aboutsummaryrefslogtreecommitdiff
path: root/include/apr_pools.h
blob: 0f0b95e56adc4157817d5ce5f0fbeb412fa51300 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
/* Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef APR_POOLS_H
#define APR_POOLS_H

/**
 * @file apr_pools.h
 * @brief APR memory allocation
 *
 * Resource allocation routines...
 *
 * designed so that we don't have to keep track of EVERYTHING so that
 * it can be explicitly freed later (a fundamentally unsound strategy ---
 * particularly in the presence of die()).
 *
 * Instead, we maintain pools, and allocate items (both memory and I/O
 * handlers) from the pools --- currently there are two, one for
 * per-transaction info, and one for config info.  When a transaction is
 * over, we can delete everything in the per-transaction apr_pool_t without
 * fear, and without thinking too hard about it either.
 *
 * Note that most operations on pools are not thread-safe: a single pool
 * should only be accessed by a single thread at any given time. The one
 * exception to this rule is creating a subpool of a given pool: one or more
 * threads can safely create subpools at the same time that another thread
 * accesses the parent pool.
 */

#include "apr.h"
#include "apr_errno.h"
#include "apr_general.h" /* for APR_STRINGIFY */
#define APR_WANT_MEMFUNC /**< for no good reason? */
#include "apr_want.h"

#ifdef __cplusplus
extern "C" {
#endif

/**
 * @defgroup apr_pools Memory Pool Functions
 * @ingroup APR 
 * @{
 */

/** The fundamental pool type */
typedef struct apr_pool_t apr_pool_t;


/**
 * Declaration helper macro to construct apr_foo_pool_get()s.
 *
 * This standardized macro is used by opaque (APR) data types to return
 * the apr_pool_t that is associated with the data type.
 *
 * APR_POOL_DECLARE_ACCESSOR() is used in a header file to declare the
 * accessor function. A typical usage and result would be:
 * <pre>
 *    APR_POOL_DECLARE_ACCESSOR(file);
 * becomes:
 *    APR_DECLARE(apr_pool_t *) apr_file_pool_get(apr_file_t *ob);
 * </pre>
 * @remark Doxygen unwraps this macro (via doxygen.conf) to provide 
 * actual help for each specific occurance of apr_foo_pool_get.
 * @remark the linkage is specified for APR. It would be possible to expand
 *       the macros to support other linkages.
 */
#define APR_POOL_DECLARE_ACCESSOR(type) \
    APR_DECLARE(apr_pool_t *) apr_##type##_pool_get \
        (const apr_##type##_t *the##type)

/** 
 * Implementation helper macro to provide apr_foo_pool_get()s.
 *
 * In the implementation, the APR_POOL_IMPLEMENT_ACCESSOR() is used to
 * actually define the function. It assumes the field is named "pool".
 */
#define APR_POOL_IMPLEMENT_ACCESSOR(type) \
    APR_DECLARE(apr_pool_t *) apr_##type##_pool_get \
            (const apr_##type##_t *the##type) \
        { return the##type->pool; }


/**
 * Pool debug levels
 *
 * <pre>
 * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
 * ---------------------------------
 * |   |   |   |   |   |   |   | x |  General debug code enabled (useful in
 *                                    combination with --with-efence).
 *
 * |   |   |   |   |   |   | x |   |  Verbose output on stderr (report
 *                                    CREATE, CLEAR, DESTROY).
 *
 * |   |   |   | x |   |   |   |   |  Verbose output on stderr (report
 *                                    PALLOC, PCALLOC).
 *
 * |   |   |   |   |   | x |   |   |  Lifetime checking. On each use of a
 *                                    pool, check its lifetime.  If the pool
 *                                    is out of scope, abort().
 *                                    In combination with the verbose flag
 *                                    above, it will output LIFE in such an
 *                                    event prior to aborting.
 *
 * |   |   |   |   | x |   |   |   |  Pool owner checking.  On each use of a
 *                                    pool, check if the current thread is the
 *                                    pools owner.  If not, abort().  In
 *                                    combination with the verbose flag above,
 *                                    it will output OWNER in such an event
 *                                    prior to aborting.  Use the debug
 *                                    function apr_pool_owner_set() to switch
 *                                    a pools ownership.
 *
 * When no debug level was specified, assume general debug mode.
 * If level 0 was specified, debugging is switched off
 * </pre>
 */
#if defined(APR_POOL_DEBUG)
/* If APR_POOL_DEBUG is blank, we get 1; if it is a number, we get -1. */
#if (APR_POOL_DEBUG - APR_POOL_DEBUG -1 == 1)
#undef APR_POOL_DEBUG
#define APR_POOL_DEBUG 1
#endif
#else
#define APR_POOL_DEBUG 0
#endif

/** the place in the code where the particular function was called */
#define APR_POOL__FILE_LINE__ __FILE__ ":" APR_STRINGIFY(__LINE__)



/** A function that is called when allocation fails. */
typedef int (*apr_abortfunc_t)(int retcode);

/*
 * APR memory structure manipulators (pools, tables, and arrays).
 */

/*
 * Initialization
 */

/**
 * Setup all of the internal structures required to use pools
 * @remark Programs do NOT need to call this directly.  APR will call this
 *      automatically from apr_initialize.
 * @internal
 */
APR_DECLARE(apr_status_t) apr_pool_initialize(void);

/**
 * Tear down all of the internal structures required to use pools
 * @remark Programs do NOT need to call this directly.  APR will call this
 *      automatically from apr_terminate.
 * @internal
 */
APR_DECLARE(void) apr_pool_terminate(void);


/*
 * Pool creation/destruction
 */

#include "apr_allocator.h"

/**
 * Create a new pool.
 * @param newpool The pool we have just created.
 * @param parent The parent pool.  If this is NULL, the new pool is a root
 *        pool.  If it is non-NULL, the new pool will inherit all
 *        of its parent pool's attributes, except the apr_pool_t will
 *        be a sub-pool.
 * @param abort_fn A function to use if the pool cannot allocate more memory.
 * @param allocator The allocator to use with the new pool.  If NULL the
 *        allocator of the parent pool will be used.
 * @remark This function is thread-safe, in the sense that multiple threads
 *         can safely create subpools of the same parent pool concurrently.
 *         Similarly, a subpool can be created by one thread at the same
 *         time that another thread accesses the parent pool.
 */
APR_DECLARE(apr_status_t) apr_pool_create_ex(apr_pool_t **newpool,
                                             apr_pool_t *parent,
                                             apr_abortfunc_t abort_fn,
                                             apr_allocator_t *allocator)
                          __attribute__((nonnull(1)));

/**
 * Create a new pool.
 * @deprecated @see apr_pool_create_unmanaged_ex.
 */
APR_DECLARE(apr_status_t) apr_pool_create_core_ex(apr_pool_t **newpool,
                                                  apr_abortfunc_t abort_fn,
                                                  apr_allocator_t *allocator);

/**
 * Create a new unmanaged pool.
 * @param newpool The pool we have just created.
 * @param abort_fn A function to use if the pool cannot allocate more memory.
 * @param allocator The allocator to use with the new pool.  If NULL a
 *        new allocator will be crated with newpool as owner.
 * @remark An unmanaged pool is a special pool without a parent; it will
 *         NOT be destroyed upon apr_terminate.  It must be explicitly
 *         destroyed by calling apr_pool_destroy, to prevent memory leaks.
 *         Use of this function is discouraged, think twice about whether
 *         you really really need it.
 */
APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex(apr_pool_t **newpool,
                                                   apr_abortfunc_t abort_fn,
                                                   apr_allocator_t *allocator)
                          __attribute__((nonnull(1)));

/**
 * Debug version of apr_pool_create_ex.
 * @param newpool @see apr_pool_create.
 * @param parent @see apr_pool_create.
 * @param abort_fn @see apr_pool_create.
 * @param allocator @see apr_pool_create.
 * @param file_line Where the function is called from.
 *        This is usually APR_POOL__FILE_LINE__.
 * @remark Only available when APR_POOL_DEBUG is defined.
 *         Call this directly if you have you apr_pool_create_ex
 *         calls in a wrapper function and wish to override
 *         the file_line argument to reflect the caller of
 *         your wrapper function.  If you do not have
 *         apr_pool_create_ex in a wrapper, trust the macro
 *         and don't call apr_pool_create_ex_debug directly.
 */
APR_DECLARE(apr_status_t) apr_pool_create_ex_debug(apr_pool_t **newpool,
                                                   apr_pool_t *parent,
                                                   apr_abortfunc_t abort_fn,
                                                   apr_allocator_t *allocator,
                                                   const char *file_line)
                          __attribute__((nonnull(1)));

#if APR_POOL_DEBUG
#define apr_pool_create_ex(newpool, parent, abort_fn, allocator)  \
    apr_pool_create_ex_debug(newpool, parent, abort_fn, allocator, \
                             APR_POOL__FILE_LINE__)
#endif

/**
 * Debug version of apr_pool_create_core_ex.
 * @deprecated @see apr_pool_create_unmanaged_ex_debug.
 */
APR_DECLARE(apr_status_t) apr_pool_create_core_ex_debug(apr_pool_t **newpool,
                                                   apr_abortfunc_t abort_fn,
                                                   apr_allocator_t *allocator,
                                                   const char *file_line);

/**
 * Debug version of apr_pool_create_unmanaged_ex.
 * @param newpool @see apr_pool_create_unmanaged.
 * @param abort_fn @see apr_pool_create_unmanaged.
 * @param allocator @see apr_pool_create_unmanaged.
 * @param file_line Where the function is called from.
 *        This is usually APR_POOL__FILE_LINE__.
 * @remark Only available when APR_POOL_DEBUG is defined.
 *         Call this directly if you have you apr_pool_create_unmanaged_ex
 *         calls in a wrapper function and wish to override
 *         the file_line argument to reflect the caller of
 *         your wrapper function.  If you do not have
 *         apr_pool_create_core_ex in a wrapper, trust the macro
 *         and don't call apr_pool_create_core_ex_debug directly.
 */
APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex_debug(apr_pool_t **newpool,
                                                   apr_abortfunc_t abort_fn,
                                                   apr_allocator_t *allocator,
                                                   const char *file_line)
                          __attribute__((nonnull(1)));

#if APR_POOL_DEBUG
#define apr_pool_create_core_ex(newpool, abort_fn, allocator)  \
    apr_pool_create_unmanaged_ex_debug(newpool, abort_fn, allocator, \
                                  APR_POOL__FILE_LINE__)

#define apr_pool_create_unmanaged_ex(newpool, abort_fn, allocator)  \
    apr_pool_create_unmanaged_ex_debug(newpool, abort_fn, allocator, \
                                  APR_POOL__FILE_LINE__)

#endif

/**
 * Create a new pool.
 * @param newpool The pool we have just created.
 * @param parent The parent pool.  If this is NULL, the new pool is a root
 *        pool.  If it is non-NULL, the new pool will inherit all
 *        of its parent pool's attributes, except the apr_pool_t will
 *        be a sub-pool.
 * @remark This function is thread-safe, in the sense that multiple threads
 *         can safely create subpools of the same parent pool concurrently.
 *         Similarly, a subpool can be created by one thread at the same
 *         time that another thread accesses the parent pool.
 */
#if defined(DOXYGEN)
APR_DECLARE(apr_status_t) apr_pool_create(apr_pool_t **newpool,
                                          apr_pool_t *parent);
#else
#if APR_POOL_DEBUG
#define apr_pool_create(newpool, parent) \
    apr_pool_create_ex_debug(newpool, parent, NULL, NULL, \
                             APR_POOL__FILE_LINE__)
#else
#define apr_pool_create(newpool, parent) \
    apr_pool_create_ex(newpool, parent, NULL, NULL)
#endif
#endif

/**
 * Create a new pool.
 * @param newpool The pool we have just created.
 */
#if defined(DOXYGEN)
APR_DECLARE(apr_status_t) apr_pool_create_core(apr_pool_t **newpool);
APR_DECLARE(apr_status_t) apr_pool_create_unmanaged(apr_pool_t **newpool);
#else
#if APR_POOL_DEBUG
#define apr_pool_create_core(newpool) \
    apr_pool_create_unmanaged_ex_debug(newpool, NULL, NULL, \
                                  APR_POOL__FILE_LINE__)
#define apr_pool_create_unmanaged(newpool) \
    apr_pool_create_unmanaged_ex_debug(newpool, NULL, NULL, \
                                  APR_POOL__FILE_LINE__)
#else
#define apr_pool_create_core(newpool) \
    apr_pool_create_unmanaged_ex(newpool, NULL, NULL)
#define apr_pool_create_unmanaged(newpool) \
    apr_pool_create_unmanaged_ex(newpool, NULL, NULL)
#endif
#endif

/**
 * Find the pool's allocator
 * @param pool The pool to get the allocator from.
 */
APR_DECLARE(apr_allocator_t *) apr_pool_allocator_get(apr_pool_t *pool)
                               __attribute__((nonnull(1)));

/**
 * Clear all memory in the pool and run all the cleanups. This also destroys all
 * subpools.
 * @param p The pool to clear
 * @remark This does not actually free the memory, it just allows the pool
 *         to re-use this memory for the next allocation.
 * @see apr_pool_destroy()
 */
APR_DECLARE(void) apr_pool_clear(apr_pool_t *p) __attribute__((nonnull(1)));

/**
 * Debug version of apr_pool_clear.
 * @param p See: apr_pool_clear.
 * @param file_line Where the function is called from.
 *        This is usually APR_POOL__FILE_LINE__.
 * @remark Only available when APR_POOL_DEBUG is defined.
 *         Call this directly if you have you apr_pool_clear
 *         calls in a wrapper function and wish to override
 *         the file_line argument to reflect the caller of
 *         your wrapper function.  If you do not have
 *         apr_pool_clear in a wrapper, trust the macro
 *         and don't call apr_pool_destroy_clear directly.
 */
APR_DECLARE(void) apr_pool_clear_debug(apr_pool_t *p,
                                       const char *file_line)
                  __attribute__((nonnull(1)));

#if APR_POOL_DEBUG
#define apr_pool_clear(p) \
    apr_pool_clear_debug(p, APR_POOL__FILE_LINE__)
#endif

/**
 * Destroy the pool. This takes similar action as apr_pool_clear() and then
 * frees all the memory.
 * @param p The pool to destroy
 * @remark This will actually free the memory
 */
APR_DECLARE(void) apr_pool_destroy(apr_pool_t *p) __attribute__((nonnull(1)));

/**
 * Debug version of apr_pool_destroy.
 * @param p See: apr_pool_destroy.
 * @param file_line Where the function is called from.
 *        This is usually APR_POOL__FILE_LINE__.
 * @remark Only available when APR_POOL_DEBUG is defined.
 *         Call this directly if you have you apr_pool_destroy
 *         calls in a wrapper function and wish to override
 *         the file_line argument to reflect the caller of
 *         your wrapper function.  If you do not have
 *         apr_pool_destroy in a wrapper, trust the macro
 *         and don't call apr_pool_destroy_debug directly.
 */
APR_DECLARE(void) apr_pool_destroy_debug(apr_pool_t *p,
                                         const char *file_line)
                  __attribute__((nonnull(1)));

#if APR_POOL_DEBUG
#define apr_pool_destroy(p) \
    apr_pool_destroy_debug(p, APR_POOL__FILE_LINE__)
#endif


/*
 * Memory allocation
 */

/**
 * Allocate a block of memory from a pool
 * @param p The pool to allocate from
 * @param size The amount of memory to allocate
 * @return The allocated memory
 */
APR_DECLARE(void *) apr_palloc(apr_pool_t *p, apr_size_t size)
#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4))
                    __attribute__((alloc_size(2)))
#endif
                    __attribute__((nonnull(1)));

/**
 * Debug version of apr_palloc
 * @param p See: apr_palloc
 * @param size See: apr_palloc
 * @param file_line Where the function is called from.
 *        This is usually APR_POOL__FILE_LINE__.
 * @return See: apr_palloc
 */
APR_DECLARE(void *) apr_palloc_debug(apr_pool_t *p, apr_size_t size,
                                     const char *file_line)
#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4))
                    __attribute__((alloc_size(2)))
#endif
                    __attribute__((nonnull(1)));

#if APR_POOL_DEBUG
#define apr_palloc(p, size) \
    apr_palloc_debug(p, size, APR_POOL__FILE_LINE__)
#endif

/**
 * Allocate a block of memory from a pool and set all of the memory to 0
 * @param p The pool to allocate from
 * @param size The amount of memory to allocate
 * @return The allocated memory
 */
#if defined(DOXYGEN)
APR_DECLARE(void *) apr_pcalloc(apr_pool_t *p, apr_size_t size);
#elif !APR_POOL_DEBUG
#define apr_pcalloc(p, size) memset(apr_palloc(p, size), 0, size)
#endif

/**
 * Debug version of apr_pcalloc
 * @param p See: apr_pcalloc
 * @param size See: apr_pcalloc
 * @param file_line Where the function is called from.
 *        This is usually APR_POOL__FILE_LINE__.
 * @return See: apr_pcalloc
 */
APR_DECLARE(void *) apr_pcalloc_debug(apr_pool_t *p, apr_size_t size,
                                      const char *file_line)
                    __attribute__((nonnull(1)));

#if APR_POOL_DEBUG
#define apr_pcalloc(p, size) \
    apr_pcalloc_debug(p, size, APR_POOL__FILE_LINE__)
#endif


/*
 * Pool Properties
 */

/**
 * Set the function to be called when an allocation failure occurs.
 * @remark If the program wants APR to exit on a memory allocation error,
 *      then this function can be called to set the callback to use (for
 *      performing cleanup and then exiting). If this function is not called,
 *      then APR will return an error and expect the calling program to
 *      deal with the error accordingly.
 */
APR_DECLARE(void) apr_pool_abort_set(apr_abortfunc_t abortfunc,
                                     apr_pool_t *pool)
                  __attribute__((nonnull(2)));

/**
 * Get the abort function associated with the specified pool.
 * @param pool The pool for retrieving the abort function.
 * @return The abort function for the given pool.
 */
APR_DECLARE(apr_abortfunc_t) apr_pool_abort_get(apr_pool_t *pool)
                             __attribute__((nonnull(1)));

/**
 * Get the parent pool of the specified pool.
 * @param pool The pool for retrieving the parent pool.
 * @return The parent of the given pool.
 */
APR_DECLARE(apr_pool_t *) apr_pool_parent_get(apr_pool_t *pool)
                          __attribute__((nonnull(1)));

/**
 * Determine if pool a is an ancestor of pool b.
 * @param a The pool to search
 * @param b The pool to search for
 * @return True if a is an ancestor of b, NULL is considered an ancestor
 *         of all pools.
 * @remark if compiled with APR_POOL_DEBUG, this function will also
 * return true if A is a pool which has been guaranteed by the caller
 * (using apr_pool_join) to have a lifetime at least as long as some
 * ancestor of pool B.
 */
APR_DECLARE(int) apr_pool_is_ancestor(apr_pool_t *a, apr_pool_t *b);

/**
 * Tag a pool (give it a name)
 * @param pool The pool to tag
 * @param tag  The tag
 */
APR_DECLARE(void) apr_pool_tag(apr_pool_t *pool, const char *tag)
                  __attribute__((nonnull(1)));


/*
 * User data management
 */

/**
 * Set the data associated with the current pool
 * @param data The user data associated with the pool.
 * @param key The key to use for association
 * @param cleanup The cleanup program to use to cleanup the data (NULL if none)
 * @param pool The current pool
 * @warning The data to be attached to the pool should have a life span
 *          at least as long as the pool it is being attached to.
 *
 *      Users of APR must take EXTREME care when choosing a key to
 *      use for their data.  It is possible to accidentally overwrite
 *      data by choosing a key that another part of the program is using.
 *      Therefore it is advised that steps are taken to ensure that unique
 *      keys are used for all of the userdata objects in a particular pool
 *      (the same key in two different pools or a pool and one of its
 *      subpools is okay) at all times.  Careful namespace prefixing of
 *      key names is a typical way to help ensure this uniqueness.
 *
 */
APR_DECLARE(apr_status_t) apr_pool_userdata_set(const void *data,
                                                const char *key,
                                                apr_status_t (*cleanup)(void *),
                                                apr_pool_t *pool)
                          __attribute__((nonnull(2,4)));

/**
 * Set the data associated with the current pool
 * @param data The user data associated with the pool.
 * @param key The key to use for association
 * @param cleanup The cleanup program to use to cleanup the data (NULL if none)
 * @param pool The current pool
 * @note same as apr_pool_userdata_set(), except that this version doesn't
 *       make a copy of the key (this function is useful, for example, when
 *       the key is a string literal)
 * @warning This should NOT be used if the key could change addresses by
 *       any means between the apr_pool_userdata_setn() call and a
 *       subsequent apr_pool_userdata_get() on that key, such as if a
 *       static string is used as a userdata key in a DSO and the DSO could
 *       be unloaded and reloaded between the _setn() and the _get().  You
 *       MUST use apr_pool_userdata_set() in such cases.
 * @warning More generally, the key and the data to be attached to the
 *       pool should have a life span at least as long as the pool itself.
 *
 */
APR_DECLARE(apr_status_t) apr_pool_userdata_setn(
                                const void *data, const char *key,
                                apr_status_t (*cleanup)(void *),
                                apr_pool_t *pool)
                          __attribute__((nonnull(2,4)));

/**
 * Return the data associated with the current pool.
 * @param data The user data associated with the pool.
 * @param key The key for the data to retrieve
 * @param pool The current pool.
 */
APR_DECLARE(apr_status_t) apr_pool_userdata_get(void **data, const char *key,
                                                apr_pool_t *pool)
                          __attribute__((nonnull(1,2,3)));


/**
 * @defgroup PoolCleanup  Pool Cleanup Functions
 *
 * Cleanups are performed in the reverse order they were registered.  That is:
 * Last In, First Out.  A cleanup function can safely allocate memory from
 * the pool that is being cleaned up. It can also safely register additional
 * cleanups which will be run LIFO, directly after the current cleanup
 * terminates.  Cleanups have to take caution in calling functions that
 * create subpools. Subpools, created during cleanup will NOT automatically
 * be cleaned up.  In other words, cleanups are to clean up after themselves.
 *
 * @{
 */

/**
 * Register a function to be called when a pool is cleared or destroyed
 * @param p The pool register the cleanup with
 * @param data The data to pass to the cleanup function.
 * @param plain_cleanup The function to call when the pool is cleared
 *                      or destroyed
 * @param child_cleanup The function to call when a child process is about
 *                      to exec - this function is called in the child, obviously!
 */
APR_DECLARE(void) apr_pool_cleanup_register(
                            apr_pool_t *p, const void *data,
                            apr_status_t (*plain_cleanup)(void *),
                            apr_status_t (*child_cleanup)(void *))
                  __attribute__((nonnull(3,4)));

/**
 * Register a function to be called when a pool is cleared or destroyed.
 *
 * Unlike apr_pool_cleanup_register which register a cleanup
 * that is called AFTER all subpools are destroyed this function register
 * a function that will be called before any of the subpool is destoryed.
 *
 * @param p The pool register the cleanup with
 * @param data The data to pass to the cleanup function.
 * @param plain_cleanup The function to call when the pool is cleared
 *                      or destroyed
 */
APR_DECLARE(void) apr_pool_pre_cleanup_register(
                            apr_pool_t *p, const void *data,
                            apr_status_t (*plain_cleanup)(void *))
                  __attribute__((nonnull(3)));

/**
 * Remove a previously registered cleanup function.
 * 
 * The cleanup most recently registered with @a p having the same values of
 * @a data and @a cleanup will be removed.
 *
 * @param p The pool to remove the cleanup from
 * @param data The data of the registered cleanup
 * @param cleanup The function to remove from cleanup
 * @remarks For some strange reason only the plain_cleanup is handled by this
 *          function
 */
APR_DECLARE(void) apr_pool_cleanup_kill(apr_pool_t *p, const void *data,
                                        apr_status_t (*cleanup)(void *))
                  __attribute__((nonnull(3)));

/**
 * Replace the child cleanup function of a previously registered cleanup.
 * 
 * The cleanup most recently registered with @a p having the same values of
 * @a data and @a plain_cleanup will have the registered child cleanup
 * function replaced with @a child_cleanup.
 *
 * @param p The pool of the registered cleanup
 * @param data The data of the registered cleanup
 * @param plain_cleanup The plain cleanup function of the registered cleanup
 * @param child_cleanup The function to register as the child cleanup
 */
APR_DECLARE(void) apr_pool_child_cleanup_set(
                        apr_pool_t *p, const void *data,
                        apr_status_t (*plain_cleanup)(void *),
                        apr_status_t (*child_cleanup)(void *))
                  __attribute__((nonnull(3,4)));

/**
 * Run the specified cleanup function immediately and unregister it.
 *
 * The cleanup most recently registered with @a p having the same values of
 * @a data and @a cleanup will be removed and @a cleanup will be called
 * with @a data as the argument.
 *
 * @param p The pool to remove the cleanup from
 * @param data The data to remove from cleanup
 * @param cleanup The function to remove from cleanup
 */
APR_DECLARE(apr_status_t) apr_pool_cleanup_run(apr_pool_t *p, void *data,
                                               apr_status_t (*cleanup)(void *))
                          __attribute__((nonnull(3)));

/**
 * An empty cleanup function.
 * 
 * Passed to apr_pool_cleanup_register() when no cleanup is required.
 *
 * @param data The data to cleanup, will not be used by this function.
 */
APR_DECLARE_NONSTD(apr_status_t) apr_pool_cleanup_null(void *data);

/**
 * Run all registered child cleanups, in preparation for an exec()
 * call in a forked child -- close files, etc., but *don't* flush I/O
 * buffers, *don't* wait for subprocesses, and *don't* free any
 * memory.
 */
APR_DECLARE(void) apr_pool_cleanup_for_exec(void);

/** @} */

/**
 * @defgroup PoolDebug Pool Debugging functions.
 *
 * pools have nested lifetimes -- sub_pools are destroyed when the
 * parent pool is cleared.  We allow certain liberties with operations
 * on things such as tables (and on other structures in a more general
 * sense) where we allow the caller to insert values into a table which
 * were not allocated from the table's pool.  The table's data will
 * remain valid as long as all the pools from which its values are
 * allocated remain valid.
 *
 * For example, if B is a sub pool of A, and you build a table T in
 * pool B, then it's safe to insert data allocated in A or B into T
 * (because B lives at most as long as A does, and T is destroyed when
 * B is cleared/destroyed).  On the other hand, if S is a table in
 * pool A, it is safe to insert data allocated in A into S, but it
 * is *not safe* to insert data allocated from B into S... because
 * B can be cleared/destroyed before A is (which would leave dangling
 * pointers in T's data structures).
 *
 * In general we say that it is safe to insert data into a table T
 * if the data is allocated in any ancestor of T's pool.  This is the
 * basis on which the APR_POOL_DEBUG code works -- it tests these ancestor
 * relationships for all data inserted into tables.  APR_POOL_DEBUG also
 * provides tools (apr_pool_find, and apr_pool_is_ancestor) for other
 * folks to implement similar restrictions for their own data
 * structures.
 *
 * However, sometimes this ancestor requirement is inconvenient --
 * sometimes it's necessary to create a sub pool where the sub pool is
 * guaranteed to have the same lifetime as the parent pool.  This is a
 * guarantee implemented by the *caller*, not by the pool code.  That
 * is, the caller guarantees they won't destroy the sub pool
 * individually prior to destroying the parent pool.
 *
 * In this case the caller must call apr_pool_join() to indicate this
 * guarantee to the APR_POOL_DEBUG code.
 *
 * These functions are only implemented when #APR_POOL_DEBUG is set.
 *
 * @{
 */
#if APR_POOL_DEBUG || defined(DOXYGEN)
/**
 * Guarantee that a subpool has the same lifetime as the parent.
 * @param p The parent pool
 * @param sub The subpool
 */
APR_DECLARE(void) apr_pool_join(apr_pool_t *p, apr_pool_t *sub)
                  __attribute__((nonnull(2)));

/**
 * Find a pool from something allocated in it.
 * @param mem The thing allocated in the pool
 * @return The pool it is allocated in
 */
APR_DECLARE(apr_pool_t *) apr_pool_find(const void *mem);

/**
 * Report the number of bytes currently in the pool
 * @param p The pool to inspect
 * @param recurse Recurse/include the subpools' sizes
 * @return The number of bytes
 */
APR_DECLARE(apr_size_t) apr_pool_num_bytes(apr_pool_t *p, int recurse)
                        __attribute__((nonnull(1)));

/**
 * Lock a pool
 * @param pool The pool to lock
 * @param flag  The flag
 */
APR_DECLARE(void) apr_pool_lock(apr_pool_t *pool, int flag);

/* @} */

#else /* APR_POOL_DEBUG or DOXYGEN */

#ifdef apr_pool_join
#undef apr_pool_join
#endif
#define apr_pool_join(a,b)

#ifdef apr_pool_lock
#undef apr_pool_lock
#endif
#define apr_pool_lock(pool, lock)

#endif /* APR_POOL_DEBUG or DOXYGEN */

/** @} */

#ifdef __cplusplus
}
#endif

#endif /* !APR_POOLS_H */