aboutsummaryrefslogtreecommitdiff
path: root/crypto/rand/rand_lib.c
blob: ba3a29e584685c304fb13224bc217550972a0d3a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
/*
 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <stdio.h>
#include <time.h>
#include "internal/cryptlib.h"
#include <openssl/opensslconf.h>
#include "crypto/rand.h"
#include <openssl/engine.h>
#include "internal/thread_once.h"
#include "rand_local.h"
#include "e_os.h"

#ifndef OPENSSL_NO_ENGINE
/* non-NULL if default_RAND_meth is ENGINE-provided */
static ENGINE *funct_ref;
static CRYPTO_RWLOCK *rand_engine_lock;
#endif
static CRYPTO_RWLOCK *rand_meth_lock;
static const RAND_METHOD *default_RAND_meth;
static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT;

static CRYPTO_RWLOCK *rand_nonce_lock;
static int rand_nonce_count;

static int rand_inited = 0;

#ifdef OPENSSL_RAND_SEED_RDTSC
/*
 * IMPORTANT NOTE:  It is not currently possible to use this code
 * because we are not sure about the amount of randomness it provides.
 * Some SP900 tests have been run, but there is internal skepticism.
 * So for now this code is not used.
 */
# error "RDTSC enabled?  Should not be possible!"

/*
 * Acquire entropy from high-speed clock
 *
 * Since we get some randomness from the low-order bits of the
 * high-speed clock, it can help.
 *
 * Returns the total entropy count, if it exceeds the requested
 * entropy count. Otherwise, returns an entropy count of 0.
 */
size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool)
{
    unsigned char c;
    int i;

    if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) {
        for (i = 0; i < TSC_READ_COUNT; i++) {
            c = (unsigned char)(OPENSSL_rdtsc() & 0xFF);
            rand_pool_add(pool, &c, 1, 4);
        }
    }
    return rand_pool_entropy_available(pool);
}
#endif

#ifdef OPENSSL_RAND_SEED_RDCPU
size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len);
size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len);

extern unsigned int OPENSSL_ia32cap_P[];

/*
 * Acquire entropy using Intel-specific cpu instructions
 *
 * Uses the RDSEED instruction if available, otherwise uses
 * RDRAND if available.
 *
 * For the differences between RDSEED and RDRAND, and why RDSEED
 * is the preferred choice, see https://goo.gl/oK3KcN
 *
 * Returns the total entropy count, if it exceeds the requested
 * entropy count. Otherwise, returns an entropy count of 0.
 */
size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool)
{
    size_t bytes_needed;
    unsigned char *buffer;

    bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
    if (bytes_needed > 0) {
        buffer = rand_pool_add_begin(pool, bytes_needed);

        if (buffer != NULL) {
            /* Whichever comes first, use RDSEED, RDRAND or nothing */
            if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) {
                if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed)
                    == bytes_needed) {
                    rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
                }
            } else if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) {
                if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed)
                    == bytes_needed) {
                    rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
                }
            } else {
                rand_pool_add_end(pool, 0, 0);
            }
        }
    }

    return rand_pool_entropy_available(pool);
}
#endif


/*
 * Implements the get_entropy() callback (see RAND_DRBG_set_callbacks())
 *
 * If the DRBG has a parent, then the required amount of entropy input
 * is fetched using the parent's RAND_DRBG_generate().
 *
 * Otherwise, the entropy is polled from the system entropy sources
 * using rand_pool_acquire_entropy().
 *
 * If a random pool has been added to the DRBG using RAND_add(), then
 * its entropy will be used up first.
 */
size_t rand_drbg_get_entropy(RAND_DRBG *drbg,
                             unsigned char **pout,
                             int entropy, size_t min_len, size_t max_len,
                             int prediction_resistance)
{
    size_t ret = 0;
    size_t entropy_available = 0;
    RAND_POOL *pool;

    if (drbg->parent != NULL && drbg->strength > drbg->parent->strength) {
        /*
         * We currently don't support the algorithm from NIST SP 800-90C
         * 10.1.2 to use a weaker DRBG as source
         */
        RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, RAND_R_PARENT_STRENGTH_TOO_WEAK);
        return 0;
    }

    if (drbg->seed_pool != NULL) {
        pool = drbg->seed_pool;
        pool->entropy_requested = entropy;
    } else {
        pool = rand_pool_new(entropy, drbg->secure, min_len, max_len);
        if (pool == NULL)
            return 0;
    }

    if (drbg->parent != NULL) {
        size_t bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
        unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed);

        if (buffer != NULL) {
            size_t bytes = 0;

            /*
             * Get random data from parent. Include our address as additional input,
             * in order to provide some additional distinction between different
             * DRBG child instances.
             * Our lock is already held, but we need to lock our parent before
             * generating bits from it. (Note: taking the lock will be a no-op
             * if locking if drbg->parent->lock == NULL.)
             */
            rand_drbg_lock(drbg->parent);
            if (RAND_DRBG_generate(drbg->parent,
                                   buffer, bytes_needed,
                                   prediction_resistance,
                                   (unsigned char *)&drbg, sizeof(drbg)) != 0)
                bytes = bytes_needed;
            rand_drbg_unlock(drbg->parent);

            rand_pool_add_end(pool, bytes, 8 * bytes);
            entropy_available = rand_pool_entropy_available(pool);
        }

    } else {
        if (prediction_resistance) {
            /*
             * We don't have any entropy sources that comply with the NIST
             * standard to provide prediction resistance (see NIST SP 800-90C,
             * Section 5.4).
             */
            RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY,
                    RAND_R_PREDICTION_RESISTANCE_NOT_SUPPORTED);
            goto err;
        }

        /* Get entropy by polling system entropy sources. */
        entropy_available = rand_pool_acquire_entropy(pool);
    }

    if (entropy_available > 0) {
        ret   = rand_pool_length(pool);
        *pout = rand_pool_detach(pool);
    }

 err:
    if (drbg->seed_pool == NULL)
        rand_pool_free(pool);
    return ret;
}

/*
 * Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks())
 *
 */
void rand_drbg_cleanup_entropy(RAND_DRBG *drbg,
                               unsigned char *out, size_t outlen)
{
    if (drbg->seed_pool == NULL) {
        if (drbg->secure)
            OPENSSL_secure_clear_free(out, outlen);
        else
            OPENSSL_clear_free(out, outlen);
    }
}


/*
 * Implements the get_nonce() callback (see RAND_DRBG_set_callbacks())
 *
 */
size_t rand_drbg_get_nonce(RAND_DRBG *drbg,
                           unsigned char **pout,
                           int entropy, size_t min_len, size_t max_len)
{
    size_t ret = 0;
    RAND_POOL *pool;

    struct {
        void * instance;
        int count;
    } data;

    memset(&data, 0, sizeof(data));
    pool = rand_pool_new(0, 0, min_len, max_len);
    if (pool == NULL)
        return 0;

    if (rand_pool_add_nonce_data(pool) == 0)
        goto err;

    data.instance = drbg;
    CRYPTO_atomic_add(&rand_nonce_count, 1, &data.count, rand_nonce_lock);

    if (rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0) == 0)
        goto err;

    ret   = rand_pool_length(pool);
    *pout = rand_pool_detach(pool);

 err:
    rand_pool_free(pool);

    return ret;
}

/*
 * Implements the cleanup_nonce() callback (see RAND_DRBG_set_callbacks())
 *
 */
void rand_drbg_cleanup_nonce(RAND_DRBG *drbg,
                             unsigned char *out, size_t outlen)
{
    OPENSSL_clear_free(out, outlen);
}

/*
 * Generate additional data that can be used for the drbg. The data does
 * not need to contain entropy, but it's useful if it contains at least
 * some bits that are unpredictable.
 *
 * Returns 0 on failure.
 *
 * On success it allocates a buffer at |*pout| and returns the length of
 * the data. The buffer should get freed using OPENSSL_secure_clear_free().
 */
size_t rand_drbg_get_additional_data(RAND_POOL *pool, unsigned char **pout)
{
    size_t ret = 0;

    if (rand_pool_add_additional_data(pool) == 0)
        goto err;

    ret = rand_pool_length(pool);
    *pout = rand_pool_detach(pool);

 err:
    return ret;
}

void rand_drbg_cleanup_additional_data(RAND_POOL *pool, unsigned char *out)
{
    rand_pool_reattach(pool, out);
}

DEFINE_RUN_ONCE_STATIC(do_rand_init)
{
#ifndef OPENSSL_NO_ENGINE
    rand_engine_lock = CRYPTO_THREAD_lock_new();
    if (rand_engine_lock == NULL)
        return 0;
#endif

    rand_meth_lock = CRYPTO_THREAD_lock_new();
    if (rand_meth_lock == NULL)
        goto err1;

    rand_nonce_lock = CRYPTO_THREAD_lock_new();
    if (rand_nonce_lock == NULL)
        goto err2;

    if (!rand_pool_init())
        goto err3;

    rand_inited = 1;
    return 1;

err3:
    CRYPTO_THREAD_lock_free(rand_nonce_lock);
    rand_nonce_lock = NULL;
err2:
    CRYPTO_THREAD_lock_free(rand_meth_lock);
    rand_meth_lock = NULL;
err1:
#ifndef OPENSSL_NO_ENGINE
    CRYPTO_THREAD_lock_free(rand_engine_lock);
    rand_engine_lock = NULL;
#endif
    return 0;
}

void rand_cleanup_int(void)
{
    const RAND_METHOD *meth = default_RAND_meth;

    if (!rand_inited)
        return;

    if (meth != NULL && meth->cleanup != NULL)
        meth->cleanup();
    RAND_set_rand_method(NULL);
    rand_pool_cleanup();
#ifndef OPENSSL_NO_ENGINE
    CRYPTO_THREAD_lock_free(rand_engine_lock);
    rand_engine_lock = NULL;
#endif
    CRYPTO_THREAD_lock_free(rand_meth_lock);
    rand_meth_lock = NULL;
    CRYPTO_THREAD_lock_free(rand_nonce_lock);
    rand_nonce_lock = NULL;
    rand_inited = 0;
}

/*
 * RAND_close_seed_files() ensures that any seed file descriptors are
 * closed after use.
 */
void RAND_keep_random_devices_open(int keep)
{
    if (RUN_ONCE(&rand_init, do_rand_init))
        rand_pool_keep_random_devices_open(keep);
}

/*
 * RAND_poll() reseeds the default RNG using random input
 *
 * The random input is obtained from polling various entropy
 * sources which depend on the operating system and are
 * configurable via the --with-rand-seed configure option.
 */
int RAND_poll(void)
{
    int ret = 0;

    RAND_POOL *pool = NULL;

    const RAND_METHOD *meth = RAND_get_rand_method();

    if (meth == NULL)
        return 0;

    if (meth == RAND_OpenSSL()) {
        /* fill random pool and seed the master DRBG */
        RAND_DRBG *drbg = RAND_DRBG_get0_master();

        if (drbg == NULL)
            return 0;

        rand_drbg_lock(drbg);
        ret = rand_drbg_restart(drbg, NULL, 0, 0);
        rand_drbg_unlock(drbg);

        return ret;

    } else {
        /* fill random pool and seed the current legacy RNG */
        pool = rand_pool_new(RAND_DRBG_STRENGTH, 1,
                             (RAND_DRBG_STRENGTH + 7) / 8,
                             RAND_POOL_MAX_LENGTH);
        if (pool == NULL)
            return 0;

        if (rand_pool_acquire_entropy(pool) == 0)
            goto err;

        if (meth->add == NULL
            || meth->add(rand_pool_buffer(pool),
                         rand_pool_length(pool),
                         (rand_pool_entropy(pool) / 8.0)) == 0)
            goto err;

        ret = 1;
    }

err:
    rand_pool_free(pool);
    return ret;
}

/*
 * Allocate memory and initialize a new random pool
 */

RAND_POOL *rand_pool_new(int entropy_requested, int secure,
                         size_t min_len, size_t max_len)
{
    RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool));
    size_t min_alloc_size = RAND_POOL_MIN_ALLOCATION(secure);

    if (pool == NULL) {
        RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
        return NULL;
    }

    pool->min_len = min_len;
    pool->max_len = (max_len > RAND_POOL_MAX_LENGTH) ?
        RAND_POOL_MAX_LENGTH : max_len;
    pool->alloc_len = min_len < min_alloc_size ? min_alloc_size : min_len;
    if (pool->alloc_len > pool->max_len)
        pool->alloc_len = pool->max_len;

    if (secure)
        pool->buffer = OPENSSL_secure_zalloc(pool->alloc_len);
    else
        pool->buffer = OPENSSL_zalloc(pool->alloc_len);

    if (pool->buffer == NULL) {
        RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    pool->entropy_requested = entropy_requested;
    pool->secure = secure;

    return pool;

err:
    OPENSSL_free(pool);
    return NULL;
}

/*
 * Attach new random pool to the given buffer
 *
 * This function is intended to be used only for feeding random data
 * provided by RAND_add() and RAND_seed() into the <master> DRBG.
 */
RAND_POOL *rand_pool_attach(const unsigned char *buffer, size_t len,
                            size_t entropy)
{
    RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool));

    if (pool == NULL) {
        RANDerr(RAND_F_RAND_POOL_ATTACH, ERR_R_MALLOC_FAILURE);
        return NULL;
    }

    /*
     * The const needs to be cast away, but attached buffers will not be
     * modified (in contrary to allocated buffers which are zeroed and
     * freed in the end).
     */
    pool->buffer = (unsigned char *) buffer;
    pool->len = len;

    pool->attached = 1;

    pool->min_len = pool->max_len = pool->alloc_len = pool->len;
    pool->entropy = entropy;

    return pool;
}

/*
 * Free |pool|, securely erasing its buffer.
 */
void rand_pool_free(RAND_POOL *pool)
{
    if (pool == NULL)
        return;

    /*
     * Although it would be advisable from a cryptographical viewpoint,
     * we are not allowed to clear attached buffers, since they are passed
     * to rand_pool_attach() as `const unsigned char*`.
     * (see corresponding comment in rand_pool_attach()).
     */
    if (!pool->attached) {
        if (pool->secure)
            OPENSSL_secure_clear_free(pool->buffer, pool->alloc_len);
        else
            OPENSSL_clear_free(pool->buffer, pool->alloc_len);
    }

    OPENSSL_free(pool);
}

/*
 * Return the |pool|'s buffer to the caller (readonly).
 */
const unsigned char *rand_pool_buffer(RAND_POOL *pool)
{
    return pool->buffer;
}

/*
 * Return the |pool|'s entropy to the caller.
 */
size_t rand_pool_entropy(RAND_POOL *pool)
{
    return pool->entropy;
}

/*
 * Return the |pool|'s buffer length to the caller.
 */
size_t rand_pool_length(RAND_POOL *pool)
{
    return pool->len;
}

/*
 * Detach the |pool| buffer and return it to the caller.
 * It's the responsibility of the caller to free the buffer
 * using OPENSSL_secure_clear_free() or to re-attach it
 * again to the pool using rand_pool_reattach().
 */
unsigned char *rand_pool_detach(RAND_POOL *pool)
{
    unsigned char *ret = pool->buffer;
    pool->buffer = NULL;
    pool->entropy = 0;
    return ret;
}

/*
 * Re-attach the |pool| buffer. It is only allowed to pass
 * the |buffer| which was previously detached from the same pool.
 */
void rand_pool_reattach(RAND_POOL *pool, unsigned char *buffer)
{
    pool->buffer = buffer;
    OPENSSL_cleanse(pool->buffer, pool->len);
    pool->len = 0;
}

/*
 * If |entropy_factor| bits contain 1 bit of entropy, how many bytes does one
 * need to obtain at least |bits| bits of entropy?
 */
#define ENTROPY_TO_BYTES(bits, entropy_factor) \
    (((bits) * (entropy_factor) + 7) / 8)


/*
 * Checks whether the |pool|'s entropy is available to the caller.
 * This is the case when entropy count and buffer length are high enough.
 * Returns
 *
 *  |entropy|  if the entropy count and buffer size is large enough
 *      0      otherwise
 */
size_t rand_pool_entropy_available(RAND_POOL *pool)
{
    if (pool->entropy < pool->entropy_requested)
        return 0;

    if (pool->len < pool->min_len)
        return 0;

    return pool->entropy;
}

/*
 * Returns the (remaining) amount of entropy needed to fill
 * the random pool.
 */

size_t rand_pool_entropy_needed(RAND_POOL *pool)
{
    if (pool->entropy < pool->entropy_requested)
        return pool->entropy_requested - pool->entropy;

    return 0;
}

/* Increase the allocation size -- not usable for an attached pool */
static int rand_pool_grow(RAND_POOL *pool, size_t len)
{
    if (len > pool->alloc_len - pool->len) {
        unsigned char *p;
        const size_t limit = pool->max_len / 2;
        size_t newlen = pool->alloc_len;

        if (pool->attached || len > pool->max_len - pool->len) {
            RANDerr(RAND_F_RAND_POOL_GROW, ERR_R_INTERNAL_ERROR);
            return 0;
        }

        do
            newlen = newlen < limit ? newlen * 2 : pool->max_len;
        while (len > newlen - pool->len);

        if (pool->secure)
            p = OPENSSL_secure_zalloc(newlen);
        else
            p = OPENSSL_zalloc(newlen);
        if (p == NULL) {
            RANDerr(RAND_F_RAND_POOL_GROW, ERR_R_MALLOC_FAILURE);
            return 0;
        }
        memcpy(p, pool->buffer, pool->len);
        if (pool->secure)
            OPENSSL_secure_clear_free(pool->buffer, pool->alloc_len);
        else
            OPENSSL_clear_free(pool->buffer, pool->alloc_len);
        pool->buffer = p;
        pool->alloc_len = newlen;
    }
    return 1;
}

/*
 * Returns the number of bytes needed to fill the pool, assuming
 * the input has 1 / |entropy_factor| entropy bits per data bit.
 * In case of an error, 0 is returned.
 */

size_t rand_pool_bytes_needed(RAND_POOL *pool, unsigned int entropy_factor)
{
    size_t bytes_needed;
    size_t entropy_needed = rand_pool_entropy_needed(pool);

    if (entropy_factor < 1) {
        RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_ARGUMENT_OUT_OF_RANGE);
        return 0;
    }

    bytes_needed = ENTROPY_TO_BYTES(entropy_needed, entropy_factor);

    if (bytes_needed > pool->max_len - pool->len) {
        /* not enough space left */
        RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_RANDOM_POOL_OVERFLOW);
        return 0;
    }

    if (pool->len < pool->min_len &&
        bytes_needed < pool->min_len - pool->len)
        /* to meet the min_len requirement */
        bytes_needed = pool->min_len - pool->len;

    /*
     * Make sure the buffer is large enough for the requested amount
     * of data. This guarantees that existing code patterns where
     * rand_pool_add_begin, rand_pool_add_end or rand_pool_add
     * are used to collect entropy data without any error handling
     * whatsoever, continue to be valid.
     * Furthermore if the allocation here fails once, make sure that
     * we don't fall back to a less secure or even blocking random source,
     * as that could happen by the existing code patterns.
     * This is not a concern for additional data, therefore that
     * is not needed if rand_pool_grow fails in other places.
     */
    if (!rand_pool_grow(pool, bytes_needed)) {
        /* persistent error for this pool */
        pool->max_len = pool->len = 0;
        return 0;
    }

    return bytes_needed;
}

/* Returns the remaining number of bytes available */
size_t rand_pool_bytes_remaining(RAND_POOL *pool)
{
    return pool->max_len - pool->len;
}

/*
 * Add random bytes to the random pool.
 *
 * It is expected that the |buffer| contains |len| bytes of
 * random input which contains at least |entropy| bits of
 * randomness.
 *
 * Returns 1 if the added amount is adequate, otherwise 0
 */
int rand_pool_add(RAND_POOL *pool,
                  const unsigned char *buffer, size_t len, size_t entropy)
{
    if (len > pool->max_len - pool->len) {
        RANDerr(RAND_F_RAND_POOL_ADD, RAND_R_ENTROPY_INPUT_TOO_LONG);
        return 0;
    }

    if (pool->buffer == NULL) {
        RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR);
        return 0;
    }

    if (len > 0) {
        /*
         * This is to protect us from accidentally passing the buffer
         * returned from rand_pool_add_begin.
         * The check for alloc_len makes sure we do not compare the
         * address of the end of the allocated memory to something
         * different, since that comparison would have an
         * indeterminate result.
         */
        if (pool->alloc_len > pool->len && pool->buffer + pool->len == buffer) {
            RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR);
            return 0;
        }
        /*
         * We have that only for cases when a pool is used to collect
         * additional data.
         * For entropy data, as long as the allocation request stays within
         * the limits given by rand_pool_bytes_needed this rand_pool_grow
         * below is guaranteed to succeed, thus no allocation happens.
         */
        if (!rand_pool_grow(pool, len))
            return 0;
        memcpy(pool->buffer + pool->len, buffer, len);
        pool->len += len;
        pool->entropy += entropy;
    }

    return 1;
}

/*
 * Start to add random bytes to the random pool in-place.
 *
 * Reserves the next |len| bytes for adding random bytes in-place
 * and returns a pointer to the buffer.
 * The caller is allowed to copy up to |len| bytes into the buffer.
 * If |len| == 0 this is considered a no-op and a NULL pointer
 * is returned without producing an error message.
 *
 * After updating the buffer, rand_pool_add_end() needs to be called
 * to finish the update operation (see next comment).
 */
unsigned char *rand_pool_add_begin(RAND_POOL *pool, size_t len)
{
    if (len == 0)
        return NULL;

    if (len > pool->max_len - pool->len) {
        RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, RAND_R_RANDOM_POOL_OVERFLOW);
        return NULL;
    }

    if (pool->buffer == NULL) {
        RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, ERR_R_INTERNAL_ERROR);
        return NULL;
    }

    /*
     * As long as the allocation request stays within the limits given
     * by rand_pool_bytes_needed this rand_pool_grow below is guaranteed
     * to succeed, thus no allocation happens.
     * We have that only for cases when a pool is used to collect
     * additional data. Then the buffer might need to grow here,
     * and of course the caller is responsible to check the return
     * value of this function.
     */
    if (!rand_pool_grow(pool, len))
        return NULL;

    return pool->buffer + pool->len;
}

/*
 * Finish to add random bytes to the random pool in-place.
 *
 * Finishes an in-place update of the random pool started by
 * rand_pool_add_begin() (see previous comment).
 * It is expected that |len| bytes of random input have been added
 * to the buffer which contain at least |entropy| bits of randomness.
 * It is allowed to add less bytes than originally reserved.
 */
int rand_pool_add_end(RAND_POOL *pool, size_t len, size_t entropy)
{
    if (len > pool->alloc_len - pool->len) {
        RANDerr(RAND_F_RAND_POOL_ADD_END, RAND_R_RANDOM_POOL_OVERFLOW);
        return 0;
    }

    if (len > 0) {
        pool->len += len;
        pool->entropy += entropy;
    }

    return 1;
}

int RAND_set_rand_method(const RAND_METHOD *meth)
{
    if (!RUN_ONCE(&rand_init, do_rand_init))
        return 0;

    CRYPTO_THREAD_write_lock(rand_meth_lock);
#ifndef OPENSSL_NO_ENGINE
    ENGINE_finish(funct_ref);
    funct_ref = NULL;
#endif
    default_RAND_meth = meth;
    CRYPTO_THREAD_unlock(rand_meth_lock);
    return 1;
}

const RAND_METHOD *RAND_get_rand_method(void)
{
    const RAND_METHOD *tmp_meth = NULL;

    if (!RUN_ONCE(&rand_init, do_rand_init))
        return NULL;

    CRYPTO_THREAD_write_lock(rand_meth_lock);
    if (default_RAND_meth == NULL) {
#ifndef OPENSSL_NO_ENGINE
        ENGINE *e;

        /* If we have an engine that can do RAND, use it. */
        if ((e = ENGINE_get_default_RAND()) != NULL
                && (tmp_meth = ENGINE_get_RAND(e)) != NULL) {
            funct_ref = e;
            default_RAND_meth = tmp_meth;
        } else {
            ENGINE_finish(e);
            default_RAND_meth = &rand_meth;
        }
#else
        default_RAND_meth = &rand_meth;
#endif
    }
    tmp_meth = default_RAND_meth;
    CRYPTO_THREAD_unlock(rand_meth_lock);
    return tmp_meth;
}

#ifndef OPENSSL_NO_ENGINE
int RAND_set_rand_engine(ENGINE *engine)
{
    const RAND_METHOD *tmp_meth = NULL;

    if (!RUN_ONCE(&rand_init, do_rand_init))
        return 0;

    if (engine != NULL) {
        if (!ENGINE_init(engine))
            return 0;
        tmp_meth = ENGINE_get_RAND(engine);
        if (tmp_meth == NULL) {
            ENGINE_finish(engine);
            return 0;
        }
    }
    CRYPTO_THREAD_write_lock(rand_engine_lock);
    /* This function releases any prior ENGINE so call it first */
    RAND_set_rand_method(tmp_meth);
    funct_ref = engine;
    CRYPTO_THREAD_unlock(rand_engine_lock);
    return 1;
}
#endif

void RAND_seed(const void *buf, int num)
{
    const RAND_METHOD *meth = RAND_get_rand_method();

    if (meth != NULL && meth->seed != NULL)
        meth->seed(buf, num);
}

void RAND_add(const void *buf, int num, double randomness)
{
    const RAND_METHOD *meth = RAND_get_rand_method();

    if (meth != NULL && meth->add != NULL)
        meth->add(buf, num, randomness);
}

/*
 * This function is not part of RAND_METHOD, so if we're not using
 * the default method, then just call RAND_bytes().  Otherwise make
 * sure we're instantiated and use the private DRBG.
 */
int RAND_priv_bytes(unsigned char *buf, int num)
{
    const RAND_METHOD *meth = RAND_get_rand_method();
    RAND_DRBG *drbg;

    if (meth != NULL && meth != RAND_OpenSSL())
        return RAND_bytes(buf, num);

    drbg = RAND_DRBG_get0_private();
    if (drbg != NULL)
        return RAND_DRBG_bytes(drbg, buf, num);

    return 0;
}

int RAND_bytes(unsigned char *buf, int num)
{
    const RAND_METHOD *meth = RAND_get_rand_method();

    if (meth != NULL && meth->bytes != NULL)
        return meth->bytes(buf, num);
    RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
    return -1;
}

#if OPENSSL_API_COMPAT < 0x10100000L
int RAND_pseudo_bytes(unsigned char *buf, int num)
{
    const RAND_METHOD *meth = RAND_get_rand_method();

    if (meth != NULL && meth->pseudorand != NULL)
        return meth->pseudorand(buf, num);
    RANDerr(RAND_F_RAND_PSEUDO_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
    return -1;
}
#endif

int RAND_status(void)
{
    const RAND_METHOD *meth = RAND_get_rand_method();

    if (meth != NULL && meth->status != NULL)
        return meth->status();
    return 0;
}