aboutsummaryrefslogtreecommitdiff
path: root/docs/CodeGenerator.html
blob: 9d0370fd3cc87f6249261bc8eb2dbcb23bc32a80 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
                      "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
  <meta http-equiv="content-type" content="text/html; charset=utf-8">
  <title>The LLVM Target-Independent Code Generator</title>
  <link rel="stylesheet" href="llvm.css" type="text/css">

  <style type="text/css">
    .unknown { background-color: #C0C0C0; text-align: center; }
    .unknown:before { content: "?" }
    .no { background-color: #C11B17 }
    .no:before { content: "N" }
    .partial { background-color: #F88017 }
    .yes { background-color: #0F0; }
    .yes:before { content: "Y" }
  </style>

</head>
<body>

<h1>
  The LLVM Target-Independent Code Generator
</h1>

<ol>
  <li><a href="#introduction">Introduction</a>
    <ul>
      <li><a href="#required">Required components in the code generator</a></li>
      <li><a href="#high-level-design">The high-level design of the code
          generator</a></li>
      <li><a href="#tablegen">Using TableGen for target description</a></li>
    </ul>
  </li>
  <li><a href="#targetdesc">Target description classes</a>
    <ul>
      <li><a href="#targetmachine">The <tt>TargetMachine</tt> class</a></li>
      <li><a href="#targetdata">The <tt>TargetData</tt> class</a></li>
      <li><a href="#targetlowering">The <tt>TargetLowering</tt> class</a></li>
      <li><a href="#targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a></li>
      <li><a href="#targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li>
      <li><a href="#targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li>
      <li><a href="#targetsubtarget">The <tt>TargetSubtarget</tt> class</a></li>
      <li><a href="#targetjitinfo">The <tt>TargetJITInfo</tt> class</a></li>
    </ul>
  </li>
  <li><a href="#codegendesc">The "Machine" Code Generator classes</a>
    <ul>
    <li><a href="#machineinstr">The <tt>MachineInstr</tt> class</a></li>
    <li><a href="#machinebasicblock">The <tt>MachineBasicBlock</tt>
                                     class</a></li>
    <li><a href="#machinefunction">The <tt>MachineFunction</tt> class</a></li>
    </ul>
  </li>
  <li><a href="#mc">The "MC" Layer</a>
    <ul>
    <li><a href="#mcstreamer">The <tt>MCStreamer</tt> API</a></li>
    <li><a href="#mccontext">The <tt>MCContext</tt> class</a>
    <li><a href="#mcsymbol">The <tt>MCSymbol</tt> class</a></li>
    <li><a href="#mcsection">The <tt>MCSection</tt> class</a></li>
    <li><a href="#mcinst">The <tt>MCInst</tt> class</a></li>
    </ul>
  </li>
  <li><a href="#codegenalgs">Target-independent code generation algorithms</a>
    <ul>
    <li><a href="#instselect">Instruction Selection</a>
      <ul>
      <li><a href="#selectiondag_intro">Introduction to SelectionDAGs</a></li>
      <li><a href="#selectiondag_process">SelectionDAG Code Generation
                                          Process</a></li>
      <li><a href="#selectiondag_build">Initial SelectionDAG
                                        Construction</a></li>
      <li><a href="#selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a></li>
      <li><a href="#selectiondag_legalize">SelectionDAG Legalize Phase</a></li>
      <li><a href="#selectiondag_optimize">SelectionDAG Optimization
                                           Phase: the DAG Combiner</a></li>
      <li><a href="#selectiondag_select">SelectionDAG Select Phase</a></li>
      <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation
                                        Phase</a></li>
      <li><a href="#selectiondag_future">Future directions for the
                                         SelectionDAG</a></li>
      </ul></li>
     <li><a href="#liveintervals">Live Intervals</a>
       <ul>
       <li><a href="#livevariable_analysis">Live Variable Analysis</a></li>
       <li><a href="#liveintervals_analysis">Live Intervals Analysis</a></li>
       </ul></li>
    <li><a href="#regalloc">Register Allocation</a>
      <ul>
      <li><a href="#regAlloc_represent">How registers are represented in
                                        LLVM</a></li>
      <li><a href="#regAlloc_howTo">Mapping virtual registers to physical
                                    registers</a></li>
      <li><a href="#regAlloc_twoAddr">Handling two address instructions</a></li>
      <li><a href="#regAlloc_ssaDecon">The SSA deconstruction phase</a></li>
      <li><a href="#regAlloc_fold">Instruction folding</a></li>
      <li><a href="#regAlloc_builtIn">Built in register allocators</a></li>
      </ul></li>
    <li><a href="#codeemit">Code Emission</a></li>
    </ul>
  </li>
  <li><a href="#nativeassembler">Implementing a Native Assembler</a></li>
  
  <li><a href="#targetimpls">Target-specific Implementation Notes</a>
    <ul>
    <li><a href="#targetfeatures">Target Feature Matrix</a></li>
    <li><a href="#tailcallopt">Tail call optimization</a></li>
    <li><a href="#sibcallopt">Sibling call optimization</a></li>
    <li><a href="#x86">The X86 backend</a></li>
    <li><a href="#ppc">The PowerPC backend</a>
      <ul>
      <li><a href="#ppc_abi">LLVM PowerPC ABI</a></li>
      <li><a href="#ppc_frame">Frame Layout</a></li>
      <li><a href="#ppc_prolog">Prolog/Epilog</a></li>
      <li><a href="#ppc_dynamic">Dynamic Allocation</a></li>
      </ul></li>
    <li><a href="#ptx">The PTX backend</a></li>
    </ul></li>

</ol>

<div class="doc_author">
  <p>Written by the LLVM Team.</p>
</div>

<div class="doc_warning">
  <p>Warning: This is a work in progress.</p>
</div>

<!-- *********************************************************************** -->
<h2>
  <a name="introduction">Introduction</a>
</h2>
<!-- *********************************************************************** -->

<div>

<p>The LLVM target-independent code generator is a framework that provides a
   suite of reusable components for translating the LLVM internal representation
   to the machine code for a specified target&mdash;either in assembly form
   (suitable for a static compiler) or in binary machine code format (usable for
   a JIT compiler). The LLVM target-independent code generator consists of six
   main components:</p>

<ol>
  <li><a href="#targetdesc">Abstract target description</a> interfaces which
      capture important properties about various aspects of the machine,
      independently of how they will be used.  These interfaces are defined in
      <tt>include/llvm/Target/</tt>.</li>

  <li>Classes used to represent the <a href="#codegendesc">code being
      generated</a> for a target.  These classes are intended to be abstract
      enough to represent the machine code for <i>any</i> target machine.  These
      classes are defined in <tt>include/llvm/CodeGen/</tt>. At this level,
      concepts like "constant pool entries" and "jump tables" are explicitly
      exposed.</li>

  <li>Classes and algorithms used to represent code as the object file level,
      the <a href="#mc">MC Layer</a>.  These classes represent assembly level
      constructs like labels, sections, and instructions.  At this level,
      concepts like "constant pool entries" and "jump tables" don't exist.</li>

  <li><a href="#codegenalgs">Target-independent algorithms</a> used to implement
      various phases of native code generation (register allocation, scheduling,
      stack frame representation, etc).  This code lives
      in <tt>lib/CodeGen/</tt>.</li>

  <li><a href="#targetimpls">Implementations of the abstract target description
      interfaces</a> for particular targets.  These machine descriptions make
      use of the components provided by LLVM, and can optionally provide custom
      target-specific passes, to build complete code generators for a specific
      target.  Target descriptions live in <tt>lib/Target/</tt>.</li>

  <li><a href="#jit">The target-independent JIT components</a>.  The LLVM JIT is
      completely target independent (it uses the <tt>TargetJITInfo</tt>
      structure to interface for target-specific issues.  The code for the
      target-independent JIT lives in <tt>lib/ExecutionEngine/JIT</tt>.</li>
</ol>

<p>Depending on which part of the code generator you are interested in working
   on, different pieces of this will be useful to you.  In any case, you should
   be familiar with the <a href="#targetdesc">target description</a>
   and <a href="#codegendesc">machine code representation</a> classes.  If you
   want to add a backend for a new target, you will need
   to <a href="#targetimpls">implement the target description</a> classes for
   your new target and understand the <a href="LangRef.html">LLVM code
   representation</a>.  If you are interested in implementing a
   new <a href="#codegenalgs">code generation algorithm</a>, it should only
   depend on the target-description and machine code representation classes,
   ensuring that it is portable.</p>

<!-- ======================================================================= -->
<h3>
 <a name="required">Required components in the code generator</a>
</h3>

<div>

<p>The two pieces of the LLVM code generator are the high-level interface to the
   code generator and the set of reusable components that can be used to build
   target-specific backends.  The two most important interfaces
   (<a href="#targetmachine"><tt>TargetMachine</tt></a>
   and <a href="#targetdata"><tt>TargetData</tt></a>) are the only ones that are
   required to be defined for a backend to fit into the LLVM system, but the
   others must be defined if the reusable code generator components are going to
   be used.</p>

<p>This design has two important implications.  The first is that LLVM can
   support completely non-traditional code generation targets.  For example, the
   C backend does not require register allocation, instruction selection, or any
   of the other standard components provided by the system.  As such, it only
   implements these two interfaces, and does its own thing.  Another example of
   a code generator like this is a (purely hypothetical) backend that converts
   LLVM to the GCC RTL form and uses GCC to emit machine code for a target.</p>

<p>This design also implies that it is possible to design and implement
   radically different code generators in the LLVM system that do not make use
   of any of the built-in components.  Doing so is not recommended at all, but
   could be required for radically different targets that do not fit into the
   LLVM machine description model: FPGAs for example.</p>

</div>

<!-- ======================================================================= -->
<h3>
 <a name="high-level-design">The high-level design of the code generator</a>
</h3>

<div>

<p>The LLVM target-independent code generator is designed to support efficient
   and quality code generation for standard register-based microprocessors.
   Code generation in this model is divided into the following stages:</p>

<ol>
  <li><b><a href="#instselect">Instruction Selection</a></b> &mdash; This phase
      determines an efficient way to express the input LLVM code in the target
      instruction set.  This stage produces the initial code for the program in
      the target instruction set, then makes use of virtual registers in SSA
      form and physical registers that represent any required register
      assignments due to target constraints or calling conventions.  This step
      turns the LLVM code into a DAG of target instructions.</li>

  <li><b><a href="#selectiondag_sched">Scheduling and Formation</a></b> &mdash;
      This phase takes the DAG of target instructions produced by the
      instruction selection phase, determines an ordering of the instructions,
      then emits the instructions
      as <tt><a href="#machineinstr">MachineInstr</a></tt>s with that ordering.
      Note that we describe this in the <a href="#instselect">instruction
      selection section</a> because it operates on
      a <a href="#selectiondag_intro">SelectionDAG</a>.</li>

  <li><b><a href="#ssamco">SSA-based Machine Code Optimizations</a></b> &mdash;
      This optional stage consists of a series of machine-code optimizations
      that operate on the SSA-form produced by the instruction selector.
      Optimizations like modulo-scheduling or peephole optimization work
      here.</li>

  <li><b><a href="#regalloc">Register Allocation</a></b> &mdash; The target code
      is transformed from an infinite virtual register file in SSA form to the
      concrete register file used by the target.  This phase introduces spill
      code and eliminates all virtual register references from the program.</li>

  <li><b><a href="#proepicode">Prolog/Epilog Code Insertion</a></b> &mdash; Once
      the machine code has been generated for the function and the amount of
      stack space required is known (used for LLVM alloca's and spill slots),
      the prolog and epilog code for the function can be inserted and "abstract
      stack location references" can be eliminated.  This stage is responsible
      for implementing optimizations like frame-pointer elimination and stack
      packing.</li>

  <li><b><a href="#latemco">Late Machine Code Optimizations</a></b> &mdash;
      Optimizations that operate on "final" machine code can go here, such as
      spill code scheduling and peephole optimizations.</li>

  <li><b><a href="#codeemit">Code Emission</a></b> &mdash; The final stage
      actually puts out the code for the current function, either in the target
      assembler format or in machine code.</li>
</ol>

<p>The code generator is based on the assumption that the instruction selector
   will use an optimal pattern matching selector to create high-quality
   sequences of native instructions.  Alternative code generator designs based
   on pattern expansion and aggressive iterative peephole optimization are much
   slower.  This design permits efficient compilation (important for JIT
   environments) and aggressive optimization (used when generating code offline)
   by allowing components of varying levels of sophistication to be used for any
   step of compilation.</p>

<p>In addition to these stages, target implementations can insert arbitrary
   target-specific passes into the flow.  For example, the X86 target uses a
   special pass to handle the 80x87 floating point stack architecture.  Other
   targets with unusual requirements can be supported with custom passes as
   needed.</p>

</div>

<!-- ======================================================================= -->
<h3>
 <a name="tablegen">Using TableGen for target description</a>
</h3>

<div>

<p>The target description classes require a detailed description of the target
   architecture.  These target descriptions often have a large amount of common
   information (e.g., an <tt>add</tt> instruction is almost identical to a
   <tt>sub</tt> instruction).  In order to allow the maximum amount of
   commonality to be factored out, the LLVM code generator uses
   the <a href="TableGenFundamentals.html">TableGen</a> tool to describe big
   chunks of the target machine, which allows the use of domain-specific and
   target-specific abstractions to reduce the amount of repetition.</p>

<p>As LLVM continues to be developed and refined, we plan to move more and more
   of the target description to the <tt>.td</tt> form.  Doing so gives us a
   number of advantages.  The most important is that it makes it easier to port
   LLVM because it reduces the amount of C++ code that has to be written, and
   the surface area of the code generator that needs to be understood before
   someone can get something working.  Second, it makes it easier to change
   things. In particular, if tables and other things are all emitted
   by <tt>tblgen</tt>, we only need a change in one place (<tt>tblgen</tt>) to
   update all of the targets to a new interface.</p>

</div>

</div>

<!-- *********************************************************************** -->
<h2>
  <a name="targetdesc">Target description classes</a>
</h2>
<!-- *********************************************************************** -->

<div>

<p>The LLVM target description classes (located in the
   <tt>include/llvm/Target</tt> directory) provide an abstract description of
   the target machine independent of any particular client.  These classes are
   designed to capture the <i>abstract</i> properties of the target (such as the
   instructions and registers it has), and do not incorporate any particular
   pieces of code generation algorithms.</p>

<p>All of the target description classes (except the
   <tt><a href="#targetdata">TargetData</a></tt> class) are designed to be
   subclassed by the concrete target implementation, and have virtual methods
   implemented.  To get to these implementations, the
   <tt><a href="#targetmachine">TargetMachine</a></tt> class provides accessors
   that should be implemented by the target.</p>

<!-- ======================================================================= -->
<h3>
  <a name="targetmachine">The <tt>TargetMachine</tt> class</a>
</h3>

<div>

<p>The <tt>TargetMachine</tt> class provides virtual methods that are used to
   access the target-specific implementations of the various target description
   classes via the <tt>get*Info</tt> methods (<tt>getInstrInfo</tt>,
   <tt>getRegisterInfo</tt>, <tt>getFrameInfo</tt>, etc.).  This class is
   designed to be specialized by a concrete target implementation
   (e.g., <tt>X86TargetMachine</tt>) which implements the various virtual
   methods.  The only required target description class is
   the <a href="#targetdata"><tt>TargetData</tt></a> class, but if the code
   generator components are to be used, the other interfaces should be
   implemented as well.</p>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="targetdata">The <tt>TargetData</tt> class</a>
</h3>

<div>

<p>The <tt>TargetData</tt> class is the only required target description class,
   and it is the only class that is not extensible (you cannot derived a new
   class from it).  <tt>TargetData</tt> specifies information about how the
   target lays out memory for structures, the alignment requirements for various
   data types, the size of pointers in the target, and whether the target is
   little-endian or big-endian.</p>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="targetlowering">The <tt>TargetLowering</tt> class</a>
</h3>

<div>

<p>The <tt>TargetLowering</tt> class is used by SelectionDAG based instruction
   selectors primarily to describe how LLVM code should be lowered to
   SelectionDAG operations.  Among other things, this class indicates:</p>

<ul>
  <li>an initial register class to use for various <tt>ValueType</tt>s,</li>

  <li>which operations are natively supported by the target machine,</li>

  <li>the return type of <tt>setcc</tt> operations,</li>

  <li>the type to use for shift amounts, and</li>

  <li>various high-level characteristics, like whether it is profitable to turn
      division by a constant into a multiplication sequence</li>
</ul>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a>
</h3>

<div>

<p>The <tt>TargetRegisterInfo</tt> class is used to describe the register file
   of the target and any interactions between the registers.</p>

<p>Registers in the code generator are represented in the code generator by
   unsigned integers.  Physical registers (those that actually exist in the
   target description) are unique small numbers, and virtual registers are
   generally large.  Note that register #0 is reserved as a flag value.</p>

<p>Each register in the processor description has an associated
   <tt>TargetRegisterDesc</tt> entry, which provides a textual name for the
   register (used for assembly output and debugging dumps) and a set of aliases
   (used to indicate whether one register overlaps with another).</p>

<p>In addition to the per-register description, the <tt>TargetRegisterInfo</tt>
   class exposes a set of processor specific register classes (instances of the
   <tt>TargetRegisterClass</tt> class).  Each register class contains sets of
   registers that have the same properties (for example, they are all 32-bit
   integer registers).  Each SSA virtual register created by the instruction
   selector has an associated register class.  When the register allocator runs,
   it replaces virtual registers with a physical register in the set.</p>

<p>The target-specific implementations of these classes is auto-generated from
   a <a href="TableGenFundamentals.html">TableGen</a> description of the
   register file.</p>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a>
</h3>

<div>

<p>The <tt>TargetInstrInfo</tt> class is used to describe the machine
   instructions supported by the target. It is essentially an array of
   <tt>TargetInstrDescriptor</tt> objects, each of which describes one
   instruction the target supports. Descriptors define things like the mnemonic
   for the opcode, the number of operands, the list of implicit register uses
   and defs, whether the instruction has certain target-independent properties
   (accesses memory, is commutable, etc), and holds any target-specific
   flags.</p>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="targetframeinfo">The <tt>TargetFrameInfo</tt> class</a>
</h3>

<div>

<p>The <tt>TargetFrameInfo</tt> class is used to provide information about the
   stack frame layout of the target. It holds the direction of stack growth, the
   known stack alignment on entry to each function, and the offset to the local
   area.  The offset to the local area is the offset from the stack pointer on
   function entry to the first location where function data (local variables,
   spill locations) can be stored.</p>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="targetsubtarget">The <tt>TargetSubtarget</tt> class</a>
</h3>

<div>

<p>The <tt>TargetSubtarget</tt> class is used to provide information about the
   specific chip set being targeted.  A sub-target informs code generation of
   which instructions are supported, instruction latencies and instruction
   execution itinerary; i.e., which processing units are used, in what order,
   and for how long.</p>

</div>


<!-- ======================================================================= -->
<h3>
  <a name="targetjitinfo">The <tt>TargetJITInfo</tt> class</a>
</h3>

<div>

<p>The <tt>TargetJITInfo</tt> class exposes an abstract interface used by the
   Just-In-Time code generator to perform target-specific activities, such as
   emitting stubs.  If a <tt>TargetMachine</tt> supports JIT code generation, it
   should provide one of these objects through the <tt>getJITInfo</tt>
   method.</p>

</div>

</div>

<!-- *********************************************************************** -->
<h2>
  <a name="codegendesc">Machine code description classes</a>
</h2>
<!-- *********************************************************************** -->

<div>

<p>At the high-level, LLVM code is translated to a machine specific
   representation formed out of
   <a href="#machinefunction"><tt>MachineFunction</tt></a>,
   <a href="#machinebasicblock"><tt>MachineBasicBlock</tt></a>,
   and <a href="#machineinstr"><tt>MachineInstr</tt></a> instances (defined
   in <tt>include/llvm/CodeGen</tt>).  This representation is completely target
   agnostic, representing instructions in their most abstract form: an opcode
   and a series of operands.  This representation is designed to support both an
   SSA representation for machine code, as well as a register allocated, non-SSA
   form.</p>

<!-- ======================================================================= -->
<h3>
  <a name="machineinstr">The <tt>MachineInstr</tt> class</a>
</h3>

<div>

<p>Target machine instructions are represented as instances of the
   <tt>MachineInstr</tt> class.  This class is an extremely abstract way of
   representing machine instructions.  In particular, it only keeps track of an
   opcode number and a set of operands.</p>

<p>The opcode number is a simple unsigned integer that only has meaning to a
   specific backend.  All of the instructions for a target should be defined in
   the <tt>*InstrInfo.td</tt> file for the target. The opcode enum values are
   auto-generated from this description.  The <tt>MachineInstr</tt> class does
   not have any information about how to interpret the instruction (i.e., what
   the semantics of the instruction are); for that you must refer to the
   <tt><a href="#targetinstrinfo">TargetInstrInfo</a></tt> class.</p> 

<p>The operands of a machine instruction can be of several different types: a
   register reference, a constant integer, a basic block reference, etc.  In
   addition, a machine operand should be marked as a def or a use of the value
   (though only registers are allowed to be defs).</p>

<p>By convention, the LLVM code generator orders instruction operands so that
   all register definitions come before the register uses, even on architectures
   that are normally printed in other orders.  For example, the SPARC add
   instruction: "<tt>add %i1, %i2, %i3</tt>" adds the "%i1", and "%i2" registers
   and stores the result into the "%i3" register.  In the LLVM code generator,
   the operands should be stored as "<tt>%i3, %i1, %i2</tt>": with the
   destination first.</p>

<p>Keeping destination (definition) operands at the beginning of the operand
   list has several advantages.  In particular, the debugging printer will print
   the instruction like this:</p>

<div class="doc_code">
<pre>
%r3 = add %i1, %i2
</pre>
</div>

<p>Also if the first operand is a def, it is easier to <a href="#buildmi">create
   instructions</a> whose only def is the first operand.</p>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="buildmi">Using the <tt>MachineInstrBuilder.h</tt> functions</a>
</h4>

<div>

<p>Machine instructions are created by using the <tt>BuildMI</tt> functions,
   located in the <tt>include/llvm/CodeGen/MachineInstrBuilder.h</tt> file.  The
   <tt>BuildMI</tt> functions make it easy to build arbitrary machine
   instructions.  Usage of the <tt>BuildMI</tt> functions look like this:</p>

<div class="doc_code">
<pre>
// Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42')
// instruction.  The '1' specifies how many operands will be added.
MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42);

// Create the same instr, but insert it at the end of a basic block.
MachineBasicBlock &amp;MBB = ...
BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42);

// Create the same instr, but insert it before a specified iterator point.
MachineBasicBlock::iterator MBBI = ...
BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42);

// Create a 'cmp Reg, 0' instruction, no destination reg.
MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0);
// Create an 'sahf' instruction which takes no operands and stores nothing.
MI = BuildMI(X86::SAHF, 0);

// Create a self looping branch instruction.
BuildMI(MBB, X86::JNE, 1).addMBB(&amp;MBB);
</pre>
</div>

<p>The key thing to remember with the <tt>BuildMI</tt> functions is that you
   have to specify the number of operands that the machine instruction will
   take.  This allows for efficient memory allocation.  You also need to specify
   if operands default to be uses of values, not definitions.  If you need to
   add a definition operand (other than the optional destination register), you
   must explicitly mark it as such:</p>

<div class="doc_code">
<pre>
MI.addReg(Reg, RegState::Define);
</pre>
</div>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="fixedregs">Fixed (preassigned) registers</a>
</h4>

<div>

<p>One important issue that the code generator needs to be aware of is the
   presence of fixed registers.  In particular, there are often places in the
   instruction stream where the register allocator <em>must</em> arrange for a
   particular value to be in a particular register.  This can occur due to
   limitations of the instruction set (e.g., the X86 can only do a 32-bit divide
   with the <tt>EAX</tt>/<tt>EDX</tt> registers), or external factors like
   calling conventions.  In any case, the instruction selector should emit code
   that copies a virtual register into or out of a physical register when
   needed.</p>

<p>For example, consider this simple LLVM example:</p>

<div class="doc_code">
<pre>
define i32 @test(i32 %X, i32 %Y) {
  %Z = udiv i32 %X, %Y
  ret i32 %Z
}
</pre>
</div>

<p>The X86 instruction selector produces this machine code for the <tt>div</tt>
   and <tt>ret</tt> (use "<tt>llc X.bc -march=x86 -print-machineinstrs</tt>" to
   get this):</p>

<div class="doc_code">
<pre>
;; Start of div
%EAX = mov %reg1024           ;; Copy X (in reg1024) into EAX
%reg1027 = sar %reg1024, 31
%EDX = mov %reg1027           ;; Sign extend X into EDX
idiv %reg1025                 ;; Divide by Y (in reg1025)
%reg1026 = mov %EAX           ;; Read the result (Z) out of EAX

;; Start of ret
%EAX = mov %reg1026           ;; 32-bit return value goes in EAX
ret
</pre>
</div>

<p>By the end of code generation, the register allocator has coalesced the
   registers and deleted the resultant identity moves producing the following
   code:</p>

<div class="doc_code">
<pre>
;; X is in EAX, Y is in ECX
mov %EAX, %EDX
sar %EDX, 31
idiv %ECX
ret 
</pre>
</div>

<p>This approach is extremely general (if it can handle the X86 architecture, it
   can handle anything!) and allows all of the target specific knowledge about
   the instruction stream to be isolated in the instruction selector.  Note that
   physical registers should have a short lifetime for good code generation, and
   all physical registers are assumed dead on entry to and exit from basic
   blocks (before register allocation).  Thus, if you need a value to be live
   across basic block boundaries, it <em>must</em> live in a virtual
   register.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="ssa">Machine code in SSA form</a>
</h4>

<div>

<p><tt>MachineInstr</tt>'s are initially selected in SSA-form, and are
   maintained in SSA-form until register allocation happens.  For the most part,
   this is trivially simple since LLVM is already in SSA form; LLVM PHI nodes
   become machine code PHI nodes, and virtual registers are only allowed to have
   a single definition.</p>

<p>After register allocation, machine code is no longer in SSA-form because
   there are no virtual registers left in the code.</p>

</div>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="machinebasicblock">The <tt>MachineBasicBlock</tt> class</a>
</h3>

<div>

<p>The <tt>MachineBasicBlock</tt> class contains a list of machine instructions
   (<tt><a href="#machineinstr">MachineInstr</a></tt> instances).  It roughly
   corresponds to the LLVM code input to the instruction selector, but there can
   be a one-to-many mapping (i.e. one LLVM basic block can map to multiple
   machine basic blocks). The <tt>MachineBasicBlock</tt> class has a
   "<tt>getBasicBlock</tt>" method, which returns the LLVM basic block that it
   comes from.</p>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="machinefunction">The <tt>MachineFunction</tt> class</a>
</h3>

<div>

<p>The <tt>MachineFunction</tt> class contains a list of machine basic blocks
   (<tt><a href="#machinebasicblock">MachineBasicBlock</a></tt> instances).  It
   corresponds one-to-one with the LLVM function input to the instruction
   selector.  In addition to a list of basic blocks,
   the <tt>MachineFunction</tt> contains a a <tt>MachineConstantPool</tt>,
   a <tt>MachineFrameInfo</tt>, a <tt>MachineFunctionInfo</tt>, and a
   <tt>MachineRegisterInfo</tt>.  See
   <tt>include/llvm/CodeGen/MachineFunction.h</tt> for more information.</p>

</div>

</div>

<!-- *********************************************************************** -->
<h2>
  <a name="mc">The "MC" Layer</a>
</h2>
<!-- *********************************************************************** -->

<div>

<p>
The MC Layer is used to represent and process code at the raw machine code
level, devoid of "high level" information like "constant pools", "jump tables",
"global variables" or anything like that.  At this level, LLVM handles things
like label names, machine instructions, and sections in the object file.  The
code in this layer is used for a number of important purposes: the tail end of
the code generator uses it to write a .s or .o file, and it is also used by the
llvm-mc tool to implement standalone machine code assemblers and disassemblers.
</p>

<p>
This section describes some of the important classes.  There are also a number
of important subsystems that interact at this layer, they are described later
in this manual.
</p>

<!-- ======================================================================= -->
<h3>
  <a name="mcstreamer">The <tt>MCStreamer</tt> API</a>
</h3>

<div>

<p>
MCStreamer is best thought of as an assembler API.  It is an abstract API which
is <em>implemented</em> in different ways (e.g. to output a .s file, output an
ELF .o file, etc) but whose API correspond directly to what you see in a .s
file.  MCStreamer has one method per directive, such as EmitLabel,
EmitSymbolAttribute, SwitchSection, EmitValue (for .byte, .word), etc, which
directly correspond to assembly level directives.  It also has an
EmitInstruction method, which is used to output an MCInst to the streamer.
</p>

<p>
This API is most important for two clients: the llvm-mc stand-alone assembler is
effectively a parser that parses a line, then invokes a method on MCStreamer. In
the code generator, the <a href="#codeemit">Code Emission</a> phase of the code
generator lowers higher level LLVM IR and Machine* constructs down to the MC
layer, emitting directives through MCStreamer.</p>

<p>
On the implementation side of MCStreamer, there are two major implementations:
one for writing out a .s file (MCAsmStreamer), and one for writing out a .o
file (MCObjectStreamer).  MCAsmStreamer is a straight-forward implementation
that prints out a directive for each method (e.g. EmitValue -&gt; .byte), but
MCObjectStreamer implements a full assembler.
</p>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="mccontext">The <tt>MCContext</tt> class</a>
</h3>

<div>

<p>
The MCContext class is the owner of a variety of uniqued data structures at the
MC layer, including symbols, sections, etc.  As such, this is the class that you
interact with to create symbols and sections.  This class can not be subclassed.
</p>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="mcsymbol">The <tt>MCSymbol</tt> class</a>
</h3>

<div>

<p>
The MCSymbol class represents a symbol (aka label) in the assembly file.  There
are two interesting kinds of symbols: assembler temporary symbols, and normal
symbols.  Assembler temporary symbols are used and processed by the assembler
but are discarded when the object file is produced.  The distinction is usually
represented by adding a prefix to the label, for example "L" labels are
assembler temporary labels in MachO.
</p>

<p>MCSymbols are created by MCContext and uniqued there.  This means that
MCSymbols can be compared for pointer equivalence to find out if they are the
same symbol.  Note that pointer inequality does not guarantee the labels will
end up at different addresses though.  It's perfectly legal to output something
like this to the .s file:<p>

<pre>
  foo:
  bar:
    .byte 4
</pre>

<p>In this case, both the foo and bar symbols will have the same address.</p>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="mcsection">The <tt>MCSection</tt> class</a>
</h3>

<div>

<p>
The MCSection class represents an object-file specific section. It is subclassed
by object file specific implementations (e.g. <tt>MCSectionMachO</tt>, 
<tt>MCSectionCOFF</tt>, <tt>MCSectionELF</tt>) and these are created and uniqued
by MCContext.  The MCStreamer has a notion of the current section, which can be
changed with the SwitchToSection method (which corresponds to a ".section"
directive in a .s file).
</p>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="mcinst">The <tt>MCInst</tt> class</a>
</h3>

<div>

<p>
The MCInst class is a target-independent representation of an instruction.  It
is a simple class (much more so than <a href="#machineinstr">MachineInstr</a>)
that holds a target-specific opcode and a vector of MCOperands.  MCOperand, in
turn, is a simple discriminated union of three cases: 1) a simple immediate, 
2) a target register ID, 3) a symbolic expression (e.g. "Lfoo-Lbar+42") as an
MCExpr.
</p>

<p>MCInst is the common currency used to represent machine instructions at the
MC layer.  It is the type used by the instruction encoder, the instruction
printer, and the type generated by the assembly parser and disassembler.
</p>

</div>

</div>

<!-- *********************************************************************** -->
<h2>
  <a name="codegenalgs">Target-independent code generation algorithms</a>
</h2>
<!-- *********************************************************************** -->

<div>

<p>This section documents the phases described in the
   <a href="#high-level-design">high-level design of the code generator</a>.
   It explains how they work and some of the rationale behind their design.</p>

<!-- ======================================================================= -->
<h3>
  <a name="instselect">Instruction Selection</a>
</h3>

<div>

<p>Instruction Selection is the process of translating LLVM code presented to
   the code generator into target-specific machine instructions.  There are
   several well-known ways to do this in the literature.  LLVM uses a
   SelectionDAG based instruction selector.</p>

<p>Portions of the DAG instruction selector are generated from the target
   description (<tt>*.td</tt>) files.  Our goal is for the entire instruction
   selector to be generated from these <tt>.td</tt> files, though currently
   there are still things that require custom C++ code.</p>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="selectiondag_intro">Introduction to SelectionDAGs</a>
</h4>

<div>

<p>The SelectionDAG provides an abstraction for code representation in a way
   that is amenable to instruction selection using automatic techniques
   (e.g. dynamic-programming based optimal pattern matching selectors). It is
   also well-suited to other phases of code generation; in particular,
   instruction scheduling (SelectionDAG's are very close to scheduling DAGs
   post-selection).  Additionally, the SelectionDAG provides a host
   representation where a large variety of very-low-level (but
   target-independent) <a href="#selectiondag_optimize">optimizations</a> may be
   performed; ones which require extensive information about the instructions
   efficiently supported by the target.</p>

<p>The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the
   <tt>SDNode</tt> class.  The primary payload of the <tt>SDNode</tt> is its
   operation code (Opcode) that indicates what operation the node performs and
   the operands to the operation.  The various operation node types are
   described at the top of the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>
   file.</p>

<p>Although most operations define a single value, each node in the graph may
   define multiple values.  For example, a combined div/rem operation will
   define both the dividend and the remainder. Many other situations require
   multiple values as well.  Each node also has some number of operands, which
   are edges to the node defining the used value.  Because nodes may define
   multiple values, edges are represented by instances of the <tt>SDValue</tt>
   class, which is a <tt>&lt;SDNode, unsigned&gt;</tt> pair, indicating the node
   and result value being used, respectively.  Each value produced by
   an <tt>SDNode</tt> has an associated <tt>MVT</tt> (Machine Value Type)
   indicating what the type of the value is.</p>

<p>SelectionDAGs contain two different kinds of values: those that represent
   data flow and those that represent control flow dependencies.  Data values
   are simple edges with an integer or floating point value type.  Control edges
   are represented as "chain" edges which are of type <tt>MVT::Other</tt>.
   These edges provide an ordering between nodes that have side effects (such as
   loads, stores, calls, returns, etc).  All nodes that have side effects should
   take a token chain as input and produce a new one as output.  By convention,
   token chain inputs are always operand #0, and chain results are always the
   last value produced by an operation.</p>

<p>A SelectionDAG has designated "Entry" and "Root" nodes.  The Entry node is
   always a marker node with an Opcode of <tt>ISD::EntryToken</tt>.  The Root
   node is the final side-effecting node in the token chain. For example, in a
   single basic block function it would be the return node.</p>

<p>One important concept for SelectionDAGs is the notion of a "legal" vs.
   "illegal" DAG.  A legal DAG for a target is one that only uses supported
   operations and supported types.  On a 32-bit PowerPC, for example, a DAG with
   a value of type i1, i8, i16, or i64 would be illegal, as would a DAG that
   uses a SREM or UREM operation.  The
   <a href="#selectinodag_legalize_types">legalize types</a> and
   <a href="#selectiondag_legalize">legalize operations</a> phases are
   responsible for turning an illegal DAG into a legal DAG.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="selectiondag_process">SelectionDAG Instruction Selection Process</a>
</h4>

<div>

<p>SelectionDAG-based instruction selection consists of the following steps:</p>

<ol>
  <li><a href="#selectiondag_build">Build initial DAG</a> &mdash; This stage
      performs a simple translation from the input LLVM code to an illegal
      SelectionDAG.</li>

  <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; This
      stage performs simple optimizations on the SelectionDAG to simplify it,
      and recognize meta instructions (like rotates
      and <tt>div</tt>/<tt>rem</tt> pairs) for targets that support these meta
      operations.  This makes the resultant code more efficient and
      the <a href="#selectiondag_select">select instructions from DAG</a> phase
      (below) simpler.</li>

  <li><a href="#selectiondag_legalize_types">Legalize SelectionDAG Types</a>
      &mdash; This stage transforms SelectionDAG nodes to eliminate any types
      that are unsupported on the target.</li>

  <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; The
      SelectionDAG optimizer is run to clean up redundancies exposed by type
      legalization.</li>

  <li><a href="#selectiondag_legalize">Legalize SelectionDAG Ops</a> &mdash;
      This stage transforms SelectionDAG nodes to eliminate any operations 
      that are unsupported on the target.</li>

  <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; The
      SelectionDAG optimizer is run to eliminate inefficiencies introduced by
      operation legalization.</li>

  <li><a href="#selectiondag_select">Select instructions from DAG</a> &mdash;
      Finally, the target instruction selector matches the DAG operations to
      target instructions.  This process translates the target-independent input
      DAG into another DAG of target instructions.</li>

  <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation</a>
      &mdash; The last phase assigns a linear order to the instructions in the
      target-instruction DAG and emits them into the MachineFunction being
      compiled.  This step uses traditional prepass scheduling techniques.</li>
</ol>

<p>After all of these steps are complete, the SelectionDAG is destroyed and the
   rest of the code generation passes are run.</p>

<p>One great way to visualize what is going on here is to take advantage of a
   few LLC command line options.  The following options pop up a window
   displaying the SelectionDAG at specific times (if you only get errors printed
   to the console while using this, you probably
   <a href="ProgrammersManual.html#ViewGraph">need to configure your system</a>
   to add support for it).</p>

<ul>
  <li><tt>-view-dag-combine1-dags</tt> displays the DAG after being built,
      before the first optimization pass.</li>

  <li><tt>-view-legalize-dags</tt> displays the DAG before Legalization.</li>

  <li><tt>-view-dag-combine2-dags</tt> displays the DAG before the second
      optimization pass.</li>

  <li><tt>-view-isel-dags</tt> displays the DAG before the Select phase.</li>

  <li><tt>-view-sched-dags</tt> displays the DAG before Scheduling.</li>
</ul>

<p>The <tt>-view-sunit-dags</tt> displays the Scheduler's dependency graph.
   This graph is based on the final SelectionDAG, with nodes that must be
   scheduled together bundled into a single scheduling-unit node, and with
   immediate operands and other nodes that aren't relevant for scheduling
   omitted.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="selectiondag_build">Initial SelectionDAG Construction</a>
</h4>

<div>

<p>The initial SelectionDAG is na&iuml;vely peephole expanded from the LLVM
   input by the <tt>SelectionDAGLowering</tt> class in the
   <tt>lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp</tt> file.  The intent of
   this pass is to expose as much low-level, target-specific details to the
   SelectionDAG as possible.  This pass is mostly hard-coded (e.g. an
   LLVM <tt>add</tt> turns into an <tt>SDNode add</tt> while a
   <tt>getelementptr</tt> is expanded into the obvious arithmetic). This pass
   requires target-specific hooks to lower calls, returns, varargs, etc.  For
   these features, the <tt><a href="#targetlowering">TargetLowering</a></tt>
   interface is used.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a>
</h4>

<div>

<p>The Legalize phase is in charge of converting a DAG to only use the types
   that are natively supported by the target.</p>

<p>There are two main ways of converting values of unsupported scalar types to
   values of supported types: converting small types to larger types
   ("promoting"), and breaking up large integer types into smaller ones
   ("expanding").  For example, a target might require that all f32 values are
   promoted to f64 and that all i1/i8/i16 values are promoted to i32.  The same
   target might require that all i64 values be expanded into pairs of i32
   values.  These changes can insert sign and zero extensions as needed to make
   sure that the final code has the same behavior as the input.</p>

<p>There are two main ways of converting values of unsupported vector types to
   value of supported types: splitting vector types, multiple times if
   necessary, until a legal type is found, and extending vector types by adding
   elements to the end to round them out to legal types ("widening").  If a
   vector gets split all the way down to single-element parts with no supported
   vector type being found, the elements are converted to scalars
   ("scalarizing").</p>

<p>A target implementation tells the legalizer which types are supported (and
   which register class to use for them) by calling the
   <tt>addRegisterClass</tt> method in its TargetLowering constructor.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="selectiondag_legalize">SelectionDAG Legalize Phase</a>
</h4>

<div>

<p>The Legalize phase is in charge of converting a DAG to only use the
   operations that are natively supported by the target.</p>

<p>Targets often have weird constraints, such as not supporting every operation
   on every supported datatype (e.g. X86 does not support byte conditional moves
   and PowerPC does not support sign-extending loads from a 16-bit memory
   location).  Legalize takes care of this by open-coding another sequence of
   operations to emulate the operation ("expansion"), by promoting one type to a
   larger type that supports the operation ("promotion"), or by using a
   target-specific hook to implement the legalization ("custom").</p>

<p>A target implementation tells the legalizer which operations are not
   supported (and which of the above three actions to take) by calling the
   <tt>setOperationAction</tt> method in its <tt>TargetLowering</tt>
   constructor.</p>

<p>Prior to the existence of the Legalize passes, we required that every target
   <a href="#selectiondag_optimize">selector</a> supported and handled every
   operator and type even if they are not natively supported.  The introduction
   of the Legalize phases allows all of the canonicalization patterns to be
   shared across targets, and makes it very easy to optimize the canonicalized
   code because it is still in the form of a DAG.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="selectiondag_optimize">
    SelectionDAG Optimization Phase: the DAG Combiner
  </a>
</h4>

<div>

<p>The SelectionDAG optimization phase is run multiple times for code
   generation, immediately after the DAG is built and once after each
   legalization.  The first run of the pass allows the initial code to be
   cleaned up (e.g. performing optimizations that depend on knowing that the
   operators have restricted type inputs).  Subsequent runs of the pass clean up
   the messy code generated by the Legalize passes, which allows Legalize to be
   very simple (it can focus on making code legal instead of focusing on
   generating <em>good</em> and legal code).</p>

<p>One important class of optimizations performed is optimizing inserted sign
   and zero extension instructions.  We currently use ad-hoc techniques, but
   could move to more rigorous techniques in the future.  Here are some good
   papers on the subject:</p>

<p>"<a href="http://www.eecs.harvard.edu/~nr/pubs/widen-abstract.html">Widening
   integer arithmetic</a>"<br>
   Kevin Redwine and Norman Ramsey<br>
   International Conference on Compiler Construction (CC) 2004</p>

<p>"<a href="http://portal.acm.org/citation.cfm?doid=512529.512552">Effective
   sign extension elimination</a>"<br>
   Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani<br>
   Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
   and Implementation.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="selectiondag_select">SelectionDAG Select Phase</a>
</h4>

<div>

<p>The Select phase is the bulk of the target-specific code for instruction
   selection.  This phase takes a legal SelectionDAG as input, pattern matches
   the instructions supported by the target to this DAG, and produces a new DAG
   of target code.  For example, consider the following LLVM fragment:</p>

<div class="doc_code">
<pre>
%t1 = fadd float %W, %X
%t2 = fmul float %t1, %Y
%t3 = fadd float %t2, %Z
</pre>
</div>

<p>This LLVM code corresponds to a SelectionDAG that looks basically like
   this:</p>

<div class="doc_code">
<pre>
(fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), Z)
</pre>
</div>

<p>If a target supports floating point multiply-and-add (FMA) operations, one of
   the adds can be merged with the multiply.  On the PowerPC, for example, the
   output of the instruction selector might look like this DAG:</p>

<div class="doc_code">
<pre>
(FMADDS (FADDS W, X), Y, Z)
</pre>
</div>

<p>The <tt>FMADDS</tt> instruction is a ternary instruction that multiplies its
first two operands and adds the third (as single-precision floating-point
numbers).  The <tt>FADDS</tt> instruction is a simple binary single-precision
add instruction.  To perform this pattern match, the PowerPC backend includes
the following instruction definitions:</p>

<div class="doc_code">
<pre>
def FMADDS : AForm_1&lt;59, 29,
                    (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
                    "fmadds $FRT, $FRA, $FRC, $FRB",
                    [<b>(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC),
                                           F4RC:$FRB))</b>]&gt;;
def FADDS : AForm_2&lt;59, 21,
                    (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB),
                    "fadds $FRT, $FRA, $FRB",
                    [<b>(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))</b>]&gt;;
</pre>
</div>

<p>The portion of the instruction definition in bold indicates the pattern used
   to match the instruction.  The DAG operators
   (like <tt>fmul</tt>/<tt>fadd</tt>) are defined in
   the <tt>include/llvm/Target/TargetSelectionDAG.td</tt> file.  "
   <tt>F4RC</tt>" is the register class of the input and result values.</p>

<p>The TableGen DAG instruction selector generator reads the instruction
   patterns in the <tt>.td</tt> file and automatically builds parts of the
   pattern matching code for your target.  It has the following strengths:</p>

<ul>
  <li>At compiler-compiler time, it analyzes your instruction patterns and tells
      you if your patterns make sense or not.</li>

  <li>It can handle arbitrary constraints on operands for the pattern match.  In
      particular, it is straight-forward to say things like "match any immediate
      that is a 13-bit sign-extended value".  For examples, see the
      <tt>immSExt16</tt> and related <tt>tblgen</tt> classes in the PowerPC
      backend.</li>

  <li>It knows several important identities for the patterns defined.  For
      example, it knows that addition is commutative, so it allows the
      <tt>FMADDS</tt> pattern above to match "<tt>(fadd X, (fmul Y, Z))</tt>" as
      well as "<tt>(fadd (fmul X, Y), Z)</tt>", without the target author having
      to specially handle this case.</li>

  <li>It has a full-featured type-inferencing system.  In particular, you should
      rarely have to explicitly tell the system what type parts of your patterns
      are.  In the <tt>FMADDS</tt> case above, we didn't have to tell
      <tt>tblgen</tt> that all of the nodes in the pattern are of type 'f32'.
      It was able to infer and propagate this knowledge from the fact that
      <tt>F4RC</tt> has type 'f32'.</li>

  <li>Targets can define their own (and rely on built-in) "pattern fragments".
      Pattern fragments are chunks of reusable patterns that get inlined into
      your patterns during compiler-compiler time.  For example, the integer
      "<tt>(not x)</tt>" operation is actually defined as a pattern fragment
      that expands as "<tt>(xor x, -1)</tt>", since the SelectionDAG does not
      have a native '<tt>not</tt>' operation.  Targets can define their own
      short-hand fragments as they see fit.  See the definition of
      '<tt>not</tt>' and '<tt>ineg</tt>' for examples.</li>

  <li>In addition to instructions, targets can specify arbitrary patterns that
      map to one or more instructions using the 'Pat' class.  For example, the
      PowerPC has no way to load an arbitrary integer immediate into a register
      in one instruction. To tell tblgen how to do this, it defines:
      <br>
      <br>
<div class="doc_code">
<pre>
// Arbitrary immediate support.  Implement in terms of LIS/ORI.
def : Pat&lt;(i32 imm:$imm),
          (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))&gt;;
</pre>
</div>
      <br>
      If none of the single-instruction patterns for loading an immediate into a
      register match, this will be used.  This rule says "match an arbitrary i32
      immediate, turning it into an <tt>ORI</tt> ('or a 16-bit immediate') and
      an <tt>LIS</tt> ('load 16-bit immediate, where the immediate is shifted to
      the left 16 bits') instruction".  To make this work, the
      <tt>LO16</tt>/<tt>HI16</tt> node transformations are used to manipulate
      the input immediate (in this case, take the high or low 16-bits of the
      immediate).</li>

  <li>While the system does automate a lot, it still allows you to write custom
      C++ code to match special cases if there is something that is hard to
      express.</li>
</ul>

<p>While it has many strengths, the system currently has some limitations,
   primarily because it is a work in progress and is not yet finished:</p>

<ul>
  <li>Overall, there is no way to define or match SelectionDAG nodes that define
      multiple values (e.g. <tt>SMUL_LOHI</tt>, <tt>LOAD</tt>, <tt>CALL</tt>,
      etc).  This is the biggest reason that you currently still <em>have
      to</em> write custom C++ code for your instruction selector.</li>

  <li>There is no great way to support matching complex addressing modes yet.
      In the future, we will extend pattern fragments to allow them to define
      multiple values (e.g. the four operands of the <a href="#x86_memory">X86
      addressing mode</a>, which are currently matched with custom C++ code).
      In addition, we'll extend fragments so that a fragment can match multiple
      different patterns.</li>

  <li>We don't automatically infer flags like isStore/isLoad yet.</li>

  <li>We don't automatically generate the set of supported registers and
      operations for the <a href="#selectiondag_legalize">Legalizer</a>
      yet.</li>

  <li>We don't have a way of tying in custom legalized nodes yet.</li>
</ul>

<p>Despite these limitations, the instruction selector generator is still quite
   useful for most of the binary and logical operations in typical instruction
   sets.  If you run into any problems or can't figure out how to do something,
   please let Chris know!</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="selectiondag_sched">SelectionDAG Scheduling and Formation Phase</a>
</h4>

<div>

<p>The scheduling phase takes the DAG of target instructions from the selection
   phase and assigns an order.  The scheduler can pick an order depending on
   various constraints of the machines (i.e. order for minimal register pressure
   or try to cover instruction latencies).  Once an order is established, the
   DAG is converted to a list
   of <tt><a href="#machineinstr">MachineInstr</a></tt>s and the SelectionDAG is
   destroyed.</p>

<p>Note that this phase is logically separate from the instruction selection
   phase, but is tied to it closely in the code because it operates on
   SelectionDAGs.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="selectiondag_future">Future directions for the SelectionDAG</a>
</h4>

<div>

<ol>
  <li>Optional function-at-a-time selection.</li>

  <li>Auto-generate entire selector from <tt>.td</tt> file.</li>
</ol>

</div>
 
</div>

<!-- ======================================================================= -->
<h3>
  <a name="ssamco">SSA-based Machine Code Optimizations</a>
</h3>
<div><p>To Be Written</p></div>

<!-- ======================================================================= -->
<h3>
  <a name="liveintervals">Live Intervals</a>
</h3>

<div>

<p>Live Intervals are the ranges (intervals) where a variable is <i>live</i>.
   They are used by some <a href="#regalloc">register allocator</a> passes to
   determine if two or more virtual registers which require the same physical
   register are live at the same point in the program (i.e., they conflict).
   When this situation occurs, one virtual register must be <i>spilled</i>.</p>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="livevariable_analysis">Live Variable Analysis</a>
</h4>

<div>

<p>The first step in determining the live intervals of variables is to calculate
   the set of registers that are immediately dead after the instruction (i.e.,
   the instruction calculates the value, but it is never used) and the set of
   registers that are used by the instruction, but are never used after the
   instruction (i.e., they are killed). Live variable information is computed
   for each <i>virtual</i> register and <i>register allocatable</i> physical
   register in the function.  This is done in a very efficient manner because it
   uses SSA to sparsely compute lifetime information for virtual registers
   (which are in SSA form) and only has to track physical registers within a
   block.  Before register allocation, LLVM can assume that physical registers
   are only live within a single basic block.  This allows it to do a single,
   local analysis to resolve physical register lifetimes within each basic
   block. If a physical register is not register allocatable (e.g., a stack
   pointer or condition codes), it is not tracked.</p>

<p>Physical registers may be live in to or out of a function. Live in values are
   typically arguments in registers. Live out values are typically return values
   in registers. Live in values are marked as such, and are given a dummy
   "defining" instruction during live intervals analysis. If the last basic
   block of a function is a <tt>return</tt>, then it's marked as using all live
   out values in the function.</p>

<p><tt>PHI</tt> nodes need to be handled specially, because the calculation of
   the live variable information from a depth first traversal of the CFG of the
   function won't guarantee that a virtual register used by the <tt>PHI</tt>
   node is defined before it's used. When a <tt>PHI</tt> node is encountered,
   only the definition is handled, because the uses will be handled in other
   basic blocks.</p>

<p>For each <tt>PHI</tt> node of the current basic block, we simulate an
   assignment at the end of the current basic block and traverse the successor
   basic blocks. If a successor basic block has a <tt>PHI</tt> node and one of
   the <tt>PHI</tt> node's operands is coming from the current basic block, then
   the variable is marked as <i>alive</i> within the current basic block and all
   of its predecessor basic blocks, until the basic block with the defining
   instruction is encountered.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="liveintervals_analysis">Live Intervals Analysis</a>
</h4>

<div>

<p>We now have the information available to perform the live intervals analysis
   and build the live intervals themselves.  We start off by numbering the basic
   blocks and machine instructions.  We then handle the "live-in" values.  These
   are in physical registers, so the physical register is assumed to be killed
   by the end of the basic block.  Live intervals for virtual registers are
   computed for some ordering of the machine instructions <tt>[1, N]</tt>.  A
   live interval is an interval <tt>[i, j)</tt>, where <tt>1 &lt;= i &lt;= j
   &lt; N</tt>, for which a variable is live.</p>

<p><i><b>More to come...</b></i></p>

</div>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="regalloc">Register Allocation</a>
</h3>

<div>

<p>The <i>Register Allocation problem</i> consists in mapping a program
   <i>P<sub>v</sub></i>, that can use an unbounded number of virtual registers,
   to a program <i>P<sub>p</sub></i> that contains a finite (possibly small)
   number of physical registers. Each target architecture has a different number
   of physical registers. If the number of physical registers is not enough to
   accommodate all the virtual registers, some of them will have to be mapped
   into memory. These virtuals are called <i>spilled virtuals</i>.</p>

<!-- _______________________________________________________________________ -->

<h4>
  <a name="regAlloc_represent">How registers are represented in LLVM</a>
</h4>

<div>

<p>In LLVM, physical registers are denoted by integer numbers that normally
   range from 1 to 1023. To see how this numbering is defined for a particular
   architecture, you can read the <tt>GenRegisterNames.inc</tt> file for that
   architecture. For instance, by
   inspecting <tt>lib/Target/X86/X86GenRegisterNames.inc</tt> we see that the
   32-bit register <tt>EAX</tt> is denoted by 15, and the MMX register
   <tt>MM0</tt> is mapped to 48.</p>

<p>Some architectures contain registers that share the same physical location. A
   notable example is the X86 platform. For instance, in the X86 architecture,
   the registers <tt>EAX</tt>, <tt>AX</tt> and <tt>AL</tt> share the first eight
   bits. These physical registers are marked as <i>aliased</i> in LLVM. Given a
   particular architecture, you can check which registers are aliased by
   inspecting its <tt>RegisterInfo.td</tt> file. Moreover, the method
   <tt>TargetRegisterInfo::getAliasSet(p_reg)</tt> returns an array containing
   all the physical registers aliased to the register <tt>p_reg</tt>.</p>

<p>Physical registers, in LLVM, are grouped in <i>Register Classes</i>.
   Elements in the same register class are functionally equivalent, and can be
   interchangeably used. Each virtual register can only be mapped to physical
   registers of a particular class. For instance, in the X86 architecture, some
   virtuals can only be allocated to 8 bit registers.  A register class is
   described by <tt>TargetRegisterClass</tt> objects.  To discover if a virtual
   register is compatible with a given physical, this code can be used:</p>

<div class="doc_code">
<pre>
bool RegMapping_Fer::compatible_class(MachineFunction &amp;mf,
                                      unsigned v_reg,
                                      unsigned p_reg) {
  assert(TargetRegisterInfo::isPhysicalRegister(p_reg) &amp;&amp;
         "Target register must be physical");
  const TargetRegisterClass *trc = mf.getRegInfo().getRegClass(v_reg);
  return trc-&gt;contains(p_reg);
}
</pre>
</div>

<p>Sometimes, mostly for debugging purposes, it is useful to change the number
   of physical registers available in the target architecture. This must be done
   statically, inside the <tt>TargetRegsterInfo.td</tt> file. Just <tt>grep</tt>
   for <tt>RegisterClass</tt>, the last parameter of which is a list of
   registers. Just commenting some out is one simple way to avoid them being
   used. A more polite way is to explicitly exclude some registers from
   the <i>allocation order</i>. See the definition of the <tt>GR8</tt> register
   class in <tt>lib/Target/X86/X86RegisterInfo.td</tt> for an example of this.
   </p>

<p>Virtual registers are also denoted by integer numbers. Contrary to physical
   registers, different virtual registers never share the same number. Whereas
   physical registers are statically defined in a <tt>TargetRegisterInfo.td</tt>
   file and cannot be created by the application developer, that is not the case
   with virtual registers. In order to create new virtual registers, use the
   method <tt>MachineRegisterInfo::createVirtualRegister()</tt>. This method
   will return a new virtual register. Use an <tt>IndexedMap&lt;Foo,
   VirtReg2IndexFunctor&gt;</tt> to hold information per virtual register. If you
   need to enumerate all virtual registers, use the function
   <tt>TargetRegisterInfo::index2VirtReg()</tt> to find the virtual register
   numbers:</p>

<div class="doc_code">
<pre>
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned VirtReg = TargetRegisterInfo::index2VirtReg(i);
    stuff(VirtReg);
  }
</pre>
</div>

<p>Before register allocation, the operands of an instruction are mostly virtual
   registers, although physical registers may also be used. In order to check if
   a given machine operand is a register, use the boolean
   function <tt>MachineOperand::isRegister()</tt>. To obtain the integer code of
   a register, use <tt>MachineOperand::getReg()</tt>. An instruction may define
   or use a register. For instance, <tt>ADD reg:1026 := reg:1025 reg:1024</tt>
   defines the registers 1024, and uses registers 1025 and 1026. Given a
   register operand, the method <tt>MachineOperand::isUse()</tt> informs if that
   register is being used by the instruction. The
   method <tt>MachineOperand::isDef()</tt> informs if that registers is being
   defined.</p>

<p>We will call physical registers present in the LLVM bitcode before register
   allocation <i>pre-colored registers</i>. Pre-colored registers are used in
   many different situations, for instance, to pass parameters of functions
   calls, and to store results of particular instructions. There are two types
   of pre-colored registers: the ones <i>implicitly</i> defined, and
   those <i>explicitly</i> defined. Explicitly defined registers are normal
   operands, and can be accessed
   with <tt>MachineInstr::getOperand(int)::getReg()</tt>.  In order to check
   which registers are implicitly defined by an instruction, use
   the <tt>TargetInstrInfo::get(opcode)::ImplicitDefs</tt>,
   where <tt>opcode</tt> is the opcode of the target instruction. One important
   difference between explicit and implicit physical registers is that the
   latter are defined statically for each instruction, whereas the former may
   vary depending on the program being compiled. For example, an instruction
   that represents a function call will always implicitly define or use the same
   set of physical registers. To read the registers implicitly used by an
   instruction,
   use <tt>TargetInstrInfo::get(opcode)::ImplicitUses</tt>. Pre-colored
   registers impose constraints on any register allocation algorithm. The
   register allocator must make sure that none of them are overwritten by
   the values of virtual registers while still alive.</p>

</div>

<!-- _______________________________________________________________________ -->

<h4>
  <a name="regAlloc_howTo">Mapping virtual registers to physical registers</a>
</h4>

<div>

<p>There are two ways to map virtual registers to physical registers (or to
   memory slots). The first way, that we will call <i>direct mapping</i>, is
   based on the use of methods of the classes <tt>TargetRegisterInfo</tt>,
   and <tt>MachineOperand</tt>. The second way, that we will call <i>indirect
   mapping</i>, relies on the <tt>VirtRegMap</tt> class in order to insert loads
   and stores sending and getting values to and from memory.</p>

<p>The direct mapping provides more flexibility to the developer of the register
   allocator; however, it is more error prone, and demands more implementation
   work.  Basically, the programmer will have to specify where load and store
   instructions should be inserted in the target function being compiled in
   order to get and store values in memory. To assign a physical register to a
   virtual register present in a given operand,
   use <tt>MachineOperand::setReg(p_reg)</tt>. To insert a store instruction,
   use <tt>TargetInstrInfo::storeRegToStackSlot(...)</tt>, and to insert a
   load instruction, use <tt>TargetInstrInfo::loadRegFromStackSlot</tt>.</p>

<p>The indirect mapping shields the application developer from the complexities
   of inserting load and store instructions. In order to map a virtual register
   to a physical one, use <tt>VirtRegMap::assignVirt2Phys(vreg, preg)</tt>.  In
   order to map a certain virtual register to memory,
   use <tt>VirtRegMap::assignVirt2StackSlot(vreg)</tt>. This method will return
   the stack slot where <tt>vreg</tt>'s value will be located.  If it is
   necessary to map another virtual register to the same stack slot,
   use <tt>VirtRegMap::assignVirt2StackSlot(vreg, stack_location)</tt>. One
   important point to consider when using the indirect mapping, is that even if
   a virtual register is mapped to memory, it still needs to be mapped to a
   physical register. This physical register is the location where the virtual
   register is supposed to be found before being stored or after being
   reloaded.</p>

<p>If the indirect strategy is used, after all the virtual registers have been
   mapped to physical registers or stack slots, it is necessary to use a spiller
   object to place load and store instructions in the code. Every virtual that
   has been mapped to a stack slot will be stored to memory after been defined
   and will be loaded before being used. The implementation of the spiller tries
   to recycle load/store instructions, avoiding unnecessary instructions. For an
   example of how to invoke the spiller,
   see <tt>RegAllocLinearScan::runOnMachineFunction</tt>
   in <tt>lib/CodeGen/RegAllocLinearScan.cpp</tt>.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="regAlloc_twoAddr">Handling two address instructions</a>
</h4>

<div>

<p>With very rare exceptions (e.g., function calls), the LLVM machine code
   instructions are three address instructions. That is, each instruction is
   expected to define at most one register, and to use at most two registers.
   However, some architectures use two address instructions. In this case, the
   defined register is also one of the used register. For instance, an
   instruction such as <tt>ADD %EAX, %EBX</tt>, in X86 is actually equivalent
   to <tt>%EAX = %EAX + %EBX</tt>.</p>

<p>In order to produce correct code, LLVM must convert three address
   instructions that represent two address instructions into true two address
   instructions. LLVM provides the pass <tt>TwoAddressInstructionPass</tt> for
   this specific purpose. It must be run before register allocation takes
   place. After its execution, the resulting code may no longer be in SSA
   form. This happens, for instance, in situations where an instruction such
   as <tt>%a = ADD %b %c</tt> is converted to two instructions such as:</p>

<div class="doc_code">
<pre>
%a = MOVE %b
%a = ADD %a %c
</pre>
</div>

<p>Notice that, internally, the second instruction is represented as
   <tt>ADD %a[def/use] %c</tt>. I.e., the register operand <tt>%a</tt> is both
   used and defined by the instruction.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="regAlloc_ssaDecon">The SSA deconstruction phase</a>
</h4>

<div>

<p>An important transformation that happens during register allocation is called
   the <i>SSA Deconstruction Phase</i>. The SSA form simplifies many analyses
   that are performed on the control flow graph of programs. However,
   traditional instruction sets do not implement PHI instructions. Thus, in
   order to generate executable code, compilers must replace PHI instructions
   with other instructions that preserve their semantics.</p>

<p>There are many ways in which PHI instructions can safely be removed from the
   target code. The most traditional PHI deconstruction algorithm replaces PHI
   instructions with copy instructions. That is the strategy adopted by
   LLVM. The SSA deconstruction algorithm is implemented
   in <tt>lib/CodeGen/PHIElimination.cpp</tt>. In order to invoke this pass, the
   identifier <tt>PHIEliminationID</tt> must be marked as required in the code
   of the register allocator.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="regAlloc_fold">Instruction folding</a>
</h4>

<div>

<p><i>Instruction folding</i> is an optimization performed during register
   allocation that removes unnecessary copy instructions. For instance, a
   sequence of instructions such as:</p>

<div class="doc_code">
<pre>
%EBX = LOAD %mem_address
%EAX = COPY %EBX
</pre>
</div>

<p>can be safely substituted by the single instruction:</p>

<div class="doc_code">
<pre>
%EAX = LOAD %mem_address
</pre>
</div>

<p>Instructions can be folded with
   the <tt>TargetRegisterInfo::foldMemoryOperand(...)</tt> method. Care must be
   taken when folding instructions; a folded instruction can be quite different
   from the original
   instruction. See <tt>LiveIntervals::addIntervalsForSpills</tt>
   in <tt>lib/CodeGen/LiveIntervalAnalysis.cpp</tt> for an example of its
   use.</p>

</div>

<!-- _______________________________________________________________________ -->

<h4>
  <a name="regAlloc_builtIn">Built in register allocators</a>
</h4>

<div>

<p>The LLVM infrastructure provides the application developer with three
   different register allocators:</p>

<ul>
  <li><i>Fast</i> &mdash; This register allocator is the default for debug
      builds. It allocates registers on a basic block level, attempting to keep
      values in registers and reusing registers as appropriate.</li>

  <li><i>Basic</i> &mdash; This is an incremental approach to register
  allocation. Live ranges are assigned to registers one at a time in
  an order that is driven by heuristics. Since code can be rewritten
  on-the-fly during allocation, this framework allows interesting
  allocators to be developed as extensions. It is not itself a
  production register allocator but is a potentially useful
  stand-alone mode for triaging bugs and as a performance baseline.

  <li><i>Greedy</i> &mdash; <i>The default allocator</i>. This is a
  highly tuned implementation of the <i>Basic</i> allocator that
  incorporates global live range splitting. This allocator works hard
  to minimize the cost of spill code.

  <li><i>PBQP</i> &mdash; A Partitioned Boolean Quadratic Programming (PBQP)
      based register allocator. This allocator works by constructing a PBQP
      problem representing the register allocation problem under consideration,
      solving this using a PBQP solver, and mapping the solution back to a
      register assignment.</li>
</ul>

<p>The type of register allocator used in <tt>llc</tt> can be chosen with the
   command line option <tt>-regalloc=...</tt>:</p>

<div class="doc_code">
<pre>
$ llc -regalloc=linearscan file.bc -o ln.s;
$ llc -regalloc=fast file.bc -o fa.s;
$ llc -regalloc=pbqp file.bc -o pbqp.s;
</pre>
</div>

</div>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="proepicode">Prolog/Epilog Code Insertion</a>
</h3>

<div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="compact_unwind">Compact Unwind</a>
</h4>

<div>

<p>Throwing an exception requires <em>unwinding</em> out of a function. The
   information on how to unwind a given function is traditionally expressed in
   DWARF unwind (a.k.a. frame) info. But that format was originally developed
   for debuggers to backtrace, and each Frame Description Entry (FDE) requires
   ~20-30 bytes per function. There is also the cost of mapping from an address
   in a function to the corresponding FDE at runtime. An alternative unwind
   encoding is called <em>compact unwind</em> and requires just 4-bytes per
   function.</p>

<p>The compact unwind encoding is a 32-bit value, which is encoded in an
   architecture-specific way. It specifies which registers to restore and from
   where, and how to unwind out of the function. When the linker creates a final
   linked image, it will create a <code>__TEXT,__unwind_info</code>
   section. This section is a small and fast way for the runtime to access
   unwind info for any given function. If we emit compact unwind info for the
   function, that compact unwind info will be encoded in
   the <code>__TEXT,__unwind_info</code> section. If we emit DWARF unwind info,
   the <code>__TEXT,__unwind_info</code> section will contain the offset of the
   FDE in the <code>__TEXT,__eh_frame</code> section in the final linked
   image.</p>

<p>For X86, there are three modes for the compact unwind encoding:</p>

<dl>
  <dt><i>Function with a Frame Pointer (<code>EBP</code> or <code>RBP</code>)</i></dt>
  <dd><p><code>EBP/RBP</code>-based frame, where <code>EBP/RBP</code> is pushed
      onto the stack immediately after the return address,
      then <code>ESP/RSP</code> is moved to <code>EBP/RBP</code>. Thus to
      unwind, <code>ESP/RSP</code> is restored with the
      current <code>EBP/RBP</code> value, then <code>EBP/RBP</code> is restored
      by popping the stack, and the return is done by popping the stack once
      more into the PC. All non-volatile registers that need to be restored must
      have been saved in a small range on the stack that
      starts <code>EBP-4</code> to <code>EBP-1020</code> (<code>RBP-8</code>
      to <code>RBP-1020</code>). The offset (divided by 4 in 32-bit mode and 8
      in 64-bit mode) is encoded in bits 16-23 (mask: <code>0x00FF0000</code>).
      The registers saved are encoded in bits 0-14
      (mask: <code>0x00007FFF</code>) as five 3-bit entries from the following
      table:</p>
<table border="1" cellspacing="0">
  <tr>
    <th>Compact Number</th>
    <th>i386 Register</th>
    <th>x86-64 Regiser</th>
  </tr>
  <tr>
    <td>1</td>
    <td><code>EBX</code></td>
    <td><code>RBX</code></td>
  </tr>
  <tr>
    <td>2</td>
    <td><code>ECX</code></td>
    <td><code>R12</code></td>
  </tr>
  <tr>
    <td>3</td>
    <td><code>EDX</code></td>
    <td><code>R13</code></td>
  </tr>
  <tr>
    <td>4</td>
    <td><code>EDI</code></td>
    <td><code>R14</code></td>
  </tr>
  <tr>
    <td>5</td>
    <td><code>ESI</code></td>
    <td><code>R15</code></td>
  </tr>
  <tr>
    <td>6</td>
    <td><code>EBP</code></td>
    <td><code>RBP</code></td>
  </tr>
</table>

</dd>

  <dt><i>Frameless with a Small Constant Stack Size (<code>EBP</code>
         or <code>RBP</code> is not used as a frame pointer)</i></dt>
  <dd><p>To return, a constant (encoded in the compact unwind encoding) is added
      to the <code>ESP/RSP</code>.  Then the return is done by popping the stack
      into the PC. All non-volatile registers that need to be restored must have
      been saved on the stack immediately after the return address. The stack
      size (divided by 4 in 32-bit mode and 8 in 64-bit mode) is encoded in bits
      16-23 (mask: <code>0x00FF0000</code>). There is a maximum stack size of
      1024 bytes in 32-bit mode and 2048 in 64-bit mode. The number of registers
      saved is encoded in bits 9-12 (mask: <code>0x00001C00</code>). Bits 0-9
      (mask: <code>0x000003FF</code>) contain which registers were saved and
      their order. (See
      the <code>encodeCompactUnwindRegistersWithoutFrame()</code> function
      in <code>lib/Target/X86FrameLowering.cpp</code> for the encoding
      algorithm.)</p></dd>

  <dt><i>Frameless with a Large Constant Stack Size (<code>EBP</code>
         or <code>RBP</code> is not used as a frame pointer)</i></dt>
  <dd><p>This case is like the "Frameless with a Small Constant Stack Size"
      case, but the stack size is too large to encode in the compact unwind
      encoding. Instead it requires that the function contains "<code>subl
      $nnnnnn, %esp</code>" in its prolog. The compact encoding contains the
      offset to the <code>$nnnnnn</code> value in the function in bits 9-12
      (mask: <code>0x00001C00</code>).</p></dd>
</dl>

</div>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="latemco">Late Machine Code Optimizations</a>
</h3>
<div><p>To Be Written</p></div>

<!-- ======================================================================= -->
<h3>
  <a name="codeemit">Code Emission</a>
</h3>

<div>

<p>The code emission step of code generation is responsible for lowering from
the code generator abstractions (like <a 
href="#machinefunction">MachineFunction</a>, <a 
href="#machineinstr">MachineInstr</a>, etc) down
to the abstractions used by the MC layer (<a href="#mcinst">MCInst</a>, 
<a href="#mcstreamer">MCStreamer</a>, etc).  This is
done with a combination of several different classes: the (misnamed)
target-independent AsmPrinter class, target-specific subclasses of AsmPrinter
(such as SparcAsmPrinter), and the TargetLoweringObjectFile class.</p>

<p>Since the MC layer works at the level of abstraction of object files, it
doesn't have a notion of functions, global variables etc.  Instead, it thinks
about labels, directives, and instructions.  A key class used at this time is
the MCStreamer class.  This is an abstract API that is implemented in different
ways (e.g. to output a .s file, output an ELF .o file, etc) that is effectively
an "assembler API".  MCStreamer has one method per directive, such as EmitLabel,
EmitSymbolAttribute, SwitchSection, etc, which directly correspond to assembly
level directives.
</p>

<p>If you are interested in implementing a code generator for a target, there
are three important things that you have to implement for your target:</p>

<ol>
<li>First, you need a subclass of AsmPrinter for your target.  This class
implements the general lowering process converting MachineFunction's into MC
label constructs.  The AsmPrinter base class provides a number of useful methods
and routines, and also allows you to override the lowering process in some
important ways.  You should get much of the lowering for free if you are
implementing an ELF, COFF, or MachO target, because the TargetLoweringObjectFile
class implements much of the common logic.</li>

<li>Second, you need to implement an instruction printer for your target.  The
instruction printer takes an <a href="#mcinst">MCInst</a> and renders it to a
raw_ostream as text.  Most of this is automatically generated from the .td file
(when you specify something like "<tt>add $dst, $src1, $src2</tt>" in the
instructions), but you need to implement routines to print operands.</li>

<li>Third, you need to implement code that lowers a <a
href="#machineinstr">MachineInstr</a> to an MCInst, usually implemented in
"&lt;target&gt;MCInstLower.cpp".  This lowering process is often target
specific, and is responsible for turning jump table entries, constant pool
indices, global variable addresses, etc into MCLabels as appropriate.  This
translation layer is also responsible for expanding pseudo ops used by the code
generator into the actual machine instructions they correspond to. The MCInsts
that are generated by this are fed into the instruction printer or the encoder.
</li>

</ol>

<p>Finally, at your choosing, you can also implement an subclass of
MCCodeEmitter which lowers MCInst's into machine code bytes and relocations.
This is important if you want to support direct .o file emission, or would like
to implement an assembler for your target.</p>

</div>

</div>

<!-- *********************************************************************** -->
<h2>
  <a name="nativeassembler">Implementing a Native Assembler</a>
</h2>
<!-- *********************************************************************** -->

<div>

<p>Though you're probably reading this because you want to write or maintain a
compiler backend, LLVM also fully supports building a native assemblers too.
We've tried hard to automate the generation of the assembler from the .td files
(in particular the instruction syntax and encodings), which means that a large
part of the manual and repetitive data entry can be factored and shared with the
compiler.</p>

<!-- ======================================================================= -->
<h3 id="na_instparsing">Instruction Parsing</h3>

<div><p>To Be Written</p></div>


<!-- ======================================================================= -->
<h3 id="na_instaliases">
  Instruction Alias Processing
</h3>

<div>
<p>Once the instruction is parsed, it enters the MatchInstructionImpl function.
The MatchInstructionImpl function performs alias processing and then does
actual matching.</p>

<p>Alias processing is the phase that canonicalizes different lexical forms of
the same instructions down to one representation.  There are several different
kinds of alias that are possible to implement and they are listed below in the
order that they are processed (which is in order from simplest/weakest to most
complex/powerful).  Generally you want to use the first alias mechanism that
meets the needs of your instruction, because it will allow a more concise
description.</p>

<!-- _______________________________________________________________________ -->
<h4>Mnemonic Aliases</h4>

<div>

<p>The first phase of alias processing is simple instruction mnemonic
remapping for classes of instructions which are allowed with two different
mnemonics.  This phase is a simple and unconditionally remapping from one input
mnemonic to one output mnemonic.  It isn't possible for this form of alias to
look at the operands at all, so the remapping must apply for all forms of a
given mnemonic.  Mnemonic aliases are defined simply, for example X86 has:
</p>

<div class="doc_code">
<pre>
def : MnemonicAlias&lt;"cbw",     "cbtw"&gt;;
def : MnemonicAlias&lt;"smovq",   "movsq"&gt;;
def : MnemonicAlias&lt;"fldcww",  "fldcw"&gt;;
def : MnemonicAlias&lt;"fucompi", "fucomip"&gt;;
def : MnemonicAlias&lt;"ud2a",    "ud2"&gt;;
</pre>
</div>

<p>... and many others.  With a MnemonicAlias definition, the mnemonic is
remapped simply and directly.  Though MnemonicAlias's can't look at any aspect
of the instruction (such as the operands) they can depend on global modes (the
same ones supported by the matcher), through a Requires clause:</p>

<div class="doc_code">
<pre>
def : MnemonicAlias&lt;"pushf", "pushfq"&gt;, Requires&lt;[In64BitMode]&gt;;
def : MnemonicAlias&lt;"pushf", "pushfl"&gt;, Requires&lt;[In32BitMode]&gt;;
</pre>
</div>

<p>In this example, the mnemonic gets mapped into different a new one depending
on the current instruction set.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>Instruction Aliases</h4>

<div>

<p>The most general phase of alias processing occurs while matching is
happening: it provides new forms for the matcher to match along with a specific
instruction to generate.  An instruction alias has two parts: the string to
match and the instruction to generate.  For example:
</p>

<div class="doc_code">
<pre>
def : InstAlias&lt;"movsx $src, $dst", (MOVSX16rr8W GR16:$dst, GR8  :$src)&gt;;
def : InstAlias&lt;"movsx $src, $dst", (MOVSX16rm8W GR16:$dst, i8mem:$src)&gt;;
def : InstAlias&lt;"movsx $src, $dst", (MOVSX32rr8  GR32:$dst, GR8  :$src)&gt;;
def : InstAlias&lt;"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16 :$src)&gt;;
def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr8  GR64:$dst, GR8  :$src)&gt;;
def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16 :$src)&gt;;
def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32 :$src)&gt;;
</pre>
</div>

<p>This shows a powerful example of the instruction aliases, matching the
same mnemonic in multiple different ways depending on what operands are present
in the assembly.  The result of instruction aliases can include operands in a
different order than the destination instruction, and can use an input
multiple times, for example:</p>

<div class="doc_code">
<pre>
def : InstAlias&lt;"clrb $reg", (XOR8rr  GR8 :$reg, GR8 :$reg)&gt;;
def : InstAlias&lt;"clrw $reg", (XOR16rr GR16:$reg, GR16:$reg)&gt;;
def : InstAlias&lt;"clrl $reg", (XOR32rr GR32:$reg, GR32:$reg)&gt;;
def : InstAlias&lt;"clrq $reg", (XOR64rr GR64:$reg, GR64:$reg)&gt;;
</pre>
</div>

<p>This example also shows that tied operands are only listed once.  In the X86
backend, XOR8rr has two input GR8's and one output GR8 (where an input is tied
to the output).  InstAliases take a flattened operand list without duplicates
for tied operands.  The result of an instruction alias can also use immediates
and fixed physical registers which are added as simple immediate operands in the
result, for example:</p>

<div class="doc_code">
<pre>
// Fixed Immediate operand.
def : InstAlias&lt;"aad", (AAD8i8 10)&gt;;

// Fixed register operand.
def : InstAlias&lt;"fcomi", (COM_FIr ST1)&gt;;

// Simple alias.
def : InstAlias&lt;"fcomi $reg", (COM_FIr RST:$reg)&gt;;
</pre>
</div>


<p>Instruction aliases can also have a Requires clause to make them
subtarget specific.</p>

<p>If the back-end supports it, the instruction printer can automatically emit
   the alias rather than what's being aliased. It typically leads to better,
   more readable code. If it's better to print out what's being aliased, then
   pass a '0' as the third parameter to the InstAlias definition.</p>

</div>

</div>

<!-- ======================================================================= -->
<h3 id="na_matching">Instruction Matching</h3>

<div><p>To Be Written</p></div>

</div>

<!-- *********************************************************************** -->
<h2>
  <a name="targetimpls">Target-specific Implementation Notes</a>
</h2>
<!-- *********************************************************************** -->

<div>

<p>This section of the document explains features or design decisions that are
   specific to the code generator for a particular target.  First we start
   with a table that summarizes what features are supported by each target.</p>

<!-- ======================================================================= -->
<h3>
  <a name="targetfeatures">Target Feature Matrix</a>
</h3>

<div>

<p>Note that this table does not include the C backend or Cpp backends, since
they do not use the target independent code generator infrastructure.  It also
doesn't list features that are not supported fully by any target yet.  It
considers a feature to be supported if at least one subtarget supports it.  A
feature being supported means that it is useful and works for most cases, it
does not indicate that there are zero known bugs in the implementation.  Here
is the key:</p>


<table border="1" cellspacing="0">
  <tr>
    <th>Unknown</th>
    <th>No support</th>
    <th>Partial Support</th>
    <th>Complete Support</th>
  </tr>
  <tr>
    <td class="unknown"></td>
    <td class="no"></td>
    <td class="partial"></td>
    <td class="yes"></td>
  </tr>
</table>

<p>Here is the table:</p>

<table width="689" border="1" cellspacing="0">
<tr><td></td>
<td colspan="13" align="center" style="background-color:#ffc">Target</td>
</tr>
  <tr>
    <th>Feature</th>
    <th>ARM</th>
    <th>Alpha</th>
    <th>Blackfin</th>
    <th>CellSPU</th>
    <th>MBlaze</th>
    <th>MSP430</th>
    <th>Mips</th>
    <th>PTX</th>
    <th>PowerPC</th>
    <th>Sparc</th>
    <th>SystemZ</th>
    <th>X86</th>
    <th>XCore</th>
  </tr>

<tr>
  <td><a href="#feat_reliable">is generally reliable</a></td>
  <td class="yes"></td> <!-- ARM -->
  <td class="unknown"></td> <!-- Alpha -->
  <td class="no"></td> <!-- Blackfin -->
  <td class="no"></td> <!-- CellSPU -->
  <td class="no"></td> <!-- MBlaze -->
  <td class="unknown"></td> <!-- MSP430 -->
  <td class="no"></td> <!-- Mips -->
  <td class="no"></td> <!-- PTX -->
  <td class="yes"></td> <!-- PowerPC -->
  <td class="yes"></td> <!-- Sparc -->
  <td class="unknown"></td> <!-- SystemZ -->
  <td class="yes"></td> <!-- X86 -->
  <td class="unknown"></td> <!-- XCore -->
</tr>

<tr>
  <td><a href="#feat_asmparser">assembly parser</a></td>
  <td class="no"></td> <!-- ARM -->
  <td class="no"></td> <!-- Alpha -->
  <td class="no"></td> <!-- Blackfin -->
  <td class="no"></td> <!-- CellSPU -->
  <td class="yes"></td> <!-- MBlaze -->
  <td class="no"></td> <!-- MSP430 -->
  <td class="no"></td> <!-- Mips -->
  <td class="no"></td> <!-- PTX -->
  <td class="no"></td> <!-- PowerPC -->
  <td class="no"></td> <!-- Sparc -->
  <td class="no"></td> <!-- SystemZ -->
  <td class="yes"></td> <!-- X86 -->
  <td class="no"></td> <!-- XCore -->
</tr>

<tr>
  <td><a href="#feat_disassembler">disassembler</a></td>
  <td class="yes"></td> <!-- ARM -->
  <td class="no"></td> <!-- Alpha -->
  <td class="no"></td> <!-- Blackfin -->
  <td class="no"></td> <!-- CellSPU -->
  <td class="yes"></td> <!-- MBlaze -->
  <td class="no"></td> <!-- MSP430 -->
  <td class="no"></td> <!-- Mips -->
  <td class="no"></td> <!-- PTX -->
  <td class="no"></td> <!-- PowerPC -->
  <td class="no"></td> <!-- Sparc -->
  <td class="no"></td> <!-- SystemZ -->
  <td class="yes"></td> <!-- X86 -->
  <td class="no"></td> <!-- XCore -->
</tr>

<tr>
  <td><a href="#feat_inlineasm">inline asm</a></td>
  <td class="yes"></td> <!-- ARM -->
  <td class="unknown"></td> <!-- Alpha -->
  <td class="yes"></td> <!-- Blackfin -->
  <td class="no"></td> <!-- CellSPU -->
  <td class="yes"></td> <!-- MBlaze -->
  <td class="unknown"></td> <!-- MSP430 -->
  <td class="no"></td> <!-- Mips -->
  <td class="unknown"></td> <!-- PTX -->
  <td class="yes"></td> <!-- PowerPC -->
  <td class="unknown"></td> <!-- Sparc -->
  <td class="unknown"></td> <!-- SystemZ -->
  <td class="yes"></td> <!-- X86 -->
  <td class="unknown"></td> <!-- XCore -->
</tr>

<tr>
  <td><a href="#feat_jit">jit</a></td>
  <td class="partial"><a href="#feat_jit_arm">*</a></td> <!-- ARM -->
  <td class="no"></td> <!-- Alpha -->
  <td class="no"></td> <!-- Blackfin -->
  <td class="no"></td> <!-- CellSPU -->
  <td class="no"></td> <!-- MBlaze -->
  <td class="unknown"></td> <!-- MSP430 -->
  <td class="no"></td> <!-- Mips -->
  <td class="unknown"></td> <!-- PTX -->
  <td class="yes"></td> <!-- PowerPC -->
  <td class="unknown"></td> <!-- Sparc -->
  <td class="unknown"></td> <!-- SystemZ -->
  <td class="yes"></td> <!-- X86 -->
  <td class="unknown"></td> <!-- XCore -->
</tr>

<tr>
  <td><a href="#feat_objectwrite">.o&nbsp;file writing</a></td>
  <td class="no"></td> <!-- ARM -->
  <td class="no"></td> <!-- Alpha -->
  <td class="no"></td> <!-- Blackfin -->
  <td class="no"></td> <!-- CellSPU -->
  <td class="yes"></td> <!-- MBlaze -->
  <td class="no"></td> <!-- MSP430 -->
  <td class="no"></td> <!-- Mips -->
  <td class="no"></td> <!-- PTX -->
  <td class="no"></td> <!-- PowerPC -->
  <td class="no"></td> <!-- Sparc -->
  <td class="no"></td> <!-- SystemZ -->
  <td class="yes"></td> <!-- X86 -->
  <td class="no"></td> <!-- XCore -->
</tr>

<tr>
  <td><a href="#feat_tailcall">tail calls</a></td>
  <td class="yes"></td> <!-- ARM -->
  <td class="unknown"></td> <!-- Alpha -->
  <td class="no"></td> <!-- Blackfin -->
  <td class="no"></td> <!-- CellSPU -->
  <td class="no"></td> <!-- MBlaze -->
  <td class="unknown"></td> <!-- MSP430 -->
  <td class="no"></td> <!-- Mips -->
  <td class="unknown"></td> <!-- PTX -->
  <td class="yes"></td> <!-- PowerPC -->
  <td class="unknown"></td> <!-- Sparc -->
  <td class="unknown"></td> <!-- SystemZ -->
  <td class="yes"></td> <!-- X86 -->
  <td class="unknown"></td> <!-- XCore -->
</tr>


</table>

<!-- _______________________________________________________________________ -->
<h4 id="feat_reliable">Is Generally Reliable</h4>

<div>
<p>This box indicates whether the target is considered to be production quality.
This indicates that the target has been used as a static compiler to
compile large amounts of code by a variety of different people and is in
continuous use.</p>
</div>

<!-- _______________________________________________________________________ -->
<h4 id="feat_asmparser">Assembly Parser</h4>

<div>
<p>This box indicates whether the target supports parsing target specific .s
files by implementing the MCAsmParser interface.  This is required for llvm-mc
to be able to act as a native assembler and is required for inline assembly
support in the native .o file writer.</p>

</div>


<!-- _______________________________________________________________________ -->
<h4 id="feat_disassembler">Disassembler</h4>

<div>
<p>This box indicates whether the target supports the MCDisassembler API for
disassembling machine opcode bytes into MCInst's.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4 id="feat_inlineasm">Inline Asm</h4>

<div>
<p>This box indicates whether the target supports most popular inline assembly
constraints and modifiers.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4 id="feat_jit">JIT Support</h4>

<div>
<p>This box indicates whether the target supports the JIT compiler through
the ExecutionEngine interface.</p>

<p id="feat_jit_arm">The ARM backend has basic support for integer code
in ARM codegen mode, but lacks NEON and full Thumb support.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4 id="feat_objectwrite">.o File Writing</h4>

<div>

<p>This box indicates whether the target supports writing .o files (e.g. MachO,
ELF, and/or COFF) files directly from the target.  Note that the target also
must include an assembly parser and general inline assembly support for full
inline assembly support in the .o writer.</p>

<p>Targets that don't support this feature can obviously still write out .o
files, they just rely on having an external assembler to translate from a .s
file to a .o file (as is the case for many C compilers).</p>

</div>

<!-- _______________________________________________________________________ -->
<h4 id="feat_tailcall">Tail Calls</h4>

<div>

<p>This box indicates whether the target supports guaranteed tail calls.  These
are calls marked "<a href="LangRef.html#i_call">tail</a>" and use the fastcc
calling convention.  Please see the <a href="#tailcallopt">tail call section
more more details</a>.</p>

</div>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="tailcallopt">Tail call optimization</a>
</h3>

<div>

<p>Tail call optimization, callee reusing the stack of the caller, is currently
   supported on x86/x86-64 and PowerPC. It is performed if:</p>

<ul>
  <li>Caller and callee have the calling convention <tt>fastcc</tt> or
       <tt>cc 10</tt> (GHC call convention).</li>

  <li>The call is a tail call - in tail position (ret immediately follows call
      and ret uses value of call or is void).</li>

  <li>Option <tt>-tailcallopt</tt> is enabled.</li>

  <li>Platform specific constraints are met.</li>
</ul>

<p>x86/x86-64 constraints:</p>

<ul>
  <li>No variable argument lists are used.</li>

  <li>On x86-64 when generating GOT/PIC code only module-local calls (visibility
  = hidden or protected) are supported.</li>
</ul>

<p>PowerPC constraints:</p>

<ul>
  <li>No variable argument lists are used.</li>

  <li>No byval parameters are used.</li>

  <li>On ppc32/64 GOT/PIC only module-local calls (visibility = hidden or protected) are supported.</li>
</ul>

<p>Example:</p>

<p>Call as <tt>llc -tailcallopt test.ll</tt>.</p>

<div class="doc_code">
<pre>
declare fastcc i32 @tailcallee(i32 inreg %a1, i32 inreg %a2, i32 %a3, i32 %a4)

define fastcc i32 @tailcaller(i32 %in1, i32 %in2) {
  %l1 = add i32 %in1, %in2
  %tmp = tail call fastcc i32 @tailcallee(i32 %in1 inreg, i32 %in2 inreg, i32 %in1, i32 %l1)
  ret i32 %tmp
}
</pre>
</div>

<p>Implications of <tt>-tailcallopt</tt>:</p>

<p>To support tail call optimization in situations where the callee has more
   arguments than the caller a 'callee pops arguments' convention is used. This
   currently causes each <tt>fastcc</tt> call that is not tail call optimized
   (because one or more of above constraints are not met) to be followed by a
   readjustment of the stack. So performance might be worse in such cases.</p>

</div>
<!-- ======================================================================= -->
<h3>
  <a name="sibcallopt">Sibling call optimization</a>
</h3>

<div>

<p>Sibling call optimization is a restricted form of tail call optimization.
   Unlike tail call optimization described in the previous section, it can be
   performed automatically on any tail calls when <tt>-tailcallopt</tt> option
   is not specified.</p>

<p>Sibling call optimization is currently performed on x86/x86-64 when the
   following constraints are met:</p>

<ul>
  <li>Caller and callee have the same calling convention. It can be either
      <tt>c</tt> or <tt>fastcc</tt>.

  <li>The call is a tail call - in tail position (ret immediately follows call
      and ret uses value of call or is void).</li>

  <li>Caller and callee have matching return type or the callee result is not
      used.

  <li>If any of the callee arguments are being passed in stack, they must be
      available in caller's own incoming argument stack and the frame offsets
      must be the same.
</ul>

<p>Example:</p>
<div class="doc_code">
<pre>
declare i32 @bar(i32, i32)

define i32 @foo(i32 %a, i32 %b, i32 %c) {
entry:
  %0 = tail call i32 @bar(i32 %a, i32 %b)
  ret i32 %0
}
</pre>
</div>

</div>
<!-- ======================================================================= -->
<h3>
  <a name="x86">The X86 backend</a>
</h3>

<div>

<p>The X86 code generator lives in the <tt>lib/Target/X86</tt> directory.  This
   code generator is capable of targeting a variety of x86-32 and x86-64
   processors, and includes support for ISA extensions such as MMX and SSE.</p>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="x86_tt">X86 Target Triples supported</a>
</h4>

<div>

<p>The following are the known target triples that are supported by the X86
   backend.  This is not an exhaustive list, and it would be useful to add those
   that people test.</p>

<ul>
  <li><b>i686-pc-linux-gnu</b> &mdash; Linux</li>

  <li><b>i386-unknown-freebsd5.3</b> &mdash; FreeBSD 5.3</li>

  <li><b>i686-pc-cygwin</b> &mdash; Cygwin on Win32</li>

  <li><b>i686-pc-mingw32</b> &mdash; MingW on Win32</li>

  <li><b>i386-pc-mingw32msvc</b> &mdash; MingW crosscompiler on Linux</li>

  <li><b>i686-apple-darwin*</b> &mdash; Apple Darwin on X86</li>

  <li><b>x86_64-unknown-linux-gnu</b> &mdash; Linux</li>
</ul>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="x86_cc">X86 Calling Conventions supported</a>
</h4>


<div>

<p>The following target-specific calling conventions are known to backend:</p>

<ul>
<li><b>x86_StdCall</b> &mdash; stdcall calling convention seen on Microsoft
    Windows platform (CC ID = 64).</li>
<li><b>x86_FastCall</b> &mdash; fastcall calling convention seen on Microsoft
    Windows platform (CC ID = 65).</li>
<li><b>x86_ThisCall</b> &mdash; Similar to X86_StdCall. Passes first argument
    in ECX,  others via stack. Callee is responsible for stack cleaning. This
    convention is used by MSVC by default for methods in its ABI
    (CC ID = 70).</li>
</ul>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="x86_memory">Representing X86 addressing modes in MachineInstrs</a>
</h4>

<div>

<p>The x86 has a very flexible way of accessing memory.  It is capable of
   forming memory addresses of the following expression directly in integer
   instructions (which use ModR/M addressing):</p>

<div class="doc_code">
<pre>
SegmentReg: Base + [1,2,4,8] * IndexReg + Disp32
</pre>
</div>

<p>In order to represent this, LLVM tracks no less than 5 operands for each
   memory operand of this form.  This means that the "load" form of
   '<tt>mov</tt>' has the following <tt>MachineOperand</tt>s in this order:</p>

<div class="doc_code">
<pre>
Index:        0     |    1        2       3           4          5
Meaning:   DestReg, | BaseReg,  Scale, IndexReg, Displacement Segment
OperandTy: VirtReg, | VirtReg, UnsImm, VirtReg,   SignExtImm  PhysReg
</pre>
</div>

<p>Stores, and all other instructions, treat the four memory operands in the
   same way and in the same order.  If the segment register is unspecified
   (regno = 0), then no segment override is generated.  "Lea" operations do not
   have a segment register specified, so they only have 4 operands for their
   memory reference.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="x86_memory">X86 address spaces supported</a>
</h4>

<div>

<p>x86 has a feature which provides
   the ability to perform loads and stores to different address spaces
   via the x86 segment registers.  A segment override prefix byte on an
   instruction causes the instruction's memory access to go to the specified
   segment.  LLVM address space 0 is the default address space, which includes
   the stack, and any unqualified memory accesses in a program.  Address spaces
   1-255 are currently reserved for user-defined code.  The GS-segment is
   represented by address space 256, while the FS-segment is represented by 
   address space 257. Other x86 segments have yet to be allocated address space
   numbers.</p>

<p>While these address spaces may seem similar to TLS via the
   <tt>thread_local</tt> keyword, and often use the same underlying hardware,
   there are some fundamental differences.</p>

<p>The <tt>thread_local</tt> keyword applies to global variables and
   specifies that they are to be allocated in thread-local memory. There are
   no type qualifiers involved, and these variables can be pointed to with
   normal pointers and accessed with normal loads and stores.
   The <tt>thread_local</tt> keyword is target-independent at the LLVM IR
   level (though LLVM doesn't yet have implementations of it for some
   configurations).<p>

<p>Special address spaces, in contrast, apply to static types. Every
   load and store has a particular address space in its address operand type,
   and this is what determines which address space is accessed.
   LLVM ignores these special address space qualifiers on global variables,
   and does not provide a way to directly allocate storage in them.
   At the LLVM IR level, the behavior of these special address spaces depends
   in part on the underlying OS or runtime environment, and they are specific
   to x86 (and LLVM doesn't yet handle them correctly in some cases).</p>

<p>Some operating systems and runtime environments use (or may in the future
   use) the FS/GS-segment registers for various low-level purposes, so care
   should be taken when considering them.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="x86_names">Instruction naming</a>
</h4>

<div>

<p>An instruction name consists of the base name, a default operand size, and a
   a character per operand with an optional special size. For example:</p>

<div class="doc_code">
<pre>
ADD8rr      -&gt; add, 8-bit register, 8-bit register
IMUL16rmi   -&gt; imul, 16-bit register, 16-bit memory, 16-bit immediate
IMUL16rmi8  -&gt; imul, 16-bit register, 16-bit memory, 8-bit immediate
MOVSX32rm16 -&gt; movsx, 32-bit register, 16-bit memory
</pre>
</div>

</div>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="ppc">The PowerPC backend</a>
</h3>

<div>

<p>The PowerPC code generator lives in the lib/Target/PowerPC directory.  The
   code generation is retargetable to several variations or <i>subtargets</i> of
   the PowerPC ISA; including ppc32, ppc64 and altivec.</p>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="ppc_abi">LLVM PowerPC ABI</a>
</h4>

<div>

<p>LLVM follows the AIX PowerPC ABI, with two deviations. LLVM uses a PC
   relative (PIC) or static addressing for accessing global values, so no TOC
   (r2) is used. Second, r31 is used as a frame pointer to allow dynamic growth
   of a stack frame.  LLVM takes advantage of having no TOC to provide space to
   save the frame pointer in the PowerPC linkage area of the caller frame.
   Other details of PowerPC ABI can be found at <a href=
   "http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html"
   >PowerPC ABI.</a> Note: This link describes the 32 bit ABI.  The 64 bit ABI
   is similar except space for GPRs are 8 bytes wide (not 4) and r13 is reserved
   for system use.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="ppc_frame">Frame Layout</a>
</h4>

<div>

<p>The size of a PowerPC frame is usually fixed for the duration of a
   function's invocation.  Since the frame is fixed size, all references
   into the frame can be accessed via fixed offsets from the stack pointer.  The
   exception to this is when dynamic alloca or variable sized arrays are
   present, then a base pointer (r31) is used as a proxy for the stack pointer
   and stack pointer is free to grow or shrink.  A base pointer is also used if
   llvm-gcc is not passed the -fomit-frame-pointer flag. The stack pointer is
   always aligned to 16 bytes, so that space allocated for altivec vectors will
   be properly aligned.</p>

<p>An invocation frame is laid out as follows (low memory at top);</p>

<table class="layout">
  <tr>
    <td>Linkage<br><br></td>
  </tr>
  <tr>
    <td>Parameter area<br><br></td>
  </tr>
  <tr>
    <td>Dynamic area<br><br></td>
  </tr>
  <tr>
    <td>Locals area<br><br></td>
  </tr>
  <tr>
    <td>Saved registers area<br><br></td>
  </tr>
  <tr style="border-style: none hidden none hidden;">
    <td><br></td>
  </tr>
  <tr>
    <td>Previous Frame<br><br></td>
  </tr>
</table>

<p>The <i>linkage</i> area is used by a callee to save special registers prior
   to allocating its own frame.  Only three entries are relevant to LLVM. The
   first entry is the previous stack pointer (sp), aka link.  This allows
   probing tools like gdb or exception handlers to quickly scan the frames in
   the stack.  A function epilog can also use the link to pop the frame from the
   stack.  The third entry in the linkage area is used to save the return
   address from the lr register. Finally, as mentioned above, the last entry is
   used to save the previous frame pointer (r31.)  The entries in the linkage
   area are the size of a GPR, thus the linkage area is 24 bytes long in 32 bit
   mode and 48 bytes in 64 bit mode.</p>

<p>32 bit linkage area</p>

<table class="layout">
  <tr>
    <td>0</td>
    <td>Saved SP (r1)</td>
  </tr>
  <tr>
    <td>4</td>
    <td>Saved CR</td>
  </tr>
  <tr>
    <td>8</td>
    <td>Saved LR</td>
  </tr>
  <tr>
    <td>12</td>
    <td>Reserved</td>
  </tr>
  <tr>
    <td>16</td>
    <td>Reserved</td>
  </tr>
  <tr>
    <td>20</td>
    <td>Saved FP (r31)</td>
  </tr>
</table>

<p>64 bit linkage area</p>

<table class="layout">
  <tr>
    <td>0</td>
    <td>Saved SP (r1)</td>
  </tr>
  <tr>
    <td>8</td>
    <td>Saved CR</td>
  </tr>
  <tr>
    <td>16</td>
    <td>Saved LR</td>
  </tr>
  <tr>
    <td>24</td>
    <td>Reserved</td>
  </tr>
  <tr>
    <td>32</td>
    <td>Reserved</td>
  </tr>
  <tr>
    <td>40</td>
    <td>Saved FP (r31)</td>
  </tr>
</table>

<p>The <i>parameter area</i> is used to store arguments being passed to a callee
   function.  Following the PowerPC ABI, the first few arguments are actually
   passed in registers, with the space in the parameter area unused.  However,
   if there are not enough registers or the callee is a thunk or vararg
   function, these register arguments can be spilled into the parameter area.
   Thus, the parameter area must be large enough to store all the parameters for
   the largest call sequence made by the caller.  The size must also be
   minimally large enough to spill registers r3-r10.  This allows callees blind
   to the call signature, such as thunks and vararg functions, enough space to
   cache the argument registers.  Therefore, the parameter area is minimally 32
   bytes (64 bytes in 64 bit mode.)  Also note that since the parameter area is
   a fixed offset from the top of the frame, that a callee can access its spilt
   arguments using fixed offsets from the stack pointer (or base pointer.)</p>

<p>Combining the information about the linkage, parameter areas and alignment. A
   stack frame is minimally 64 bytes in 32 bit mode and 128 bytes in 64 bit
   mode.</p>

<p>The <i>dynamic area</i> starts out as size zero.  If a function uses dynamic
   alloca then space is added to the stack, the linkage and parameter areas are
   shifted to top of stack, and the new space is available immediately below the
   linkage and parameter areas.  The cost of shifting the linkage and parameter
   areas is minor since only the link value needs to be copied.  The link value
   can be easily fetched by adding the original frame size to the base pointer.
   Note that allocations in the dynamic space need to observe 16 byte
   alignment.</p>

<p>The <i>locals area</i> is where the llvm compiler reserves space for local
   variables.</p>

<p>The <i>saved registers area</i> is where the llvm compiler spills callee
   saved registers on entry to the callee.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="ppc_prolog">Prolog/Epilog</a>
</h4>

<div>

<p>The llvm prolog and epilog are the same as described in the PowerPC ABI, with
   the following exceptions.  Callee saved registers are spilled after the frame
   is created.  This allows the llvm epilog/prolog support to be common with
   other targets.  The base pointer callee saved register r31 is saved in the
   TOC slot of linkage area.  This simplifies allocation of space for the base
   pointer and makes it convenient to locate programatically and during
   debugging.</p>

</div>

<!-- _______________________________________________________________________ -->
<h4>
  <a name="ppc_dynamic">Dynamic Allocation</a>
</h4>

<div>

<p><i>TODO - More to come.</i></p>

</div>

</div>

<!-- ======================================================================= -->
<h3>
  <a name="ptx">The PTX backend</a>
</h3>

<div>

<p>The PTX code generator lives in the lib/Target/PTX directory. It is
  currently a work-in-progress, but already supports most of the code
  generation functionality needed to generate correct PTX kernels for
  CUDA devices.</p>

<p>The code generator can target PTX 2.0+, and shader model 1.0+.  The
  PTX ISA Reference Manual is used as the primary source of ISA
  information, though an effort is made to make the output of the code
  generator match the output of the NVidia nvcc compiler, whenever
  possible.</p>

<p>Code Generator Options:</p>
<table border="1" cellspacing="0">
  <tr>
    <th>Option</th>
    <th>Description</th>
 </tr>
   <tr>
     <td><code>double</code></td>
     <td align="left">If enabled, the map_f64_to_f32 directive is
       disabled in the PTX output, allowing native double-precision
       arithmetic</td>
  </tr>
  <tr>
    <td><code>no-fma</code></td>
    <td align="left">Disable generation of Fused-Multiply Add
      instructions, which may be beneficial for some devices</td>
  </tr>
  <tr>
    <td><code>smxy / computexy</code></td>
    <td align="left">Set shader model/compute capability to x.y,
    e.g. sm20 or compute13</td>
  </tr>
</table>

<p>Working:</p>
<ul>
  <li>Arithmetic instruction selection (including combo FMA)</li>
  <li>Bitwise instruction selection</li>
  <li>Control-flow instruction selection</li>
  <li>Function calls (only on SM 2.0+ and no return arguments)</li>
  <li>Addresses spaces (0 = global, 1 = constant, 2 = local, 4 =
  shared)</li>
  <li>Thread synchronization (bar.sync)</li>
  <li>Special register reads ([N]TID, [N]CTAID, PMx, CLOCK, etc.)</li>
</ul>

<p>In Progress:</p>
<ul>
  <li>Robust call instruction selection</li>
  <li>Stack frame allocation</li>
  <li>Device-specific instruction scheduling optimizations</li>
</ul>


</div>

</div>

<!-- *********************************************************************** -->
<hr>
<address>
  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
  <a href="http://validator.w3.org/check/referer"><img
  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>

  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
  Last modified: $Date: 2011-11-03 07:43:54 +0100 (Thu, 03 Nov 2011) $
</address>

</body>
</html>