$Hhi,$Hlo,$Hhl		! Karatsuba pre-processing
	xmulx	$Xlo,$Hlo,$C0
	xor	$Xlo,$Xhi,$C2		! Karatsuba pre-processing
	xmulx	$C2,$Hhl,$C1
	xmulxhi	$Xlo,$Hlo,$Xlo
	xmulxhi	$C2,$Hhl,$C2
	xmulxhi	$Xhi,$Hhi,$C3
	xmulx	$Xhi,$Hhi,$Xhi

	sll	$C0,3,$sqr
	srlx	$V,$sqr,$sqr		! ·0xE0 [implicit &(7<<3)]
	xor	$C0,$sqr,$sqr
	sllx	$sqr,57,$sqr		! ($C0·0xE1)<<1<<56 [implicit &0x7f]

	xor	$C0,$C1,$C1		! Karatsuba post-processing
	xor	$Xlo,$C2,$C2
	 xor	$sqr,$Xlo,$Xlo		! real destination is $C1
	xor	$C3,$C2,$C2
	xor	$Xlo,$C1,$C1
	xor	$Xhi,$C2,$C2
	xor	$Xhi,$C1,$C1

	xmulxhi	$C0,$xE1,$Xlo		! ·0xE1<<1<<56
	 xor	$C0,$C2,$C2
	xmulx	$C1,$xE1,$C0
	 xor	$C1,$C3,$C3
	xmulxhi	$C1,$xE1,$C1

	xor	$Xlo,$C2,$C2
	xor	$C0,$C2,$C2
	xor	$C1,$C3,$C3

	stx	$C2,[$Xip+8]		! save Xi
	stx	$C3,[$Xip+0]

	ret
	restore
.type	gcm_gmult_vis3,#function
.size	gcm_gmult_vis3,.-gcm_gmult_vis3

.globl	gcm_ghash_vis3
.align	32
gcm_ghash_vis3:
	save	%sp,-$frame,%sp
	nop
	srln	$len,0,$len		! needed on v8+, "nop" on v9

	ldx	[$Xip+8],$C2		! load Xi
	ldx	[$Xip+0],$C3
	ldx	[$Htable+8],$Hlo	! load twisted H
	ldx	[$Htable+0],$Hhi

	mov	0xE1,%l7
	sllx	%l7,57,$xE1		! 57 is not a typo
	ldx	[$Htable+16],$V		! (0xE0·i)&0xff=0xA040608020C0E000

	and	$inp,7,$shl
	andn	$inp,7,$inp
	sll	$shl,3,$shl
	prefetch [$inp+63], 20
	sub	%g0,$shl,$shr

	xor	$Hhi,$Hlo,$Hhl		! Karatsuba pre-processing
.Loop:
	ldx	[$inp+8],$Xlo
	brz,pt	$shl,1f
	ldx	[$inp+0],$Xhi

	ldx	[$inp+16],$C1		! align data
	srlx	$Xlo,$shr,$C0
	sllx	$Xlo,$shl,$Xlo
	sllx	$Xhi,$shl,$Xhi
	srlx	$C1,$shr,$C1
	or	$C0,$Xhi,$Xhi
	or	$C1,$Xlo,$Xlo
1:
	add	$inp,16,$inp
	sub	$len,16,$len
	xor	$C2,$Xlo,$Xlo
	xor	$C3,$Xhi,$Xhi
	prefetch [$inp+63], 20

	xmulx	$Xlo,$Hlo,$C0
	xor	$Xlo,$Xhi,$C2		! Karatsuba pre-processing
	xmulx	$C2,$Hhl,$C1
	xmulxhi	$Xlo,$Hlo,$Xlo
	xmulxhi	$C2,$Hhl,$C2
	xmulxhi	$Xhi,$Hhi,$C3
	xmulx	$Xhi,$Hhi,$Xhi

	sll	$C0,3,$sqr
	srlx	$V,$sqr,$sqr		! ·0xE0 [implicit &(7<<3)]
	xor	$C0,$sqr,$sqr
	sllx	$sqr,57,$sqr		! ($C0·0xE1)<<1<<56 [implicit &0x7f]

	xor	$C0,$C1,$C1		! Karatsuba post-processing
	xor	$Xlo,$C2,$C2
	 xor	$sqr,$Xlo,$Xlo		! real destination is $C1
	xor	$C3,$C2,$C2
	xor	$Xlo,$C1,$C1
	xor	$Xhi,$C2,$C2
	xor	$Xhi,$C1,$C1

	xmulxhi	$C0,$xE1,$Xlo		! ·0xE1<<1<<56
	 xor	$C0,$C2,$C2
	xmulx	$C1,$xE1,$C0
	 xor	$C1,$C3,$C3
	xmulxhi	$C1,$xE1,$C1

	xor	$Xlo,$C2,$C2
	xor	$C0,$C2,$C2
	brnz,pt	$len,.Loop
	xor	$C1,$C3,$C3

	stx	$C2,[$Xip+8]		! save Xi
	stx	$C3,[$Xip+0]

	ret
	restore
.type	gcm_ghash_vis3,#function
.size	gcm_ghash_vis3,.-gcm_ghash_vis3
___
}}}
$code.=<<___;
.asciz	"GHASH for SPARCv9/VIS3, CRYPTOGAMS by <appro\@openssl.org>"
.align	4
___


# Purpose of these subroutines is to explicitly encode VIS instructions,
# so that one can compile the module without having to specify VIS
# extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
# Idea is to reserve for option to produce "universal" binary and let
# programmer detect if current CPU is VIS capable at run-time.
sub unvis3 {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
my ($ref,$opf);
my %visopf = (	"addxc"		=> 0x011,
		"addxccc"	=> 0x013,
		"xmulx"		=> 0x115,
		"xmulxhi"	=> 0x116	);

    $ref = "$mnemonic\t$rs1,$rs2,$rd";

    if ($opf=$visopf{$mnemonic}) {
	foreach ($rs1,$rs2,$rd) {
	    return $ref if (!/%([goli])([0-9])/);
	    $_=$bias{$1}+$2;
	}

	return	sprintf ".word\t0x%08x !%s",
			0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
			$ref;
    } else {
	return $ref;
    }
}

foreach (split("\n",$code)) {
	s/\`([^\`]*)\`/eval $1/ge;

	s/\b(xmulx[hi]*|addxc[c]{0,2})\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/
		&unvis3($1,$2,$3,$4)
	 /ge;

	print $_,"\n";
}

close STDOUT or die "error closing STDOUT: $!";