aboutsummaryrefslogtreecommitdiff
path: root/crypto/modes/cfb128.c
blob: b2530007b6e41fba8d5e7764d080f6780755ace4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/*
 * Copyright 2008-2020 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <openssl/crypto.h>
#include "modes_local.h"
#include <string.h>

#if defined(__GNUC__) && !defined(STRICT_ALIGNMENT)
typedef size_t size_t_aX __attribute((__aligned__(1)));
#else
typedef size_t size_t_aX;
#endif

/*
 * The input and output encrypted as though 128bit cfb mode is being used.
 * The extra state information to record how much of the 128bit block we have
 * used is contained in *num;
 */
void CRYPTO_cfb128_encrypt(const unsigned char *in, unsigned char *out,
                           size_t len, const void *key,
                           unsigned char ivec[16], int *num,
                           int enc, block128_f block)
{
    unsigned int n;
    size_t l = 0;

    n = *num;

    if (enc) {
#if !defined(OPENSSL_SMALL_FOOTPRINT)
        if (16 % sizeof(size_t) == 0) { /* always true actually */
            do {
                while (n && len) {
                    *(out++) = ivec[n] ^= *(in++);
                    --len;
                    n = (n + 1) % 16;
                }
# if defined(STRICT_ALIGNMENT)
                if (((size_t)in | (size_t)out | (size_t)ivec) %
                    sizeof(size_t) != 0)
                    break;
# endif
                while (len >= 16) {
                    (*block) (ivec, ivec, key);
                    for (; n < 16; n += sizeof(size_t)) {
                        *(size_t_aX *)(out + n) =
                            *(size_t_aX *)(ivec + n)
                                ^= *(size_t_aX *)(in + n);
                    }
                    len -= 16;
                    out += 16;
                    in += 16;
                    n = 0;
                }
                if (len) {
                    (*block) (ivec, ivec, key);
                    while (len--) {
                        out[n] = ivec[n] ^= in[n];
                        ++n;
                    }
                }
                *num = n;
                return;
            } while (0);
        }
        /* the rest would be commonly eliminated by x86* compiler */
#endif
        while (l < len) {
            if (n == 0) {
                (*block) (ivec, ivec, key);
            }
            out[l] = ivec[n] ^= in[l];
            ++l;
            n = (n + 1) % 16;
        }
        *num = n;
    } else {
#if !defined(OPENSSL_SMALL_FOOTPRINT)
        if (16 % sizeof(size_t) == 0) { /* always true actually */
            do {
                while (n && len) {
                    unsigned char c;
                    *(out++) = ivec[n] ^ (c = *(in++));
                    ivec[n] = c;
                    --len;
                    n = (n + 1) % 16;
                }
# if defined(STRICT_ALIGNMENT)
                if (((size_t)in | (size_t)out | (size_t)ivec) %
                    sizeof(size_t) != 0)
                    break;
# endif
                while (len >= 16) {
                    (*block) (ivec, ivec, key);
                    for (; n < 16; n += sizeof(size_t)) {
                        size_t t = *(size_t_aX *)(in + n);
                        *(size_t_aX *)(out + n)
                            = *(size_t_aX *)(ivec + n) ^ t;
                        *(size_t_aX *)(ivec + n) = t;
                    }
                    len -= 16;
                    out += 16;
                    in += 16;
                    n = 0;
                }
                if (len) {
                    (*block) (ivec, ivec, key);
                    while (len--) {
                        unsigned char c;
                        out[n] = ivec[n] ^ (c = in[n]);
                        ivec[n] = c;
                        ++n;
                    }
                }
                *num = n;
                return;
            } while (0);
        }
        /* the rest would be commonly eliminated by x86* compiler */
#endif
        while (l < len) {
            unsigned char c;
            if (n == 0) {
                (*block) (ivec, ivec, key);
            }
            out[l] = ivec[n] ^ (c = in[l]);
            ivec[n] = c;
            ++l;
            n = (n + 1) % 16;
        }
        *num = n;
    }
}

/*
 * This expects a single block of size nbits for both in and out. Note that
 * it corrupts any extra bits in the last byte of out
 */
static void cfbr_encrypt_block(const unsigned char *in, unsigned char *out,
                               int nbits, const void *key,
                               unsigned char ivec[16], int enc,
                               block128_f block)
{
    int n, rem, num;
    unsigned char ovec[16 * 2 + 1]; /* +1 because we dereference (but don't
                                     * use) one byte off the end */

    if (nbits <= 0 || nbits > 128)
        return;

    /* fill in the first half of the new IV with the current IV */
    memcpy(ovec, ivec, 16);
    /* construct the new IV */
    (*block) (ivec, ivec, key);
    num = (nbits + 7) / 8;
    if (enc)                    /* encrypt the input */
        for (n = 0; n < num; ++n)
            out[n] = (ovec[16 + n] = in[n] ^ ivec[n]);
    else                        /* decrypt the input */
        for (n = 0; n < num; ++n)
            out[n] = (ovec[16 + n] = in[n]) ^ ivec[n];
    /* shift ovec left... */
    rem = nbits % 8;
    num = nbits / 8;
    if (rem == 0)
        memcpy(ivec, ovec + num, 16);
    else
        for (n = 0; n < 16; ++n)
            ivec[n] = ovec[n + num] << rem | ovec[n + num + 1] >> (8 - rem);

    /* it is not necessary to cleanse ovec, since the IV is not secret */
}

/* N.B. This expects the input to be packed, MS bit first */
void CRYPTO_cfb128_1_encrypt(const unsigned char *in, unsigned char *out,
                             size_t bits, const void *key,
                             unsigned char ivec[16], int *num,
                             int enc, block128_f block)
{
    size_t n;
    unsigned char c[1], d[1];

    for (n = 0; n < bits; ++n) {
        c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0;
        cfbr_encrypt_block(c, d, 1, key, ivec, enc, block);
        out[n / 8] = (out[n / 8] & ~(1 << (unsigned int)(7 - n % 8))) |
            ((d[0] & 0x80) >> (unsigned int)(n % 8));
    }
}

void CRYPTO_cfb128_8_encrypt(const unsigned char *in, unsigned char *out,
                             size_t length, const void *key,
                             unsigned char ivec[16], int *num,
                             int enc, block128_f block)
{
    size_t n;

    for (n = 0; n < length; ++n)
        cfbr_encrypt_block(&in[n], &out[n], 8, key, ivec, enc, block);
}