aboutsummaryrefslogtreecommitdiff
path: root/doc/educational_decoder/zstd_decompress.c
blob: af10db528d2afc8e11405257c35e13997d98e4c1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
/*
 * Copyright (c) 2017-present, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under the BSD-style license found in the
 * LICENSE file in the root directory of this source tree. An additional grant
 * of patent rights can be found in the PATENTS file in the same directory.
 */

/// Zstandard educational decoder implementation
/// See https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "zstd_decompress.h"

/******* UTILITY MACROS AND TYPES *********************************************/
// Max block size decompressed size is 128 KB and literal blocks can't be
// larger than their block
#define MAX_LITERALS_SIZE ((size_t)128 * 1024)

#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))

/// This decoder calls exit(1) when it encounters an error, however a production
/// library should propagate error codes
#define ERROR(s)                                                               \
    do {                                                                       \
        fprintf(stderr, "Error: %s\n", s);                                     \
        exit(1);                                                               \
    } while (0)
#define INP_SIZE()                                                             \
    ERROR("Input buffer smaller than it should be or input is "                \
          "corrupted")
#define OUT_SIZE() ERROR("Output buffer too small for output")
#define CORRUPTION() ERROR("Corruption detected while decompressing")
#define BAD_ALLOC() ERROR("Memory allocation error")
#define IMPOSSIBLE() ERROR("An impossibility has occurred")

typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;

typedef int8_t i8;
typedef int16_t i16;
typedef int32_t i32;
typedef int64_t i64;
/******* END UTILITY MACROS AND TYPES *****************************************/

/******* IMPLEMENTATION PRIMITIVE PROTOTYPES **********************************/
/// The implementations for these functions can be found at the bottom of this
/// file.  They implement low-level functionality needed for the higher level
/// decompression functions.

/*** IO STREAM OPERATIONS *************/

/// ostream_t/istream_t are used to wrap the pointers/length data passed into
/// ZSTD_decompress, so that all IO operations are safely bounds checked
/// They are written/read forward, and reads are treated as little-endian
/// They should be used opaquely to ensure safety
typedef struct {
    u8 *ptr;
    size_t len;
} ostream_t;

typedef struct {
    const u8 *ptr;
    size_t len;

    // Input often reads a few bits at a time, so maintain an internal offset
    int bit_offset;
} istream_t;

/// The following two functions are the only ones that allow the istream to be
/// non-byte aligned

/// Reads `num` bits from a bitstream, and updates the internal offset
static inline u64 IO_read_bits(istream_t *const in, const int num_bits);
/// Backs-up the stream by `num` bits so they can be read again
static inline void IO_rewind_bits(istream_t *const in, const int num_bits);
/// If the remaining bits in a byte will be unused, advance to the end of the
/// byte
static inline void IO_align_stream(istream_t *const in);

/// Write the given byte into the output stream
static inline void IO_write_byte(ostream_t *const out, u8 symb);

/// Returns the number of bytes left to be read in this stream.  The stream must
/// be byte aligned.
static inline size_t IO_istream_len(const istream_t *const in);

/// Advances the stream by `len` bytes, and returns a pointer to the chunk that
/// was skipped.  The stream must be byte aligned.
static inline const u8 *IO_get_read_ptr(istream_t *const in, size_t len);
/// Advances the stream by `len` bytes, and returns a pointer to the chunk that
/// was skipped so it can be written to.
static inline u8 *IO_get_write_ptr(ostream_t *const out, size_t len);

/// Advance the inner state by `len` bytes.  The stream must be byte aligned.
static inline void IO_advance_input(istream_t *const in, size_t len);

/// Returns an `ostream_t` constructed from the given pointer and length.
static inline ostream_t IO_make_ostream(u8 *out, size_t len);
/// Returns an `istream_t` constructed from the given pointer and length.
static inline istream_t IO_make_istream(const u8 *in, size_t len);

/// Returns an `istream_t` with the same base as `in`, and length `len`.
/// Then, advance `in` to account for the consumed bytes.
/// `in` must be byte aligned.
static inline istream_t IO_make_sub_istream(istream_t *const in, size_t len);
/*** END IO STREAM OPERATIONS *********/

/*** BITSTREAM OPERATIONS *************/
/// Read `num` bits (up to 64) from `src + offset`, where `offset` is in bits,
/// and return them interpreted as a little-endian unsigned integer.
static inline u64 read_bits_LE(const u8 *src, const int num_bits,
                               const size_t offset);

/// Read bits from the end of a HUF or FSE bitstream.  `offset` is in bits, so
/// it updates `offset` to `offset - bits`, and then reads `bits` bits from
/// `src + offset`.  If the offset becomes negative, the extra bits at the
/// bottom are filled in with `0` bits instead of reading from before `src`.
static inline u64 STREAM_read_bits(const u8 *src, const int bits,
                                   i64 *const offset);
/*** END BITSTREAM OPERATIONS *********/

/*** BIT COUNTING OPERATIONS **********/
/// Returns the index of the highest set bit in `num`, or `-1` if `num == 0`
static inline int highest_set_bit(const u64 num);
/*** END BIT COUNTING OPERATIONS ******/

/*** HUFFMAN PRIMITIVES ***************/
// Table decode method uses exponential memory, so we need to limit depth
#define HUF_MAX_BITS (16)

// Limit the maximum number of symbols to 256 so we can store a symbol in a byte
#define HUF_MAX_SYMBS (256)

/// Structure containing all tables necessary for efficient Huffman decoding
typedef struct {
    u8 *symbols;
    u8 *num_bits;
    int max_bits;
} HUF_dtable;

/// Decode a single symbol and read in enough bits to refresh the state
static inline u8 HUF_decode_symbol(const HUF_dtable *const dtable,
                                   u16 *const state, const u8 *const src,
                                   i64 *const offset);
/// Read in a full state's worth of bits to initialize it
static inline void HUF_init_state(const HUF_dtable *const dtable,
                                  u16 *const state, const u8 *const src,
                                  i64 *const offset);

/// Decompresses a single Huffman stream, returns the number of bytes decoded.
/// `src_len` must be the exact length of the Huffman-coded block.
static size_t HUF_decompress_1stream(const HUF_dtable *const dtable,
                                     ostream_t *const out, istream_t *const in);
/// Same as previous but decodes 4 streams, formatted as in the Zstandard
/// specification.
/// `src_len` must be the exact length of the Huffman-coded block.
static size_t HUF_decompress_4stream(const HUF_dtable *const dtable,
                                     ostream_t *const out, istream_t *const in);

/// Initialize a Huffman decoding table using the table of bit counts provided
static void HUF_init_dtable(HUF_dtable *const table, const u8 *const bits,
                            const int num_symbs);
/// Initialize a Huffman decoding table using the table of weights provided
/// Weights follow the definition provided in the Zstandard specification
static void HUF_init_dtable_usingweights(HUF_dtable *const table,
                                         const u8 *const weights,
                                         const int num_symbs);

/// Free the malloc'ed parts of a decoding table
static void HUF_free_dtable(HUF_dtable *const dtable);

/// Deep copy a decoding table, so that it can be used and free'd without
/// impacting the source table.
static void HUF_copy_dtable(HUF_dtable *const dst, const HUF_dtable *const src);
/*** END HUFFMAN PRIMITIVES ***********/

/*** FSE PRIMITIVES *******************/
/// For more description of FSE see
/// https://github.com/Cyan4973/FiniteStateEntropy/

// FSE table decoding uses exponential memory, so limit the maximum accuracy
#define FSE_MAX_ACCURACY_LOG (15)
// Limit the maximum number of symbols so they can be stored in a single byte
#define FSE_MAX_SYMBS (256)

/// The tables needed to decode FSE encoded streams
typedef struct {
    u8 *symbols;
    u8 *num_bits;
    u16 *new_state_base;
    int accuracy_log;
} FSE_dtable;

/// Return the symbol for the current state
static inline u8 FSE_peek_symbol(const FSE_dtable *const dtable,
                                 const u16 state);
/// Read the number of bits necessary to update state, update, and shift offset
/// back to reflect the bits read
static inline void FSE_update_state(const FSE_dtable *const dtable,
                                    u16 *const state, const u8 *const src,
                                    i64 *const offset);

/// Combine peek and update: decode a symbol and update the state
static inline u8 FSE_decode_symbol(const FSE_dtable *const dtable,
                                   u16 *const state, const u8 *const src,
                                   i64 *const offset);

/// Read bits from the stream to initialize the state and shift offset back
static inline void FSE_init_state(const FSE_dtable *const dtable,
                                  u16 *const state, const u8 *const src,
                                  i64 *const offset);

/// Decompress two interleaved bitstreams (e.g. compressed Huffman weights)
/// using an FSE decoding table.  `src_len` must be the exact length of the
/// block.
static size_t FSE_decompress_interleaved2(const FSE_dtable *const dtable,
                                          ostream_t *const out,
                                          istream_t *const in);

/// Initialize a decoding table using normalized frequencies.
static void FSE_init_dtable(FSE_dtable *const dtable,
                            const i16 *const norm_freqs, const int num_symbs,
                            const int accuracy_log);

/// Decode an FSE header as defined in the Zstandard format specification and
/// use the decoded frequencies to initialize a decoding table.
static void FSE_decode_header(FSE_dtable *const dtable, istream_t *const in,
                                const int max_accuracy_log);

/// Initialize an FSE table that will always return the same symbol and consume
/// 0 bits per symbol, to be used for RLE mode in sequence commands
static void FSE_init_dtable_rle(FSE_dtable *const dtable, const u8 symb);

/// Free the malloc'ed parts of a decoding table
static void FSE_free_dtable(FSE_dtable *const dtable);

/// Deep copy a decoding table, so that it can be used and free'd without
/// impacting the source table.
static void FSE_copy_dtable(FSE_dtable *const dst, const FSE_dtable *const src);
/*** END FSE PRIMITIVES ***************/

/******* END IMPLEMENTATION PRIMITIVE PROTOTYPES ******************************/

/******* ZSTD HELPER STRUCTS AND PROTOTYPES ***********************************/

/// A small structure that can be reused in various places that need to access
/// frame header information
typedef struct {
    // The size of window that we need to be able to contiguously store for
    // references
    size_t window_size;
    // The total output size of this compressed frame
    size_t frame_content_size;

    // The dictionary id if this frame uses one
    u32 dictionary_id;

    // Whether or not the content of this frame has a checksum
    int content_checksum_flag;
    // Whether or not the output for this frame is in a single segment
    int single_segment_flag;
} frame_header_t;

/// The context needed to decode blocks in a frame
typedef struct {
    frame_header_t header;

    // The total amount of data available for backreferences, to determine if an
    // offset too large to be correct
    size_t current_total_output;

    const u8 *dict_content;
    size_t dict_content_len;

    // Entropy encoding tables so they can be repeated by future blocks instead
    // of retransmitting
    HUF_dtable literals_dtable;
    FSE_dtable ll_dtable;
    FSE_dtable ml_dtable;
    FSE_dtable of_dtable;

    // The last 3 offsets for the special "repeat offsets".
    u64 previous_offsets[3];
} frame_context_t;

/// The decoded contents of a dictionary so that it doesn't have to be repeated
/// for each frame that uses it
struct dictionary_s {
    // Entropy tables
    HUF_dtable literals_dtable;
    FSE_dtable ll_dtable;
    FSE_dtable ml_dtable;
    FSE_dtable of_dtable;

    // Raw content for backreferences
    u8 *content;
    size_t content_size;

    // Offset history to prepopulate the frame's history
    u64 previous_offsets[3];

    u32 dictionary_id;
};

/// A tuple containing the parts necessary to decode and execute a ZSTD sequence
/// command
typedef struct {
    u32 literal_length;
    u32 match_length;
    u32 offset;
} sequence_command_t;

/// The decoder works top-down, starting at the high level like Zstd frames, and
/// working down to lower more technical levels such as blocks, literals, and
/// sequences.  The high-level functions roughly follow the outline of the
/// format specification:
/// https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md

/// Before the implementation of each high-level function declared here, the
/// prototypes for their helper functions are defined and explained

/// Decode a single Zstd frame, or error if the input is not a valid frame.
/// Accepts a dict argument, which may be NULL indicating no dictionary.
/// See
/// https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#frame-concatenation
static void decode_frame(ostream_t *const out, istream_t *const in,
                         const dictionary_t *const dict);

// Decode data in a compressed block
static void decompress_block(frame_context_t *const ctx, ostream_t *const out,
                             istream_t *const in);

// Decode the literals section of a block
static size_t decode_literals(frame_context_t *const ctx, istream_t *const in,
                              u8 **const literals);

// Decode the sequences part of a block
static size_t decode_sequences(frame_context_t *const ctx, istream_t *const in,
                               sequence_command_t **const sequences);

// Execute the decoded sequences on the literals block
static void execute_sequences(frame_context_t *const ctx, ostream_t *const out,
                              const u8 *const literals,
                              const size_t literals_len,
                              const sequence_command_t *const sequences,
                              const size_t num_sequences);

// Copies literals and returns the total literal length that was copied
static u32 copy_literals(const size_t seq, istream_t *litstream,
                         ostream_t *const out);

// Given an offset code from a sequence command (either an actual offset value
// or an index for previous offset), computes the correct offset and udpates
// the offset history
static size_t compute_offset(sequence_command_t seq, u64 *const offset_hist);

// Given an offset, match length, and total output, as well as the frame
// context for the dictionary, determines if the dictionary is used and
// executes the copy operation
static void execute_match_copy(frame_context_t *const ctx, size_t offset,
                              size_t match_length, size_t total_output,
                              ostream_t *const out);

/******* END ZSTD HELPER STRUCTS AND PROTOTYPES *******************************/

size_t ZSTD_decompress(void *const dst, const size_t dst_len,
                       const void *const src, const size_t src_len) {
    dictionary_t* uninit_dict = create_dictionary();
    size_t const decomp_size = ZSTD_decompress_with_dict(dst, dst_len, src,
                                                         src_len, uninit_dict);
    free_dictionary(uninit_dict);
    return decomp_size;
}

size_t ZSTD_decompress_with_dict(void *const dst, const size_t dst_len,
                                 const void *const src, const size_t src_len,
                                 dictionary_t* parsed_dict) {

    istream_t in = IO_make_istream(src, src_len);
    ostream_t out = IO_make_ostream(dst, dst_len);

    // "A content compressed by Zstandard is transformed into a Zstandard frame.
    // Multiple frames can be appended into a single file or stream. A frame is
    // totally independent, has a defined beginning and end, and a set of
    // parameters which tells the decoder how to decompress it."

    /* this decoder assumes decompression of a single frame */
    decode_frame(&out, &in, parsed_dict);

    return out.ptr - (u8 *)dst;
}

/******* FRAME DECODING ******************************************************/

static void decode_data_frame(ostream_t *const out, istream_t *const in,
                              const dictionary_t *const dict);
static void init_frame_context(frame_context_t *const context,
                               istream_t *const in,
                               const dictionary_t *const dict);
static void free_frame_context(frame_context_t *const context);
static void parse_frame_header(frame_header_t *const header,
                               istream_t *const in);
static void frame_context_apply_dict(frame_context_t *const ctx,
                                     const dictionary_t *const dict);

static void decompress_data(frame_context_t *const ctx, ostream_t *const out,
                            istream_t *const in);

static void decode_frame(ostream_t *const out, istream_t *const in,
                         const dictionary_t *const dict) {
    const u32 magic_number = IO_read_bits(in, 32);
    // Zstandard frame
    //
    // "Magic_Number
    //
    // 4 Bytes, little-endian format. Value : 0xFD2FB528"
    if (magic_number == 0xFD2FB528U) {
        // ZSTD frame
        decode_data_frame(out, in, dict);

        return;
    }

    // not a real frame or a skippable frame
    ERROR("Tried to decode non-ZSTD frame");
}

/// Decode a frame that contains compressed data.  Not all frames do as there
/// are skippable frames.
/// See
/// https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#general-structure-of-zstandard-frame-format
static void decode_data_frame(ostream_t *const out, istream_t *const in,
                              const dictionary_t *const dict) {
    frame_context_t ctx;

    // Initialize the context that needs to be carried from block to block
    init_frame_context(&ctx, in, dict);

    if (ctx.header.frame_content_size != 0 &&
        ctx.header.frame_content_size > out->len) {
        OUT_SIZE();
    }

    decompress_data(&ctx, out, in);

    free_frame_context(&ctx);
}

/// Takes the information provided in the header and dictionary, and initializes
/// the context for this frame
static void init_frame_context(frame_context_t *const context,
                               istream_t *const in,
                               const dictionary_t *const dict) {
    // Most fields in context are correct when initialized to 0
    memset(context, 0, sizeof(frame_context_t));

    // Parse data from the frame header
    parse_frame_header(&context->header, in);

    // Set up the offset history for the repeat offset commands
    context->previous_offsets[0] = 1;
    context->previous_offsets[1] = 4;
    context->previous_offsets[2] = 8;

    // Apply details from the dict if it exists
    frame_context_apply_dict(context, dict);
}

static void free_frame_context(frame_context_t *const context) {
    HUF_free_dtable(&context->literals_dtable);

    FSE_free_dtable(&context->ll_dtable);
    FSE_free_dtable(&context->ml_dtable);
    FSE_free_dtable(&context->of_dtable);

    memset(context, 0, sizeof(frame_context_t));
}

static void parse_frame_header(frame_header_t *const header,
                               istream_t *const in) {
    // "The first header's byte is called the Frame_Header_Descriptor. It tells
    // which other fields are present. Decoding this byte is enough to tell the
    // size of Frame_Header.
    //
    // Bit number   Field name
    // 7-6  Frame_Content_Size_flag
    // 5    Single_Segment_flag
    // 4    Unused_bit
    // 3    Reserved_bit
    // 2    Content_Checksum_flag
    // 1-0  Dictionary_ID_flag"
    const u8 descriptor = IO_read_bits(in, 8);

    // decode frame header descriptor into flags
    const u8 frame_content_size_flag = descriptor >> 6;
    const u8 single_segment_flag = (descriptor >> 5) & 1;
    const u8 reserved_bit = (descriptor >> 3) & 1;
    const u8 content_checksum_flag = (descriptor >> 2) & 1;
    const u8 dictionary_id_flag = descriptor & 3;

    if (reserved_bit != 0) {
        CORRUPTION();
    }

    header->single_segment_flag = single_segment_flag;
    header->content_checksum_flag = content_checksum_flag;

    // decode window size
    if (!single_segment_flag) {
        // "Provides guarantees on maximum back-reference distance that will be
        // used within compressed data. This information is important for
        // decoders to allocate enough memory.
        //
        // Bit numbers  7-3         2-0
        // Field name   Exponent    Mantissa"
        u8 window_descriptor = IO_read_bits(in, 8);
        u8 exponent = window_descriptor >> 3;
        u8 mantissa = window_descriptor & 7;

        // Use the algorithm from the specification to compute window size
        // https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#window_descriptor
        size_t window_base = (size_t)1 << (10 + exponent);
        size_t window_add = (window_base / 8) * mantissa;
        header->window_size = window_base + window_add;
    }

    // decode dictionary id if it exists
    if (dictionary_id_flag) {
        // "This is a variable size field, which contains the ID of the
        // dictionary required to properly decode the frame. Note that this
        // field is optional. When it's not present, it's up to the caller to
        // make sure it uses the correct dictionary. Format is little-endian."
        const int bytes_array[] = {0, 1, 2, 4};
        const int bytes = bytes_array[dictionary_id_flag];

        header->dictionary_id = IO_read_bits(in, bytes * 8);
    } else {
        header->dictionary_id = 0;
    }

    // decode frame content size if it exists
    if (single_segment_flag || frame_content_size_flag) {
        // "This is the original (uncompressed) size. This information is
        // optional. The Field_Size is provided according to value of
        // Frame_Content_Size_flag. The Field_Size can be equal to 0 (not
        // present), 1, 2, 4 or 8 bytes. Format is little-endian."
        //
        // if frame_content_size_flag == 0 but single_segment_flag is set, we
        // still have a 1 byte field
        const int bytes_array[] = {1, 2, 4, 8};
        const int bytes = bytes_array[frame_content_size_flag];

        header->frame_content_size = IO_read_bits(in, bytes * 8);
        if (bytes == 2) {
            // "When Field_Size is 2, the offset of 256 is added."
            header->frame_content_size += 256;
        }
    } else {
        header->frame_content_size = 0;
    }

    if (single_segment_flag) {
        // "The Window_Descriptor byte is optional. It is absent when
        // Single_Segment_flag is set. In this case, the maximum back-reference
        // distance is the content size itself, which can be any value from 1 to
        // 2^64-1 bytes (16 EB)."
        header->window_size = header->frame_content_size;
    }
}

/// A dictionary acts as initializing values for the frame context before
/// decompression, so we implement it by applying it's predetermined
/// tables and content to the context before beginning decompression
static void frame_context_apply_dict(frame_context_t *const ctx,
                                     const dictionary_t *const dict) {
    // If the content pointer is NULL then it must be an empty dict
    if (!dict || !dict->content)
        return;

    // If the requested dictionary_id is non-zero, the correct dictionary must
    // be present
    if (ctx->header.dictionary_id != 0 &&
        ctx->header.dictionary_id != dict->dictionary_id) {
        ERROR("Wrong dictionary provided");
    }

    // Copy the dict content to the context for references during sequence
    // execution
    ctx->dict_content = dict->content;
    ctx->dict_content_len = dict->content_size;

    // If it's a formatted dict copy the precomputed tables in so they can
    // be used in the table repeat modes
    if (dict->dictionary_id != 0) {
        // Deep copy the entropy tables so they can be freed independently of
        // the dictionary struct
        HUF_copy_dtable(&ctx->literals_dtable, &dict->literals_dtable);
        FSE_copy_dtable(&ctx->ll_dtable, &dict->ll_dtable);
        FSE_copy_dtable(&ctx->of_dtable, &dict->of_dtable);
        FSE_copy_dtable(&ctx->ml_dtable, &dict->ml_dtable);

        // Copy the repeated offsets
        memcpy(ctx->previous_offsets, dict->previous_offsets,
               sizeof(ctx->previous_offsets));
    }
}

/// Decompress the data from a frame block by block
static void decompress_data(frame_context_t *const ctx, ostream_t *const out,
                            istream_t *const in) {
    // "A frame encapsulates one or multiple blocks. Each block can be
    // compressed or not, and has a guaranteed maximum content size, which
    // depends on frame parameters. Unlike frames, each block depends on
    // previous blocks for proper decoding. However, each block can be
    // decompressed without waiting for its successor, allowing streaming
    // operations."
    int last_block = 0;
    do {
        // "Last_Block
        //
        // The lowest bit signals if this block is the last one. Frame ends
        // right after this block.
        //
        // Block_Type and Block_Size
        //
        // The next 2 bits represent the Block_Type, while the remaining 21 bits
        // represent the Block_Size. Format is little-endian."
        last_block = IO_read_bits(in, 1);
        const int block_type = IO_read_bits(in, 2);
        const size_t block_len = IO_read_bits(in, 21);

        switch (block_type) {
        case 0: {
            // "Raw_Block - this is an uncompressed block. Block_Size is the
            // number of bytes to read and copy."
            const u8 *const read_ptr = IO_get_read_ptr(in, block_len);
            u8 *const write_ptr = IO_get_write_ptr(out, block_len);

            // Copy the raw data into the output
            memcpy(write_ptr, read_ptr, block_len);

            ctx->current_total_output += block_len;
            break;
        }
        case 1: {
            // "RLE_Block - this is a single byte, repeated N times. In which
            // case, Block_Size is the size to regenerate, while the
            // "compressed" block is just 1 byte (the byte to repeat)."
            const u8 *const read_ptr = IO_get_read_ptr(in, 1);
            u8 *const write_ptr = IO_get_write_ptr(out, block_len);

            // Copy `block_len` copies of `read_ptr[0]` to the output
            memset(write_ptr, read_ptr[0], block_len);

            ctx->current_total_output += block_len;
            break;
        }
        case 2: {
            // "Compressed_Block - this is a Zstandard compressed block,
            // detailed in another section of this specification. Block_Size is
            // the compressed size.

            // Create a sub-stream for the block
            istream_t block_stream = IO_make_sub_istream(in, block_len);
            decompress_block(ctx, out, &block_stream);
            break;
        }
        case 3:
            // "Reserved - this is not a block. This value cannot be used with
            // current version of this specification."
            CORRUPTION();
            break;
        default:
            IMPOSSIBLE();
        }
    } while (!last_block);

    if (ctx->header.content_checksum_flag) {
        // This program does not support checking the checksum, so skip over it
        // if it's present
        IO_advance_input(in, 4);
    }
}
/******* END FRAME DECODING ***************************************************/

/******* BLOCK DECOMPRESSION **************************************************/
static void decompress_block(frame_context_t *const ctx, ostream_t *const out,
                             istream_t *const in) {
    // "A compressed block consists of 2 sections :
    //
    // Literals_Section
    // Sequences_Section"


    // Part 1: decode the literals block
    u8 *literals = NULL;
    const size_t literals_size = decode_literals(ctx, in, &literals);

    // Part 2: decode the sequences block
    sequence_command_t *sequences = NULL;
    const size_t num_sequences =
        decode_sequences(ctx, in, &sequences);

    // Part 3: combine literals and sequence commands to generate output
    execute_sequences(ctx, out, literals, literals_size, sequences,
                      num_sequences);
    free(literals);
    free(sequences);
}
/******* END BLOCK DECOMPRESSION **********************************************/

/******* LITERALS DECODING ****************************************************/
static size_t decode_literals_simple(istream_t *const in, u8 **const literals,
                                     const int block_type,
                                     const int size_format);
static size_t decode_literals_compressed(frame_context_t *const ctx,
                                         istream_t *const in,
                                         u8 **const literals,
                                         const int block_type,
                                         const int size_format);
static void decode_huf_table(HUF_dtable *const dtable, istream_t *const in);
static void fse_decode_hufweights(ostream_t *weights, istream_t *const in,
                                    int *const num_symbs);

static size_t decode_literals(frame_context_t *const ctx, istream_t *const in,
                              u8 **const literals) {
    // "Literals can be stored uncompressed or compressed using Huffman prefix
    // codes. When compressed, an optional tree description can be present,
    // followed by 1 or 4 streams."
    //
    // "Literals_Section_Header
    //
    // Header is in charge of describing how literals are packed. It's a
    // byte-aligned variable-size bitfield, ranging from 1 to 5 bytes, using
    // little-endian convention."
    //
    // "Literals_Block_Type
    //
    // This field uses 2 lowest bits of first byte, describing 4 different block
    // types"
    //
    // size_format takes between 1 and 2 bits
    int block_type = IO_read_bits(in, 2);
    int size_format = IO_read_bits(in, 2);

    if (block_type <= 1) {
        // Raw or RLE literals block
        return decode_literals_simple(in, literals, block_type,
                                      size_format);
    } else {
        // Huffman compressed literals
        return decode_literals_compressed(ctx, in, literals, block_type,
                                          size_format);
    }
}

/// Decodes literals blocks in raw or RLE form
static size_t decode_literals_simple(istream_t *const in, u8 **const literals,
                                     const int block_type,
                                     const int size_format) {
    size_t size;
    switch (size_format) {
    // These cases are in the form ?0
    // In this case, the ? bit is actually part of the size field
    case 0:
    case 2:
        // "Size_Format uses 1 bit. Regenerated_Size uses 5 bits (0-31)."
        IO_rewind_bits(in, 1);
        size = IO_read_bits(in, 5);
        break;
    case 1:
        // "Size_Format uses 2 bits. Regenerated_Size uses 12 bits (0-4095)."
        size = IO_read_bits(in, 12);
        break;
    case 3:
        // "Size_Format uses 2 bits. Regenerated_Size uses 20 bits (0-1048575)."
        size = IO_read_bits(in, 20);
        break;
    default:
        // Size format is in range 0-3
        IMPOSSIBLE();
    }

    if (size > MAX_LITERALS_SIZE) {
        CORRUPTION();
    }

    *literals = malloc(size);
    if (!*literals) {
        BAD_ALLOC();
    }

    switch (block_type) {
    case 0: {
        // "Raw_Literals_Block - Literals are stored uncompressed."
        const u8 *const read_ptr = IO_get_read_ptr(in, size);
        memcpy(*literals, read_ptr, size);
        break;
    }
    case 1: {
        // "RLE_Literals_Block - Literals consist of a single byte value repeated N times."
        const u8 *const read_ptr = IO_get_read_ptr(in, 1);
        memset(*literals, read_ptr[0], size);
        break;
    }
    default:
        IMPOSSIBLE();
    }

    return size;
}

/// Decodes Huffman compressed literals
static size_t decode_literals_compressed(frame_context_t *const ctx,
                                         istream_t *const in,
                                         u8 **const literals,
                                         const int block_type,
                                         const int size_format) {
    size_t regenerated_size, compressed_size;
    // Only size_format=0 has 1 stream, so default to 4
    int num_streams = 4;
    switch (size_format) {
    case 0:
        // "A single stream. Both Compressed_Size and Regenerated_Size use 10
        // bits (0-1023)."
        num_streams = 1;
    // Fall through as it has the same size format
    case 1:
        // "4 streams. Both Compressed_Size and Regenerated_Size use 10 bits
        // (0-1023)."
        regenerated_size = IO_read_bits(in, 10);
        compressed_size = IO_read_bits(in, 10);
        break;
    case 2:
        // "4 streams. Both Compressed_Size and Regenerated_Size use 14 bits
        // (0-16383)."
        regenerated_size = IO_read_bits(in, 14);
        compressed_size = IO_read_bits(in, 14);
        break;
    case 3:
        // "4 streams. Both Compressed_Size and Regenerated_Size use 18 bits
        // (0-262143)."
        regenerated_size = IO_read_bits(in, 18);
        compressed_size = IO_read_bits(in, 18);
        break;
    default:
        // Impossible
        IMPOSSIBLE();
    }
    if (regenerated_size > MAX_LITERALS_SIZE ||
        compressed_size >= regenerated_size) {
        CORRUPTION();
    }

    *literals = malloc(regenerated_size);
    if (!*literals) {
        BAD_ALLOC();
    }

    ostream_t lit_stream = IO_make_ostream(*literals, regenerated_size);
    istream_t huf_stream = IO_make_sub_istream(in, compressed_size);

    if (block_type == 2) {
        // Decode the provided Huffman table
        // "This section is only present when Literals_Block_Type type is
        // Compressed_Literals_Block (2)."

        HUF_free_dtable(&ctx->literals_dtable);
        decode_huf_table(&ctx->literals_dtable, &huf_stream);
    } else {
        // If the previous Huffman table is being repeated, ensure it exists
        if (!ctx->literals_dtable.symbols) {
            CORRUPTION();
        }
    }

    size_t symbols_decoded;
    if (num_streams == 1) {
        symbols_decoded = HUF_decompress_1stream(&ctx->literals_dtable, &lit_stream, &huf_stream);
    } else {
        symbols_decoded = HUF_decompress_4stream(&ctx->literals_dtable, &lit_stream, &huf_stream);
    }

    if (symbols_decoded != regenerated_size) {
        CORRUPTION();
    }

    return regenerated_size;
}

// Decode the Huffman table description
static void decode_huf_table(HUF_dtable *const dtable, istream_t *const in) {
    // "All literal values from zero (included) to last present one (excluded)
    // are represented by Weight with values from 0 to Max_Number_of_Bits."

    // "This is a single byte value (0-255), which describes how to decode the list of weights."
    const u8 header = IO_read_bits(in, 8);

    u8 weights[HUF_MAX_SYMBS];
    memset(weights, 0, sizeof(weights));

    int num_symbs;

    if (header >= 128) {
        // "This is a direct representation, where each Weight is written
        // directly as a 4 bits field (0-15). The full representation occupies
        // ((Number_of_Symbols+1)/2) bytes, meaning it uses a last full byte
        // even if Number_of_Symbols is odd. Number_of_Symbols = headerByte -
        // 127"
        num_symbs = header - 127;
        const size_t bytes = (num_symbs + 1) / 2;

        const u8 *const weight_src = IO_get_read_ptr(in, bytes);

        for (int i = 0; i < num_symbs; i++) {
            // "They are encoded forward, 2
            // weights to a byte with the first weight taking the top four bits
            // and the second taking the bottom four (e.g. the following
            // operations could be used to read the weights: Weight[0] =
            // (Byte[0] >> 4), Weight[1] = (Byte[0] & 0xf), etc.)."
            if (i % 2 == 0) {
                weights[i] = weight_src[i / 2] >> 4;
            } else {
                weights[i] = weight_src[i / 2] & 0xf;
            }
        }
    } else {
        // The weights are FSE encoded, decode them before we can construct the
        // table
        istream_t fse_stream = IO_make_sub_istream(in, header);
        ostream_t weight_stream = IO_make_ostream(weights, HUF_MAX_SYMBS);
        fse_decode_hufweights(&weight_stream, &fse_stream, &num_symbs);
    }

    // Construct the table using the decoded weights
    HUF_init_dtable_usingweights(dtable, weights, num_symbs);
}

static void fse_decode_hufweights(ostream_t *weights, istream_t *const in,
                                    int *const num_symbs) {
    const int MAX_ACCURACY_LOG = 7;

    FSE_dtable dtable;

    // "An FSE bitstream starts by a header, describing probabilities
    // distribution. It will create a Decoding Table. For a list of Huffman
    // weights, maximum accuracy is 7 bits."
    FSE_decode_header(&dtable, in, MAX_ACCURACY_LOG);

    // Decode the weights
    *num_symbs = FSE_decompress_interleaved2(&dtable, weights, in);

    FSE_free_dtable(&dtable);
}
/******* END LITERALS DECODING ************************************************/

/******* SEQUENCE DECODING ****************************************************/
/// The combination of FSE states needed to decode sequences
typedef struct {
    FSE_dtable ll_table;
    FSE_dtable of_table;
    FSE_dtable ml_table;

    u16 ll_state;
    u16 of_state;
    u16 ml_state;
} sequence_states_t;

/// Different modes to signal to decode_seq_tables what to do
typedef enum {
    seq_literal_length = 0,
    seq_offset = 1,
    seq_match_length = 2,
} seq_part_t;

typedef enum {
    seq_predefined = 0,
    seq_rle = 1,
    seq_fse = 2,
    seq_repeat = 3,
} seq_mode_t;

/// The predefined FSE distribution tables for `seq_predefined` mode
static const i16 SEQ_LITERAL_LENGTH_DEFAULT_DIST[36] = {
    4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,  1,  2,  2,
    2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1, -1, -1, -1, -1};
static const i16 SEQ_OFFSET_DEFAULT_DIST[29] = {
    1, 1, 1, 1, 1, 1, 2, 2, 2, 1,  1,  1,  1,  1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1};
static const i16 SEQ_MATCH_LENGTH_DEFAULT_DIST[53] = {
    1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1,  1,  1,  1,  1,  1,  1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1,  1,  1,  1,  1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1};

/// The sequence decoding baseline and number of additional bits to read/add
/// https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#the-codes-for-literals-lengths-match-lengths-and-offsets
static const u32 SEQ_LITERAL_LENGTH_BASELINES[36] = {
    0,  1,  2,   3,   4,   5,    6,    7,    8,    9,     10,    11,
    12, 13, 14,  15,  16,  18,   20,   22,   24,   28,    32,    40,
    48, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65538};
static const u8 SEQ_LITERAL_LENGTH_EXTRA_BITS[36] = {
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  0,  0,  1,  1,
    1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};

static const u32 SEQ_MATCH_LENGTH_BASELINES[53] = {
    3,  4,   5,   6,   7,    8,    9,    10,   11,    12,    13,   14, 15, 16,
    17, 18,  19,  20,  21,   22,   23,   24,   25,    26,    27,   28, 29, 30,
    31, 32,  33,  34,  35,   37,   39,   41,   43,    47,    51,   59, 67, 83,
    99, 131, 259, 515, 1027, 2051, 4099, 8195, 16387, 32771, 65539};
static const u8 SEQ_MATCH_LENGTH_EXTRA_BITS[53] = {
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  0,  0,  0,  0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  0,  1,  1,  1, 1,
    2, 2, 3, 3, 4, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};

/// Offset decoding is simpler so we just need a maximum code value
static const u8 SEQ_MAX_CODES[3] = {35, -1, 52};

static void decompress_sequences(frame_context_t *const ctx,
                                 istream_t *const in,
                                 sequence_command_t *const sequences,
                                 const size_t num_sequences);
static sequence_command_t decode_sequence(sequence_states_t *const state,
                                          const u8 *const src,
                                          i64 *const offset);
static void decode_seq_table(FSE_dtable *const table, istream_t *const in,
                               const seq_part_t type, const seq_mode_t mode);

static size_t decode_sequences(frame_context_t *const ctx, istream_t *in,
                               sequence_command_t **const sequences) {
    // "A compressed block is a succession of sequences . A sequence is a
    // literal copy command, followed by a match copy command. A literal copy
    // command specifies a length. It is the number of bytes to be copied (or
    // extracted) from the literal section. A match copy command specifies an
    // offset and a length. The offset gives the position to copy from, which
    // can be within a previous block."

    size_t num_sequences;

    // "Number_of_Sequences
    //
    // This is a variable size field using between 1 and 3 bytes. Let's call its
    // first byte byte0."
    u8 header = IO_read_bits(in, 8);
    if (header == 0) {
        // "There are no sequences. The sequence section stops there.
        // Regenerated content is defined entirely by literals section."
        *sequences = NULL;
        return 0;
    } else if (header < 128) {
        // "Number_of_Sequences = byte0 . Uses 1 byte."
        num_sequences = header;
    } else if (header < 255) {
        // "Number_of_Sequences = ((byte0-128) << 8) + byte1 . Uses 2 bytes."
        num_sequences = ((header - 128) << 8) + IO_read_bits(in, 8);
    } else {
        // "Number_of_Sequences = byte1 + (byte2<<8) + 0x7F00 . Uses 3 bytes."
        num_sequences = IO_read_bits(in, 16) + 0x7F00;
    }

    *sequences = malloc(num_sequences * sizeof(sequence_command_t));
    if (!*sequences) {
        BAD_ALLOC();
    }

    decompress_sequences(ctx, in, *sequences, num_sequences);
    return num_sequences;
}

/// Decompress the FSE encoded sequence commands
static void decompress_sequences(frame_context_t *const ctx, istream_t *in,
                                 sequence_command_t *const sequences,
                                 const size_t num_sequences) {
    // "The Sequences_Section regroup all symbols required to decode commands.
    // There are 3 symbol types : literals lengths, offsets and match lengths.
    // They are encoded together, interleaved, in a single bitstream."

    // "Symbol compression modes
    //
    // This is a single byte, defining the compression mode of each symbol
    // type."
    //
    // Bit number : Field name
    // 7-6        : Literals_Lengths_Mode
    // 5-4        : Offsets_Mode
    // 3-2        : Match_Lengths_Mode
    // 1-0        : Reserved
    u8 compression_modes = IO_read_bits(in, 8);

    if ((compression_modes & 3) != 0) {
        // Reserved bits set
        CORRUPTION();
    }

    // "Following the header, up to 3 distribution tables can be described. When
    // present, they are in this order :
    //
    // Literals lengths
    // Offsets
    // Match Lengths"
    // Update the tables we have stored in the context
    decode_seq_table(&ctx->ll_dtable, in, seq_literal_length,
                     (compression_modes >> 6) & 3);

    decode_seq_table(&ctx->of_dtable, in, seq_offset,
                     (compression_modes >> 4) & 3);

    decode_seq_table(&ctx->ml_dtable, in, seq_match_length,
                     (compression_modes >> 2) & 3);


    sequence_states_t states;

    // Initialize the decoding tables
    {
        states.ll_table = ctx->ll_dtable;
        states.of_table = ctx->of_dtable;
        states.ml_table = ctx->ml_dtable;
    }

    const size_t len = IO_istream_len(in);
    const u8 *const src = IO_get_read_ptr(in, len);

    // "After writing the last bit containing information, the compressor writes
    // a single 1-bit and then fills the byte with 0-7 0 bits of padding."
    const int padding = 8 - highest_set_bit(src[len - 1]);
    // The offset starts at the end because FSE streams are read backwards
    i64 bit_offset = len * 8 - padding;

    // "The bitstream starts with initial state values, each using the required
    // number of bits in their respective accuracy, decoded previously from
    // their normalized distribution.
    //
    // It starts by Literals_Length_State, followed by Offset_State, and finally
    // Match_Length_State."
    FSE_init_state(&states.ll_table, &states.ll_state, src, &bit_offset);
    FSE_init_state(&states.of_table, &states.of_state, src, &bit_offset);
    FSE_init_state(&states.ml_table, &states.ml_state, src, &bit_offset);

    for (size_t i = 0; i < num_sequences; i++) {
        // Decode sequences one by one
        sequences[i] = decode_sequence(&states, src, &bit_offset);
    }

    if (bit_offset != 0) {
        CORRUPTION();
    }
}

// Decode a single sequence and update the state
static sequence_command_t decode_sequence(sequence_states_t *const states,
                                          const u8 *const src,
                                          i64 *const offset) {
    // "Each symbol is a code in its own context, which specifies Baseline and
    // Number_of_Bits to add. Codes are FSE compressed, and interleaved with raw
    // additional bits in the same bitstream."

    // Decode symbols, but don't update states
    const u8 of_code = FSE_peek_symbol(&states->of_table, states->of_state);
    const u8 ll_code = FSE_peek_symbol(&states->ll_table, states->ll_state);
    const u8 ml_code = FSE_peek_symbol(&states->ml_table, states->ml_state);

    // Offset doesn't need a max value as it's not decoded using a table
    if (ll_code > SEQ_MAX_CODES[seq_literal_length] ||
        ml_code > SEQ_MAX_CODES[seq_match_length]) {
        CORRUPTION();
    }

    // Read the interleaved bits
    sequence_command_t seq;
    // "Decoding starts by reading the Number_of_Bits required to decode Offset.
    // It then does the same for Match_Length, and then for Literals_Length."
    seq.offset = ((u32)1 << of_code) + STREAM_read_bits(src, of_code, offset);

    seq.match_length =
        SEQ_MATCH_LENGTH_BASELINES[ml_code] +
        STREAM_read_bits(src, SEQ_MATCH_LENGTH_EXTRA_BITS[ml_code], offset);

    seq.literal_length =
        SEQ_LITERAL_LENGTH_BASELINES[ll_code] +
        STREAM_read_bits(src, SEQ_LITERAL_LENGTH_EXTRA_BITS[ll_code], offset);

    // "If it is not the last sequence in the block, the next operation is to
    // update states. Using the rules pre-calculated in the decoding tables,
    // Literals_Length_State is updated, followed by Match_Length_State, and
    // then Offset_State."
    // If the stream is complete don't read bits to update state
    if (*offset != 0) {
        FSE_update_state(&states->ll_table, &states->ll_state, src, offset);
        FSE_update_state(&states->ml_table, &states->ml_state, src, offset);
        FSE_update_state(&states->of_table, &states->of_state, src, offset);
    }

    return seq;
}

/// Given a sequence part and table mode, decode the FSE distribution
/// Errors if the mode is `seq_repeat` without a pre-existing table in `table`
static void decode_seq_table(FSE_dtable *const table, istream_t *const in,
                             const seq_part_t type, const seq_mode_t mode) {
    // Constant arrays indexed by seq_part_t
    const i16 *const default_distributions[] = {SEQ_LITERAL_LENGTH_DEFAULT_DIST,
                                                SEQ_OFFSET_DEFAULT_DIST,
                                                SEQ_MATCH_LENGTH_DEFAULT_DIST};
    const size_t default_distribution_lengths[] = {36, 29, 53};
    const size_t default_distribution_accuracies[] = {6, 5, 6};

    const size_t max_accuracies[] = {9, 8, 9};

    if (mode != seq_repeat) {
        // Free old one before overwriting
        FSE_free_dtable(table);
    }

    switch (mode) {
    case seq_predefined: {
        // "Predefined_Mode : uses a predefined distribution table."
        const i16 *distribution = default_distributions[type];
        const size_t symbs = default_distribution_lengths[type];
        const size_t accuracy_log = default_distribution_accuracies[type];

        FSE_init_dtable(table, distribution, symbs, accuracy_log);
        break;
    }
    case seq_rle: {
        // "RLE_Mode : it's a single code, repeated Number_of_Sequences times."
        const u8 symb = IO_get_read_ptr(in, 1)[0];
        FSE_init_dtable_rle(table, symb);
        break;
    }
    case seq_fse: {
        // "FSE_Compressed_Mode : standard FSE compression. A distribution table
        // will be present "
        FSE_decode_header(table, in, max_accuracies[type]);
        break;
    }
    case seq_repeat:
        // "Repeat_Mode : re-use distribution table from previous compressed
        // block."
        // Nothing to do here, table will be unchanged
        if (!table->symbols) {
            // This mode is invalid if we don't already have a table
            CORRUPTION();
        }
        break;
    default:
        // Impossible, as mode is from 0-3
        IMPOSSIBLE();
        break;
    }

}
/******* END SEQUENCE DECODING ************************************************/

/******* SEQUENCE EXECUTION ***************************************************/
static void execute_sequences(frame_context_t *const ctx, ostream_t *const out,
                              const u8 *const literals,
                              const size_t literals_len,
                              const sequence_command_t *const sequences,
                              const size_t num_sequences) {
    istream_t litstream = IO_make_istream(literals, literals_len);

    u64 *const offset_hist = ctx->previous_offsets;
    size_t total_output = ctx->current_total_output;

    for (size_t i = 0; i < num_sequences; i++) {
        const sequence_command_t seq = sequences[i];
        {
            const u32 literals_size = copy_literals(seq.literal_length, &litstream, out);
            total_output += literals_size;
        }

        size_t const offset = compute_offset(seq, offset_hist);

        size_t const match_length = seq.match_length;

        execute_match_copy(ctx, offset, match_length, total_output, out);

        total_output += match_length;
    }

    // Copy any leftover literals
    {
        size_t len = IO_istream_len(&litstream);
        copy_literals(len, &litstream, out); 
        total_output += len;
    }

    ctx->current_total_output = total_output;
}

static u32 copy_literals(const size_t literal_length, istream_t *litstream,
                         ostream_t *const out) {
    // If the sequence asks for more literals than are left, the
    // sequence must be corrupted
    if (literal_length > IO_istream_len(litstream)) {
        CORRUPTION();
    }

    u8 *const write_ptr = IO_get_write_ptr(out, literal_length);
    const u8 *const read_ptr =
         IO_get_read_ptr(litstream, literal_length);
    // Copy literals to output
    memcpy(write_ptr, read_ptr, literal_length);

    return literal_length;
}

static size_t compute_offset(sequence_command_t seq, u64 *const offset_hist) {
    size_t offset;
    // Offsets are special, we need to handle the repeat offsets
    if (seq.offset <= 3) {
        // "The first 3 values define a repeated offset and we will call
        // them Repeated_Offset1, Repeated_Offset2, and Repeated_Offset3.
        // They are sorted in recency order, with Repeated_Offset1 meaning
        // 'most recent one'".

        // Use 0 indexing for the array
        u32 idx = seq.offset - 1;
        if (seq.literal_length == 0) {
            // "There is an exception though, when current sequence's
            // literals length is 0. In this case, repeated offsets are
            // shifted by one, so Repeated_Offset1 becomes Repeated_Offset2,
            // Repeated_Offset2 becomes Repeated_Offset3, and
            // Repeated_Offset3 becomes Repeated_Offset1 - 1_byte."
            idx++;
        }

        if (idx == 0) {
            offset = offset_hist[0];
        } else {
            // If idx == 3 then literal length was 0 and the offset was 3,
            // as per the exception listed above
            offset = idx < 3 ? offset_hist[idx] : offset_hist[0] - 1;

            // If idx == 1 we don't need to modify offset_hist[2], since
            // we're using the second-most recent code
            if (idx > 1) {
                offset_hist[2] = offset_hist[1];
            }
            offset_hist[1] = offset_hist[0];
            offset_hist[0] = offset;
        }
    } else {
        // When it's not a repeat offset:
        // "if (Offset_Value > 3) offset = Offset_Value - 3;"
        offset = seq.offset - 3;

        // Shift back history
        offset_hist[2] = offset_hist[1];
        offset_hist[1] = offset_hist[0];
        offset_hist[0] = offset;
    }
    return offset;
}

static void execute_match_copy(frame_context_t *const ctx, size_t offset,
                              size_t match_length, size_t total_output,
                              ostream_t *const out) {
    u8 *write_ptr = IO_get_write_ptr(out, match_length);
    if (total_output <= ctx->header.window_size) {
        // In this case offset might go back into the dictionary
        if (offset > total_output + ctx->dict_content_len) {
            // The offset goes beyond even the dictionary
            CORRUPTION();
        }

        if (offset > total_output) {
            // "The rest of the dictionary is its content. The content act
            // as a "past" in front of data to compress or decompress, so it
            // can be referenced in sequence commands."
            const size_t dict_copy =
                MIN(offset - total_output, match_length);
            const size_t dict_offset =
                ctx->dict_content_len - (offset - total_output);

            memcpy(write_ptr, ctx->dict_content + dict_offset, dict_copy);
            write_ptr += dict_copy;
            match_length -= dict_copy;
        }
    } else if (offset > ctx->header.window_size) {
        CORRUPTION();
    }

    // We must copy byte by byte because the match length might be larger
    // than the offset
    // ex: if the output so far was "abc", a command with offset=3 and
    // match_length=6 would produce "abcabcabc" as the new output
    for (size_t j = 0; j < match_length; j++) {
        *write_ptr = *(write_ptr - offset);
        write_ptr++;
    }
}
/******* END SEQUENCE EXECUTION ***********************************************/

/******* OUTPUT SIZE COUNTING *************************************************/
/// Get the decompressed size of an input stream so memory can be allocated in
/// advance.
/// This implementation assumes `src` points to a single ZSTD-compressed frame
size_t ZSTD_get_decompressed_size(const void *src, const size_t src_len) {
    istream_t in = IO_make_istream(src, src_len);

    // get decompressed size from ZSTD frame header
    {
        const u32 magic_number = IO_read_bits(&in, 32);

        if (magic_number == 0xFD2FB528U) {
            // ZSTD frame
            frame_header_t header;
            parse_frame_header(&header, &in);

            if (header.frame_content_size == 0 && !header.single_segment_flag) {
                // Content size not provided, we can't tell
                return -1;
            }

            return header.frame_content_size;
        } else {
            // not a real frame or skippable frame
            ERROR("ZSTD frame magic number did not match");
        }
    }
}
/******* END OUTPUT SIZE COUNTING *********************************************/

/******* DICTIONARY PARSING ***************************************************/
#define DICT_SIZE_ERROR() ERROR("Dictionary size cannot be less than 8 bytes")
#define NULL_SRC() ERROR("Tried to create dictionary with pointer to null src");

dictionary_t* create_dictionary() {
    dictionary_t* dict = calloc(1, sizeof(dictionary_t));
    if (!dict) {
        BAD_ALLOC();
    }
    return dict;
}

static void init_dictionary_content(dictionary_t *const dict,
                                    istream_t *const in);

void parse_dictionary(dictionary_t *const dict, const void *src,
                             size_t src_len) {
    const u8 *byte_src = (const u8 *)src;
    memset(dict, 0, sizeof(dictionary_t));
    if (src == NULL) { /* cannot initialize dictionary with null src */
        NULL_SRC();
    }
    if (src_len < 8) {
        DICT_SIZE_ERROR();
    }

    istream_t in = IO_make_istream(byte_src, src_len);

    const u32 magic_number = IO_read_bits(&in, 32);
    if (magic_number != 0xEC30A437) {
        // raw content dict
        IO_rewind_bits(&in, 32);
        init_dictionary_content(dict, &in);
        return;
    }

    dict->dictionary_id = IO_read_bits(&in, 32);

    // "Entropy_Tables : following the same format as the tables in compressed
    // blocks. They are stored in following order : Huffman tables for literals,
    // FSE table for offsets, FSE table for match lengths, and FSE table for
    // literals lengths. It's finally followed by 3 offset values, populating
    // recent offsets (instead of using {1,4,8}), stored in order, 4-bytes
    // little-endian each, for a total of 12 bytes. Each recent offset must have
    // a value < dictionary size."
    decode_huf_table(&dict->literals_dtable, &in);
    decode_seq_table(&dict->of_dtable, &in, seq_offset, seq_fse);
    decode_seq_table(&dict->ml_dtable, &in, seq_match_length, seq_fse);
    decode_seq_table(&dict->ll_dtable, &in, seq_literal_length, seq_fse);

    // Read in the previous offset history
    dict->previous_offsets[0] = IO_read_bits(&in, 32);
    dict->previous_offsets[1] = IO_read_bits(&in, 32);
    dict->previous_offsets[2] = IO_read_bits(&in, 32);

    // Ensure the provided offsets aren't too large
    // "Each recent offset must have a value < dictionary size."
    for (int i = 0; i < 3; i++) {
        if (dict->previous_offsets[i] > src_len) {
            ERROR("Dictionary corrupted");
        }
    }

    // "Content : The rest of the dictionary is its content. The content act as
    // a "past" in front of data to compress or decompress, so it can be
    // referenced in sequence commands."
    init_dictionary_content(dict, &in);
}

static void init_dictionary_content(dictionary_t *const dict,
                                    istream_t *const in) {
    // Copy in the content
    dict->content_size = IO_istream_len(in);
    dict->content = malloc(dict->content_size);
    if (!dict->content) {
        BAD_ALLOC();
    }

    const u8 *const content = IO_get_read_ptr(in, dict->content_size);

    memcpy(dict->content, content, dict->content_size);
}

/// Free an allocated dictionary
void free_dictionary(dictionary_t *const dict) {
    HUF_free_dtable(&dict->literals_dtable);
    FSE_free_dtable(&dict->ll_dtable);
    FSE_free_dtable(&dict->of_dtable);
    FSE_free_dtable(&dict->ml_dtable);

    free(dict->content);

    memset(dict, 0, sizeof(dictionary_t));

    free(dict);
}
/******* END DICTIONARY PARSING ***********************************************/

/******* IO STREAM OPERATIONS *************************************************/
#define UNALIGNED() ERROR("Attempting to operate on a non-byte aligned stream")
/// Reads `num` bits from a bitstream, and updates the internal offset
static inline u64 IO_read_bits(istream_t *const in, const int num_bits) {
    if (num_bits > 64 || num_bits <= 0) {
        ERROR("Attempt to read an invalid number of bits");
    }

    const size_t bytes = (num_bits + in->bit_offset + 7) / 8;
    const size_t full_bytes = (num_bits + in->bit_offset) / 8;
    if (bytes > in->len) {
        INP_SIZE();
    }

    const u64 result = read_bits_LE(in->ptr, num_bits, in->bit_offset);

    in->bit_offset = (num_bits + in->bit_offset) % 8;
    in->ptr += full_bytes;
    in->len -= full_bytes;

    return result;
}

/// If a non-zero number of bits have been read from the current byte, advance
/// the offset to the next byte
static inline void IO_rewind_bits(istream_t *const in, int num_bits) {
    if (num_bits < 0) {
        ERROR("Attempting to rewind stream by a negative number of bits");
    }

    // move the offset back by `num_bits` bits
    const int new_offset = in->bit_offset - num_bits;
    // determine the number of whole bytes we have to rewind, rounding up to an
    // integer number (e.g. if `new_offset == -5`, `bytes == 1`)
    const i64 bytes = -(new_offset - 7) / 8;

    in->ptr -= bytes;
    in->len += bytes;
    // make sure the resulting `bit_offset` is positive, as mod in C does not
    // convert numbers from negative to positive (e.g. -22 % 8 == -6)
    in->bit_offset = ((new_offset % 8) + 8) % 8;
}

/// If the remaining bits in a byte will be unused, advance to the end of the
/// byte
static inline void IO_align_stream(istream_t *const in) {
    if (in->bit_offset != 0) {
        if (in->len == 0) {
            INP_SIZE();
        }
        in->ptr++;
        in->len--;
        in->bit_offset = 0;
    }
}

/// Write the given byte into the output stream
static inline void IO_write_byte(ostream_t *const out, u8 symb) {
    if (out->len == 0) {
        OUT_SIZE();
    }

    out->ptr[0] = symb;
    out->ptr++;
    out->len--;
}

/// Returns the number of bytes left to be read in this stream.  The stream must
/// be byte aligned.
static inline size_t IO_istream_len(const istream_t *const in) {
    return in->len;
}

/// Returns a pointer where `len` bytes can be read, and advances the internal
/// state.  The stream must be byte aligned.
static inline const u8 *IO_get_read_ptr(istream_t *const in, size_t len) {
    if (len > in->len) {
        INP_SIZE();
    }
    if (in->bit_offset != 0) {
        UNALIGNED();
    }
    const u8 *const ptr = in->ptr;
    in->ptr += len;
    in->len -= len;

    return ptr;
}
/// Returns a pointer to write `len` bytes to, and advances the internal state
static inline u8 *IO_get_write_ptr(ostream_t *const out, size_t len) {
    if (len > out->len) {
        OUT_SIZE();
    }
    u8 *const ptr = out->ptr;
    out->ptr += len;
    out->len -= len;

    return ptr;
}

/// Advance the inner state by `len` bytes
static inline void IO_advance_input(istream_t *const in, size_t len) {
    if (len > in->len) {
         INP_SIZE();
    }
    if (in->bit_offset != 0) {
        UNALIGNED();
    }

    in->ptr += len;
    in->len -= len;
}

/// Returns an `ostream_t` constructed from the given pointer and length
static inline ostream_t IO_make_ostream(u8 *out, size_t len) {
    return (ostream_t) { out, len };
}

/// Returns an `istream_t` constructed from the given pointer and length
static inline istream_t IO_make_istream(const u8 *in, size_t len) {
    return (istream_t) { in, len, 0 };
}

/// Returns an `istream_t` with the same base as `in`, and length `len`
/// Then, advance `in` to account for the consumed bytes
/// `in` must be byte aligned
static inline istream_t IO_make_sub_istream(istream_t *const in, size_t len) {
    // Consume `len` bytes of the parent stream
    const u8 *const ptr = IO_get_read_ptr(in, len);

    // Make a substream using the pointer to those `len` bytes
    return IO_make_istream(ptr, len);
}
/******* END IO STREAM OPERATIONS *********************************************/

/******* BITSTREAM OPERATIONS *************************************************/
/// Read `num` bits (up to 64) from `src + offset`, where `offset` is in bits
static inline u64 read_bits_LE(const u8 *src, const int num_bits,
                               const size_t offset) {
    if (num_bits > 64) {
        ERROR("Attempt to read an invalid number of bits");
    }

    // Skip over bytes that aren't in range
    src += offset / 8;
    size_t bit_offset = offset % 8;
    u64 res = 0;

    int shift = 0;
    int left = num_bits;
    while (left > 0) {
        u64 mask = left >= 8 ? 0xff : (((u64)1 << left) - 1);
        // Read the next byte, shift it to account for the offset, and then mask
        // out the top part if we don't need all the bits
        res += (((u64)*src++ >> bit_offset) & mask) << shift;
        shift += 8 - bit_offset;
        left -= 8 - bit_offset;
        bit_offset = 0;
    }

    return res;
}

/// Read bits from the end of a HUF or FSE bitstream.  `offset` is in bits, so
/// it updates `offset` to `offset - bits`, and then reads `bits` bits from
/// `src + offset`.  If the offset becomes negative, the extra bits at the
/// bottom are filled in with `0` bits instead of reading from before `src`.
static inline u64 STREAM_read_bits(const u8 *const src, const int bits,
                                   i64 *const offset) {
    *offset = *offset - bits;
    size_t actual_off = *offset;
    size_t actual_bits = bits;
    // Don't actually read bits from before the start of src, so if `*offset <
    // 0` fix actual_off and actual_bits to reflect the quantity to read
    if (*offset < 0) {
        actual_bits += *offset;
        actual_off = 0;
    }
    u64 res = read_bits_LE(src, actual_bits, actual_off);

    if (*offset < 0) {
        // Fill in the bottom "overflowed" bits with 0's
        res = -*offset >= 64 ? 0 : (res << -*offset);
    }
    return res;
}
/******* END BITSTREAM OPERATIONS *********************************************/

/******* BIT COUNTING OPERATIONS **********************************************/
/// Returns `x`, where `2^x` is the largest power of 2 less than or equal to
/// `num`, or `-1` if `num == 0`.
static inline int highest_set_bit(const u64 num) {
    for (int i = 63; i >= 0; i--) {
        if (((u64)1 << i) <= num) {
            return i;
        }
    }
    return -1;
}
/******* END BIT COUNTING OPERATIONS ******************************************/

/******* HUFFMAN PRIMITIVES ***************************************************/
static inline u8 HUF_decode_symbol(const HUF_dtable *const dtable,
                                   u16 *const state, const u8 *const src,
                                   i64 *const offset) {
    // Look up the symbol and number of bits to read
    const u8 symb = dtable->symbols[*state];
    const u8 bits = dtable->num_bits[*state];
    const u16 rest = STREAM_read_bits(src, bits, offset);
    // Shift `bits` bits out of the state, keeping the low order bits that
    // weren't necessary to determine this symbol.  Then add in the new bits
    // read from the stream.
    *state = ((*state << bits) + rest) & (((u16)1 << dtable->max_bits) - 1);

    return symb;
}

static inline void HUF_init_state(const HUF_dtable *const dtable,
                                  u16 *const state, const u8 *const src,
                                  i64 *const offset) {
    // Read in a full `dtable->max_bits` bits to initialize the state
    const u8 bits = dtable->max_bits;
    *state = STREAM_read_bits(src, bits, offset);
}

static size_t HUF_decompress_1stream(const HUF_dtable *const dtable,
                                     ostream_t *const out,
                                     istream_t *const in) {
    const size_t len = IO_istream_len(in);
    if (len == 0) {
        INP_SIZE();
    }
    const u8 *const src = IO_get_read_ptr(in, len);

    // "Each bitstream must be read backward, that is starting from the end down
    // to the beginning. Therefore it's necessary to know the size of each
    // bitstream.
    //
    // It's also necessary to know exactly which bit is the latest. This is
    // detected by a final bit flag : the highest bit of latest byte is a
    // final-bit-flag. Consequently, a last byte of 0 is not possible. And the
    // final-bit-flag itself is not part of the useful bitstream. Hence, the
    // last byte contains between 0 and 7 useful bits."
    const int padding = 8 - highest_set_bit(src[len - 1]);

    // Offset starts at the end because HUF streams are read backwards
    i64 bit_offset = len * 8 - padding;
    u16 state;

    HUF_init_state(dtable, &state, src, &bit_offset);

    size_t symbols_written = 0;
    while (bit_offset > -dtable->max_bits) {
        // Iterate over the stream, decoding one symbol at a time
        IO_write_byte(out, HUF_decode_symbol(dtable, &state, src, &bit_offset));
        symbols_written++;
    }
    // "The process continues up to reading the required number of symbols per
    // stream. If a bitstream is not entirely and exactly consumed, hence
    // reaching exactly its beginning position with all bits consumed, the
    // decoding process is considered faulty."

    // When all symbols have been decoded, the final state value shouldn't have
    // any data from the stream, so it should have "read" dtable->max_bits from
    // before the start of `src`
    // Therefore `offset`, the edge to start reading new bits at, should be
    // dtable->max_bits before the start of the stream
    if (bit_offset != -dtable->max_bits) {
        CORRUPTION();
    }

    return symbols_written;
}

static size_t HUF_decompress_4stream(const HUF_dtable *const dtable,
                                     ostream_t *const out, istream_t *const in) {
    // "Compressed size is provided explicitly : in the 4-streams variant,
    // bitstreams are preceded by 3 unsigned little-endian 16-bits values. Each
    // value represents the compressed size of one stream, in order. The last
    // stream size is deducted from total compressed size and from previously
    // decoded stream sizes"
    const size_t csize1 = IO_read_bits(in, 16);
    const size_t csize2 = IO_read_bits(in, 16);
    const size_t csize3 = IO_read_bits(in, 16);

    istream_t in1 = IO_make_sub_istream(in, csize1);
    istream_t in2 = IO_make_sub_istream(in, csize2);
    istream_t in3 = IO_make_sub_istream(in, csize3);
    istream_t in4 = IO_make_sub_istream(in, IO_istream_len(in));

    size_t total_output = 0;
    // Decode each stream independently for simplicity
    // If we wanted to we could decode all 4 at the same time for speed,
    // utilizing more execution units
    total_output += HUF_decompress_1stream(dtable, out, &in1);
    total_output += HUF_decompress_1stream(dtable, out, &in2);
    total_output += HUF_decompress_1stream(dtable, out, &in3);
    total_output += HUF_decompress_1stream(dtable, out, &in4);

    return total_output;
}

/// Initializes a Huffman table using canonical Huffman codes
/// For more explanation on canonical Huffman codes see
/// http://www.cs.uofs.edu/~mccloske/courses/cmps340/huff_canonical_dec2015.html
/// Codes within a level are allocated in symbol order (i.e. smaller symbols get
/// earlier codes)
static void HUF_init_dtable(HUF_dtable *const table, const u8 *const bits,
                            const int num_symbs) {
    memset(table, 0, sizeof(HUF_dtable));
    if (num_symbs > HUF_MAX_SYMBS) {
        ERROR("Too many symbols for Huffman");
    }

    u8 max_bits = 0;
    u16 rank_count[HUF_MAX_BITS + 1];
    memset(rank_count, 0, sizeof(rank_count));

    // Count the number of symbols for each number of bits, and determine the
    // depth of the tree
    for (int i = 0; i < num_symbs; i++) {
        if (bits[i] > HUF_MAX_BITS) {
            ERROR("Huffman table depth too large");
        }
        max_bits = MAX(max_bits, bits[i]);
        rank_count[bits[i]]++;
    }

    const size_t table_size = 1 << max_bits;
    table->max_bits = max_bits;
    table->symbols = malloc(table_size);
    table->num_bits = malloc(table_size);

    if (!table->symbols || !table->num_bits) {
        free(table->symbols);
        free(table->num_bits);
        BAD_ALLOC();
    }

    // "Symbols are sorted by Weight. Within same Weight, symbols keep natural
    // order. Symbols with a Weight of zero are removed. Then, starting from
    // lowest weight, prefix codes are distributed in order."

    u32 rank_idx[HUF_MAX_BITS + 1];
    // Initialize the starting codes for each rank (number of bits)
    rank_idx[max_bits] = 0;
    for (int i = max_bits; i >= 1; i--) {
        rank_idx[i - 1] = rank_idx[i] + rank_count[i] * (1 << (max_bits - i));
        // The entire range takes the same number of bits so we can memset it
        memset(&table->num_bits[rank_idx[i]], i, rank_idx[i - 1] - rank_idx[i]);
    }

    if (rank_idx[0] != table_size) {
        CORRUPTION();
    }

    // Allocate codes and fill in the table
    for (int i = 0; i < num_symbs; i++) {
        if (bits[i] != 0) {
            // Allocate a code for this symbol and set its range in the table
            const u16 code = rank_idx[bits[i]];
            // Since the code doesn't care about the bottom `max_bits - bits[i]`
            // bits of state, it gets a range that spans all possible values of
            // the lower bits
            const u16 len = 1 << (max_bits - bits[i]);
            memset(&table->symbols[code], i, len);
            rank_idx[bits[i]] += len;
        }
    }
}

static void HUF_init_dtable_usingweights(HUF_dtable *const table,
                                         const u8 *const weights,
                                         const int num_symbs) {
    // +1 because the last weight is not transmitted in the header
    if (num_symbs + 1 > HUF_MAX_SYMBS) {
        ERROR("Too many symbols for Huffman");
    }

    u8 bits[HUF_MAX_SYMBS];

    u64 weight_sum = 0;
    for (int i = 0; i < num_symbs; i++) {
        // Weights are in the same range as bit count
        if (weights[i] > HUF_MAX_BITS) {
            CORRUPTION();
        }
        weight_sum += weights[i] > 0 ? (u64)1 << (weights[i] - 1) : 0;
    }

    // Find the first power of 2 larger than the sum
    const int max_bits = highest_set_bit(weight_sum) + 1;
    const u64 left_over = ((u64)1 << max_bits) - weight_sum;
    // If the left over isn't a power of 2, the weights are invalid
    if (left_over & (left_over - 1)) {
        CORRUPTION();
    }

    // left_over is used to find the last weight as it's not transmitted
    // by inverting 2^(weight - 1) we can determine the value of last_weight
    const int last_weight = highest_set_bit(left_over) + 1;

    for (int i = 0; i < num_symbs; i++) {
        // "Number_of_Bits = Number_of_Bits ? Max_Number_of_Bits + 1 - Weight : 0"
        bits[i] = weights[i] > 0 ? (max_bits + 1 - weights[i]) : 0;
    }
    bits[num_symbs] =
        max_bits + 1 - last_weight; // Last weight is always non-zero

    HUF_init_dtable(table, bits, num_symbs + 1);
}

static void HUF_free_dtable(HUF_dtable *const dtable) {
    free(dtable->symbols);
    free(dtable->num_bits);
    memset(dtable, 0, sizeof(HUF_dtable));
}

static void HUF_copy_dtable(HUF_dtable *const dst,
                            const HUF_dtable *const src) {
    if (src->max_bits == 0) {
        memset(dst, 0, sizeof(HUF_dtable));
        return;
    }

    const size_t size = (size_t)1 << src->max_bits;
    dst->max_bits = src->max_bits;

    dst->symbols = malloc(size);
    dst->num_bits = malloc(size);
    if (!dst->symbols || !dst->num_bits) {
        BAD_ALLOC();
    }

    memcpy(dst->symbols, src->symbols, size);
    memcpy(dst->num_bits, src->num_bits, size);
}
/******* END HUFFMAN PRIMITIVES ***********************************************/

/******* FSE PRIMITIVES *******************************************************/
/// For more description of FSE see
/// https://github.com/Cyan4973/FiniteStateEntropy/

/// Allow a symbol to be decoded without updating state
static inline u8 FSE_peek_symbol(const FSE_dtable *const dtable,
                                 const u16 state) {
    return dtable->symbols[state];
}

/// Consumes bits from the input and uses the current state to determine the
/// next state
static inline void FSE_update_state(const FSE_dtable *const dtable,
                                    u16 *const state, const u8 *const src,
                                    i64 *const offset) {
    const u8 bits = dtable->num_bits[*state];
    const u16 rest = STREAM_read_bits(src, bits, offset);
    *state = dtable->new_state_base[*state] + rest;
}

/// Decodes a single FSE symbol and updates the offset
static inline u8 FSE_decode_symbol(const FSE_dtable *const dtable,
                                   u16 *const state, const u8 *const src,
                                   i64 *const offset) {
    const u8 symb = FSE_peek_symbol(dtable, *state);
    FSE_update_state(dtable, state, src, offset);
    return symb;
}

static inline void FSE_init_state(const FSE_dtable *const dtable,
                                  u16 *const state, const u8 *const src,
                                  i64 *const offset) {
    // Read in a full `accuracy_log` bits to initialize the state
    const u8 bits = dtable->accuracy_log;
    *state = STREAM_read_bits(src, bits, offset);
}

static size_t FSE_decompress_interleaved2(const FSE_dtable *const dtable,
                                          ostream_t *const out,
                                          istream_t *const in) {
    const size_t len = IO_istream_len(in);
    if (len == 0) {
        INP_SIZE();
    }
    const u8 *const src = IO_get_read_ptr(in, len);

    // "Each bitstream must be read backward, that is starting from the end down
    // to the beginning. Therefore it's necessary to know the size of each
    // bitstream.
    //
    // It's also necessary to know exactly which bit is the latest. This is
    // detected by a final bit flag : the highest bit of latest byte is a
    // final-bit-flag. Consequently, a last byte of 0 is not possible. And the
    // final-bit-flag itself is not part of the useful bitstream. Hence, the
    // last byte contains between 0 and 7 useful bits."
    const int padding = 8 - highest_set_bit(src[len - 1]);
    i64 offset = len * 8 - padding;

    u16 state1, state2;
    // "The first state (State1) encodes the even indexed symbols, and the
    // second (State2) encodes the odd indexes. State1 is initialized first, and
    // then State2, and they take turns decoding a single symbol and updating
    // their state."
    FSE_init_state(dtable, &state1, src, &offset);
    FSE_init_state(dtable, &state2, src, &offset);

    // Decode until we overflow the stream
    // Since we decode in reverse order, overflowing the stream is offset going
    // negative
    size_t symbols_written = 0;
    while (1) {
        // "The number of symbols to decode is determined by tracking bitStream
        // overflow condition: If updating state after decoding a symbol would
        // require more bits than remain in the stream, it is assumed the extra
        // bits are 0. Then, the symbols for each of the final states are
        // decoded and the process is complete."
        IO_write_byte(out, FSE_decode_symbol(dtable, &state1, src, &offset));
        symbols_written++;
        if (offset < 0) {
            // There's still a symbol to decode in state2
            IO_write_byte(out, FSE_peek_symbol(dtable, state2));
            symbols_written++;
            break;
        }

        IO_write_byte(out, FSE_decode_symbol(dtable, &state2, src, &offset));
        symbols_written++;
        if (offset < 0) {
            // There's still a symbol to decode in state1
            IO_write_byte(out, FSE_peek_symbol(dtable, state1));
            symbols_written++;
            break;
        }
    }

    return symbols_written;
}

static void FSE_init_dtable(FSE_dtable *const dtable,
                            const i16 *const norm_freqs, const int num_symbs,
                            const int accuracy_log) {
    if (accuracy_log > FSE_MAX_ACCURACY_LOG) {
        ERROR("FSE accuracy too large");
    }
    if (num_symbs > FSE_MAX_SYMBS) {
        ERROR("Too many symbols for FSE");
    }

    dtable->accuracy_log = accuracy_log;

    const size_t size = (size_t)1 << accuracy_log;
    dtable->symbols = malloc(size * sizeof(u8));
    dtable->num_bits = malloc(size * sizeof(u8));
    dtable->new_state_base = malloc(size * sizeof(u16));

    if (!dtable->symbols || !dtable->num_bits || !dtable->new_state_base) {
        BAD_ALLOC();
    }

    // Used to determine how many bits need to be read for each state,
    // and where the destination range should start
    // Needs to be u16 because max value is 2 * max number of symbols,
    // which can be larger than a byte can store
    u16 state_desc[FSE_MAX_SYMBS];

    // "Symbols are scanned in their natural order for "less than 1"
    // probabilities. Symbols with this probability are being attributed a
    // single cell, starting from the end of the table. These symbols define a
    // full state reset, reading Accuracy_Log bits."
    int high_threshold = size;
    for (int s = 0; s < num_symbs; s++) {
        // Scan for low probability symbols to put at the top
        if (norm_freqs[s] == -1) {
            dtable->symbols[--high_threshold] = s;
            state_desc[s] = 1;
        }
    }

    // "All remaining symbols are sorted in their natural order. Starting from
    // symbol 0 and table position 0, each symbol gets attributed as many cells
    // as its probability. Cell allocation is spreaded, not linear."
    // Place the rest in the table
    const u16 step = (size >> 1) + (size >> 3) + 3;
    const u16 mask = size - 1;
    u16 pos = 0;
    for (int s = 0; s < num_symbs; s++) {
        if (norm_freqs[s] <= 0) {
            continue;
        }

        state_desc[s] = norm_freqs[s];

        for (int i = 0; i < norm_freqs[s]; i++) {
            // Give `norm_freqs[s]` states to symbol s
            dtable->symbols[pos] = s;
            // "A position is skipped if already occupied, typically by a "less
            // than 1" probability symbol."
            do {
                pos = (pos + step) & mask;
            } while (pos >=
                     high_threshold);
            // Note: no other collision checking is necessary as `step` is
            // coprime to `size`, so the cycle will visit each position exactly
            // once
        }
    }
    if (pos != 0) {
        CORRUPTION();
    }

    // Now we can fill baseline and num bits
    for (size_t i = 0; i < size; i++) {
        u8 symbol = dtable->symbols[i];
        u16 next_state_desc = state_desc[symbol]++;
        // Fills in the table appropriately, next_state_desc increases by symbol
        // over time, decreasing number of bits
        dtable->num_bits[i] = (u8)(accuracy_log - highest_set_bit(next_state_desc));
        // Baseline increases until the bit threshold is passed, at which point
        // it resets to 0
        dtable->new_state_base[i] =
            ((u16)next_state_desc << dtable->num_bits[i]) - size;
    }
}

/// Decode an FSE header as defined in the Zstandard format specification and
/// use the decoded frequencies to initialize a decoding table.
static void FSE_decode_header(FSE_dtable *const dtable, istream_t *const in,
                                const int max_accuracy_log) {
    // "An FSE distribution table describes the probabilities of all symbols
    // from 0 to the last present one (included) on a normalized scale of 1 <<
    // Accuracy_Log .
    //
    // It's a bitstream which is read forward, in little-endian fashion. It's
    // not necessary to know its exact size, since it will be discovered and
    // reported by the decoding process.
    if (max_accuracy_log > FSE_MAX_ACCURACY_LOG) {
        ERROR("FSE accuracy too large");
    }

    // The bitstream starts by reporting on which scale it operates.
    // Accuracy_Log = low4bits + 5. Note that maximum Accuracy_Log for literal
    // and match lengths is 9, and for offsets is 8. Higher values are
    // considered errors."
    const int accuracy_log = 5 + IO_read_bits(in, 4);
    if (accuracy_log > max_accuracy_log) {
        ERROR("FSE accuracy too large");
    }

    // "Then follows each symbol value, from 0 to last present one. The number
    // of bits used by each field is variable. It depends on :
    //
    // Remaining probabilities + 1 : example : Presuming an Accuracy_Log of 8,
    // and presuming 100 probabilities points have already been distributed, the
    // decoder may read any value from 0 to 255 - 100 + 1 == 156 (inclusive).
    // Therefore, it must read log2sup(156) == 8 bits.
    //
    // Value decoded : small values use 1 less bit : example : Presuming values
    // from 0 to 156 (inclusive) are possible, 255-156 = 99 values are remaining
    // in an 8-bits field. They are used this way : first 99 values (hence from
    // 0 to 98) use only 7 bits, values from 99 to 156 use 8 bits. "

    i32 remaining = 1 << accuracy_log;
    i16 frequencies[FSE_MAX_SYMBS];

    int symb = 0;
    while (remaining > 0 && symb < FSE_MAX_SYMBS) {
        // Log of the number of possible values we could read
        int bits = highest_set_bit(remaining + 1) + 1;

        u16 val = IO_read_bits(in, bits);

        // Try to mask out the lower bits to see if it qualifies for the "small
        // value" threshold
        const u16 lower_mask = ((u16)1 << (bits - 1)) - 1;
        const u16 threshold = ((u16)1 << bits) - 1 - (remaining + 1);

        if ((val & lower_mask) < threshold) {
            IO_rewind_bits(in, 1);
            val = val & lower_mask;
        } else if (val > lower_mask) {
            val = val - threshold;
        }

        // "Probability is obtained from Value decoded by following formula :
        // Proba = value - 1"
        const i16 proba = (i16)val - 1;

        // "It means value 0 becomes negative probability -1. -1 is a special
        // probability, which means "less than 1". Its effect on distribution
        // table is described in next paragraph. For the purpose of calculating
        // cumulated distribution, it counts as one."
        remaining -= proba < 0 ? -proba : proba;

        frequencies[symb] = proba;
        symb++;

        // "When a symbol has a probability of zero, it is followed by a 2-bits
        // repeat flag. This repeat flag tells how many probabilities of zeroes
        // follow the current one. It provides a number ranging from 0 to 3. If
        // it is a 3, another 2-bits repeat flag follows, and so on."
        if (proba == 0) {
            // Read the next two bits to see how many more 0s
            int repeat = IO_read_bits(in, 2);

            while (1) {
                for (int i = 0; i < repeat && symb < FSE_MAX_SYMBS; i++) {
                    frequencies[symb++] = 0;
                }
                if (repeat == 3) {
                    repeat = IO_read_bits(in, 2);
                } else {
                    break;
                }
            }
        }
    }
    IO_align_stream(in);

    // "When last symbol reaches cumulated total of 1 << Accuracy_Log, decoding
    // is complete. If the last symbol makes cumulated total go above 1 <<
    // Accuracy_Log, distribution is considered corrupted."
    if (remaining != 0 || symb >= FSE_MAX_SYMBS) {
        CORRUPTION();
    }

    // Initialize the decoding table using the determined weights
    FSE_init_dtable(dtable, frequencies, symb, accuracy_log);
}

static void FSE_init_dtable_rle(FSE_dtable *const dtable, const u8 symb) {
    dtable->symbols = malloc(sizeof(u8));
    dtable->num_bits = malloc(sizeof(u8));
    dtable->new_state_base = malloc(sizeof(u16));

    if (!dtable->symbols || !dtable->num_bits || !dtable->new_state_base) {
        BAD_ALLOC();
    }

    // This setup will always have a state of 0, always return symbol `symb`,
    // and never consume any bits
    dtable->symbols[0] = symb;
    dtable->num_bits[0] = 0;
    dtable->new_state_base[0] = 0;
    dtable->accuracy_log = 0;
}

static void FSE_free_dtable(FSE_dtable *const dtable) {
    free(dtable->symbols);
    free(dtable->num_bits);
    free(dtable->new_state_base);
    memset(dtable, 0, sizeof(FSE_dtable));
}

static void FSE_copy_dtable(FSE_dtable *const dst, const FSE_dtable *const src) {
    if (src->accuracy_log == 0) {
        memset(dst, 0, sizeof(FSE_dtable));
        return;
    }

    size_t size = (size_t)1 << src->accuracy_log;
    dst->accuracy_log = src->accuracy_log;

    dst->symbols = malloc(size);
    dst->num_bits = malloc(size);
    dst->new_state_base = malloc(size * sizeof(u16));
    if (!dst->symbols || !dst->num_bits || !dst->new_state_base) {
        BAD_ALLOC();
    }

    memcpy(dst->symbols, src->symbols, size);
    memcpy(dst->num_bits, src->num_bits, size);
    memcpy(dst->new_state_base, src->new_state_base, size * sizeof(u16));
}
/******* END FSE PRIMITIVES ***************************************************/