aboutsummaryrefslogtreecommitdiff
path: root/include/clang/AST/ASTContext.h
blob: a2bd55a089ed9176e032feb35bf812bfd7a6a8e0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Defines the clang::ASTContext interface.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
#define LLVM_CLANG_AST_ASTCONTEXT_H

#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/CanonicalType.h"
#include "clang/AST/CommentCommandTraits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/RawCommentList.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/SanitizerBlacklist.h"
#include "clang/Basic/VersionTuple.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Support/Allocator.h"
#include <memory>
#include <vector>

namespace llvm {
  struct fltSemantics;
}

namespace clang {
  class FileManager;
  class AtomicExpr;
  class ASTRecordLayout;
  class BlockExpr;
  class CharUnits;
  class DiagnosticsEngine;
  class Expr;
  class ASTMutationListener;
  class IdentifierTable;
  class MaterializeTemporaryExpr;
  class SelectorTable;
  class TargetInfo;
  class CXXABI;
  class MangleNumberingContext;
  // Decls
  class MangleContext;
  class ObjCIvarDecl;
  class ObjCPropertyDecl;
  class UnresolvedSetIterator;
  class UsingDecl;
  class UsingShadowDecl;
  class VTableContextBase;

  namespace Builtin { class Context; }

  namespace comments {
    class FullComment;
  }

  struct TypeInfo {
    uint64_t Width;
    unsigned Align;
    bool AlignIsRequired : 1;
    TypeInfo() : Width(0), Align(0), AlignIsRequired(false) {}
    TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
        : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
  };

/// \brief Holds long-lived AST nodes (such as types and decls) that can be
/// referred to throughout the semantic analysis of a file.
class ASTContext : public RefCountedBase<ASTContext> {
  ASTContext &this_() { return *this; }

  mutable SmallVector<Type *, 0> Types;
  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
  mutable llvm::FoldingSet<PointerType> PointerTypes;
  mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
  mutable std::vector<VariableArrayType*> VariableArrayTypes;
  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
  mutable llvm::FoldingSet<DependentSizedExtVectorType>
    DependentSizedExtVectorTypes;
  mutable llvm::FoldingSet<VectorType> VectorTypes;
  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
    FunctionProtoTypes;
  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
    SubstTemplateTypeParmTypes;
  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
    SubstTemplateTypeParmPackTypes;
  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
    TemplateSpecializationTypes;
  mutable llvm::FoldingSet<ParenType> ParenTypes;
  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
                                     ASTContext&>
    DependentTemplateSpecializationTypes;
  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
  mutable llvm::FoldingSet<AutoType> AutoTypes;
  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
  llvm::FoldingSet<AttributedType> AttributedTypes;

  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage> 
    SubstTemplateTemplateParms;
  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
                                     ASTContext&> 
    SubstTemplateTemplateParmPacks;
  
  /// \brief The set of nested name specifiers.
  ///
  /// This set is managed by the NestedNameSpecifier class.
  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
  friend class NestedNameSpecifier;

  /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
  ///
  /// This is lazily created.  This is intentionally not serialized.
  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
    ASTRecordLayouts;
  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
    ObjCLayouts;

  /// \brief A cache from types to size and alignment information.
  typedef llvm::DenseMap<const Type *, struct TypeInfo> TypeInfoMap;
  mutable TypeInfoMap MemoizedTypeInfo;

  /// \brief A cache mapping from CXXRecordDecls to key functions.
  llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
  
  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
  
  /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
  /// interface.
  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;

  /// \brief Mapping from __block VarDecls to their copy initialization expr.
  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
    
  /// \brief Mapping from class scope functions specialization to their
  /// template patterns.
  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
    ClassScopeSpecializationPattern;

  /// \brief Mapping from materialized temporaries with static storage duration
  /// that appear in constant initializers to their evaluated values.
  llvm::DenseMap<const MaterializeTemporaryExpr*, APValue>
    MaterializedTemporaryValues;

  /// \brief Representation of a "canonical" template template parameter that
  /// is used in canonical template names.
  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
    TemplateTemplateParmDecl *Parm;
    
  public:
    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm) 
      : Parm(Parm) { }
    
    TemplateTemplateParmDecl *getParam() const { return Parm; }
    
    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
    
    static void Profile(llvm::FoldingSetNodeID &ID, 
                        TemplateTemplateParmDecl *Parm);
  };
  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
    CanonTemplateTemplateParms;
  
  TemplateTemplateParmDecl *
    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;

  /// \brief The typedef for the __int128_t type.
  mutable TypedefDecl *Int128Decl;

  /// \brief The typedef for the __uint128_t type.
  mutable TypedefDecl *UInt128Decl;

  /// \brief The typedef for the __float128 stub type.
  mutable TypeDecl *Float128StubDecl;
  
  /// \brief The typedef for the target specific predefined
  /// __builtin_va_list type.
  mutable TypedefDecl *BuiltinVaListDecl;

  /// \brief The typedef for the predefined \c id type.
  mutable TypedefDecl *ObjCIdDecl;
  
  /// \brief The typedef for the predefined \c SEL type.
  mutable TypedefDecl *ObjCSelDecl;

  /// \brief The typedef for the predefined \c Class type.
  mutable TypedefDecl *ObjCClassDecl;

  /// \brief The typedef for the predefined \c Protocol class in Objective-C.
  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
  
  /// \brief The typedef for the predefined 'BOOL' type.
  mutable TypedefDecl *BOOLDecl;

  // Typedefs which may be provided defining the structure of Objective-C
  // pseudo-builtins
  QualType ObjCIdRedefinitionType;
  QualType ObjCClassRedefinitionType;
  QualType ObjCSelRedefinitionType;

  /// The identifier 'NSObject'.
  IdentifierInfo *NSObjectName = nullptr;

  /// The identifier 'NSCopying'.
  IdentifierInfo *NSCopyingName = nullptr;

  QualType ObjCConstantStringType;
  mutable RecordDecl *CFConstantStringTypeDecl;
  
  mutable QualType ObjCSuperType;
  
  QualType ObjCNSStringType;

  /// \brief The typedef declaration for the Objective-C "instancetype" type.
  TypedefDecl *ObjCInstanceTypeDecl;
  
  /// \brief The type for the C FILE type.
  TypeDecl *FILEDecl;

  /// \brief The type for the C jmp_buf type.
  TypeDecl *jmp_bufDecl;

  /// \brief The type for the C sigjmp_buf type.
  TypeDecl *sigjmp_bufDecl;

  /// \brief The type for the C ucontext_t type.
  TypeDecl *ucontext_tDecl;

  /// \brief Type for the Block descriptor for Blocks CodeGen.
  ///
  /// Since this is only used for generation of debug info, it is not
  /// serialized.
  mutable RecordDecl *BlockDescriptorType;

  /// \brief Type for the Block descriptor for Blocks CodeGen.
  ///
  /// Since this is only used for generation of debug info, it is not
  /// serialized.
  mutable RecordDecl *BlockDescriptorExtendedType;

  /// \brief Declaration for the CUDA cudaConfigureCall function.
  FunctionDecl *cudaConfigureCallDecl;

  /// \brief Keeps track of all declaration attributes.
  ///
  /// Since so few decls have attrs, we keep them in a hash map instead of
  /// wasting space in the Decl class.
  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;

  /// \brief A mapping from non-redeclarable declarations in modules that were
  /// merged with other declarations to the canonical declaration that they were
  /// merged into.
  llvm::DenseMap<Decl*, Decl*> MergedDecls;

  /// \brief A mapping from a defining declaration to a list of modules (other
  /// than the owning module of the declaration) that contain merged
  /// definitions of that entity.
  llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;

public:
  /// \brief A type synonym for the TemplateOrInstantiation mapping.
  typedef llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>
  TemplateOrSpecializationInfo;

private:

  /// \brief A mapping to contain the template or declaration that
  /// a variable declaration describes or was instantiated from,
  /// respectively.
  ///
  /// For non-templates, this value will be NULL. For variable
  /// declarations that describe a variable template, this will be a
  /// pointer to a VarTemplateDecl. For static data members
  /// of class template specializations, this will be the
  /// MemberSpecializationInfo referring to the member variable that was
  /// instantiated or specialized. Thus, the mapping will keep track of
  /// the static data member templates from which static data members of
  /// class template specializations were instantiated.
  ///
  /// Given the following example:
  ///
  /// \code
  /// template<typename T>
  /// struct X {
  ///   static T value;
  /// };
  ///
  /// template<typename T>
  ///   T X<T>::value = T(17);
  ///
  /// int *x = &X<int>::value;
  /// \endcode
  ///
  /// This mapping will contain an entry that maps from the VarDecl for
  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
  /// class template X) and will be marked TSK_ImplicitInstantiation.
  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
  TemplateOrInstantiation;

  /// \brief Keeps track of the declaration from which a UsingDecl was
  /// created during instantiation.
  ///
  /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
  /// or an UnresolvedUsingTypenameDecl.
  ///
  /// For example:
  /// \code
  /// template<typename T>
  /// struct A {
  ///   void f();
  /// };
  ///
  /// template<typename T>
  /// struct B : A<T> {
  ///   using A<T>::f;
  /// };
  ///
  /// template struct B<int>;
  /// \endcode
  ///
  /// This mapping will contain an entry that maps from the UsingDecl in
  /// B<int> to the UnresolvedUsingDecl in B<T>.
  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;

  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
    InstantiatedFromUsingShadowDecl;

  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;

  /// \brief Mapping that stores the methods overridden by a given C++
  /// member function.
  ///
  /// Since most C++ member functions aren't virtual and therefore
  /// don't override anything, we store the overridden functions in
  /// this map on the side rather than within the CXXMethodDecl structure.
  typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;

  /// \brief Mapping from each declaration context to its corresponding
  /// mangling numbering context (used for constructs like lambdas which
  /// need to be consistently numbered for the mangler).
  llvm::DenseMap<const DeclContext *, MangleNumberingContext *>
      MangleNumberingContexts;

  /// \brief Side-table of mangling numbers for declarations which rarely
  /// need them (like static local vars).
  llvm::DenseMap<const NamedDecl *, unsigned> MangleNumbers;
  llvm::DenseMap<const VarDecl *, unsigned> StaticLocalNumbers;

  /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
  typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
  ParameterIndexTable ParamIndices;  
  
  ImportDecl *FirstLocalImport;
  ImportDecl *LastLocalImport;
  
  TranslationUnitDecl *TUDecl;
  mutable ExternCContextDecl *ExternCContext;

  /// \brief The associated SourceManager object.a
  SourceManager &SourceMgr;

  /// \brief The language options used to create the AST associated with
  ///  this ASTContext object.
  LangOptions &LangOpts;

  /// \brief Blacklist object that is used by sanitizers to decide which
  /// entities should not be instrumented.
  std::unique_ptr<SanitizerBlacklist> SanitizerBL;

  /// \brief The allocator used to create AST objects.
  ///
  /// AST objects are never destructed; rather, all memory associated with the
  /// AST objects will be released when the ASTContext itself is destroyed.
  mutable llvm::BumpPtrAllocator BumpAlloc;

  /// \brief Allocator for partial diagnostics.
  PartialDiagnostic::StorageAllocator DiagAllocator;

  /// \brief The current C++ ABI.
  std::unique_ptr<CXXABI> ABI;
  CXXABI *createCXXABI(const TargetInfo &T);

  /// \brief The logical -> physical address space map.
  const LangAS::Map *AddrSpaceMap;

  /// \brief Address space map mangling must be used with language specific 
  /// address spaces (e.g. OpenCL/CUDA)
  bool AddrSpaceMapMangling;

  friend class ASTDeclReader;
  friend class ASTReader;
  friend class ASTWriter;
  friend class CXXRecordDecl;

  const TargetInfo *Target;
  clang::PrintingPolicy PrintingPolicy;
  
public:
  IdentifierTable &Idents;
  SelectorTable &Selectors;
  Builtin::Context &BuiltinInfo;
  mutable DeclarationNameTable DeclarationNames;
  IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
  ASTMutationListener *Listener;

  /// \brief Contains parents of a node.
  typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 2> ParentVector;

  /// \brief Maps from a node to its parents.
  typedef llvm::DenseMap<const void *,
                         llvm::PointerUnion<ast_type_traits::DynTypedNode *,
                                            ParentVector *>> ParentMap;

  /// \brief Returns the parents of the given node.
  ///
  /// Note that this will lazily compute the parents of all nodes
  /// and store them for later retrieval. Thus, the first call is O(n)
  /// in the number of AST nodes.
  ///
  /// Caveats and FIXMEs:
  /// Calculating the parent map over all AST nodes will need to load the
  /// full AST. This can be undesirable in the case where the full AST is
  /// expensive to create (for example, when using precompiled header
  /// preambles). Thus, there are good opportunities for optimization here.
  /// One idea is to walk the given node downwards, looking for references
  /// to declaration contexts - once a declaration context is found, compute
  /// the parent map for the declaration context; if that can satisfy the
  /// request, loading the whole AST can be avoided. Note that this is made
  /// more complex by statements in templates having multiple parents - those
  /// problems can be solved by building closure over the templated parts of
  /// the AST, which also avoids touching large parts of the AST.
  /// Additionally, we will want to add an interface to already give a hint
  /// where to search for the parents, for example when looking at a statement
  /// inside a certain function.
  ///
  /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
  /// NestedNameSpecifier or NestedNameSpecifierLoc.
  template <typename NodeT>
  ArrayRef<ast_type_traits::DynTypedNode> getParents(const NodeT &Node) {
    return getParents(ast_type_traits::DynTypedNode::create(Node));
  }

  ArrayRef<ast_type_traits::DynTypedNode>
  getParents(const ast_type_traits::DynTypedNode &Node);

  const clang::PrintingPolicy &getPrintingPolicy() const {
    return PrintingPolicy;
  }

  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
    PrintingPolicy = Policy;
  }
  
  SourceManager& getSourceManager() { return SourceMgr; }
  const SourceManager& getSourceManager() const { return SourceMgr; }

  llvm::BumpPtrAllocator &getAllocator() const {
    return BumpAlloc;
  }

  void *Allocate(size_t Size, unsigned Align = 8) const {
    return BumpAlloc.Allocate(Size, Align);
  }
  void Deallocate(void *Ptr) const { }
  
  /// Return the total amount of physical memory allocated for representing
  /// AST nodes and type information.
  size_t getASTAllocatedMemory() const {
    return BumpAlloc.getTotalMemory();
  }
  /// Return the total memory used for various side tables.
  size_t getSideTableAllocatedMemory() const;
  
  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
    return DiagAllocator;
  }

  const TargetInfo &getTargetInfo() const { return *Target; }
  
  /// getIntTypeForBitwidth -
  /// sets integer QualTy according to specified details:
  /// bitwidth, signed/unsigned.
  /// Returns empty type if there is no appropriate target types.
  QualType getIntTypeForBitwidth(unsigned DestWidth,
                                 unsigned Signed) const;
  /// getRealTypeForBitwidth -
  /// sets floating point QualTy according to specified bitwidth.
  /// Returns empty type if there is no appropriate target types.
  QualType getRealTypeForBitwidth(unsigned DestWidth) const;

  bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
  
  const LangOptions& getLangOpts() const { return LangOpts; }

  const SanitizerBlacklist &getSanitizerBlacklist() const {
    return *SanitizerBL;
  }

  DiagnosticsEngine &getDiagnostics() const;

  FullSourceLoc getFullLoc(SourceLocation Loc) const {
    return FullSourceLoc(Loc,SourceMgr);
  }

  /// \brief All comments in this translation unit.
  RawCommentList Comments;

  /// \brief True if comments are already loaded from ExternalASTSource.
  mutable bool CommentsLoaded;

  class RawCommentAndCacheFlags {
  public:
    enum Kind {
      /// We searched for a comment attached to the particular declaration, but
      /// didn't find any.
      ///
      /// getRaw() == 0.
      NoCommentInDecl = 0,

      /// We have found a comment attached to this particular declaration.
      ///
      /// getRaw() != 0.
      FromDecl,

      /// This declaration does not have an attached comment, and we have
      /// searched the redeclaration chain.
      ///
      /// If getRaw() == 0, the whole redeclaration chain does not have any
      /// comments.
      ///
      /// If getRaw() != 0, it is a comment propagated from other
      /// redeclaration.
      FromRedecl
    };

    Kind getKind() const LLVM_READONLY {
      return Data.getInt();
    }

    void setKind(Kind K) {
      Data.setInt(K);
    }

    const RawComment *getRaw() const LLVM_READONLY {
      return Data.getPointer();
    }

    void setRaw(const RawComment *RC) {
      Data.setPointer(RC);
    }

    const Decl *getOriginalDecl() const LLVM_READONLY {
      return OriginalDecl;
    }

    void setOriginalDecl(const Decl *Orig) {
      OriginalDecl = Orig;
    }

  private:
    llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
    const Decl *OriginalDecl;
  };

  /// \brief Mapping from declarations to comments attached to any
  /// redeclaration.
  ///
  /// Raw comments are owned by Comments list.  This mapping is populated
  /// lazily.
  mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;

  /// \brief Mapping from declarations to parsed comments attached to any
  /// redeclaration.
  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;

  /// \brief Return the documentation comment attached to a given declaration,
  /// without looking into cache.
  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;

public:
  RawCommentList &getRawCommentList() {
    return Comments;
  }

  void addComment(const RawComment &RC) {
    assert(LangOpts.RetainCommentsFromSystemHeaders ||
           !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
    Comments.addComment(RC, BumpAlloc);
  }

  /// \brief Return the documentation comment attached to a given declaration.
  /// Returns NULL if no comment is attached.
  ///
  /// \param OriginalDecl if not NULL, is set to declaration AST node that had
  /// the comment, if the comment we found comes from a redeclaration.
  const RawComment *
  getRawCommentForAnyRedecl(const Decl *D,
                            const Decl **OriginalDecl = nullptr) const;

  /// Return parsed documentation comment attached to a given declaration.
  /// Returns NULL if no comment is attached.
  ///
  /// \param PP the Preprocessor used with this TU.  Could be NULL if
  /// preprocessor is not available.
  comments::FullComment *getCommentForDecl(const Decl *D,
                                           const Preprocessor *PP) const;

  /// Return parsed documentation comment attached to a given declaration.
  /// Returns NULL if no comment is attached. Does not look at any
  /// redeclarations of the declaration.
  comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;

  comments::FullComment *cloneFullComment(comments::FullComment *FC,
                                         const Decl *D) const;

private:
  mutable comments::CommandTraits CommentCommandTraits;

  /// \brief Iterator that visits import declarations.
  class import_iterator {
    ImportDecl *Import;

  public:
    typedef ImportDecl               *value_type;
    typedef ImportDecl               *reference;
    typedef ImportDecl               *pointer;
    typedef int                       difference_type;
    typedef std::forward_iterator_tag iterator_category;

    import_iterator() : Import() {}
    explicit import_iterator(ImportDecl *Import) : Import(Import) {}

    reference operator*() const { return Import; }
    pointer operator->() const { return Import; }

    import_iterator &operator++() {
      Import = ASTContext::getNextLocalImport(Import);
      return *this;
    }

    import_iterator operator++(int) {
      import_iterator Other(*this);
      ++(*this);
      return Other;
    }

    friend bool operator==(import_iterator X, import_iterator Y) {
      return X.Import == Y.Import;
    }

    friend bool operator!=(import_iterator X, import_iterator Y) {
      return X.Import != Y.Import;
    }
  };

public:
  comments::CommandTraits &getCommentCommandTraits() const {
    return CommentCommandTraits;
  }

  /// \brief Retrieve the attributes for the given declaration.
  AttrVec& getDeclAttrs(const Decl *D);

  /// \brief Erase the attributes corresponding to the given declaration.
  void eraseDeclAttrs(const Decl *D);

  /// \brief If this variable is an instantiated static data member of a
  /// class template specialization, returns the templated static data member
  /// from which it was instantiated.
  // FIXME: Remove ?
  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
                                                           const VarDecl *Var);

  TemplateOrSpecializationInfo
  getTemplateOrSpecializationInfo(const VarDecl *Var);

  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);

  void setClassScopeSpecializationPattern(FunctionDecl *FD,
                                          FunctionDecl *Pattern);

  /// \brief Note that the static data member \p Inst is an instantiation of
  /// the static data member template \p Tmpl of a class template.
  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
                                           TemplateSpecializationKind TSK,
                        SourceLocation PointOfInstantiation = SourceLocation());

  void setTemplateOrSpecializationInfo(VarDecl *Inst,
                                       TemplateOrSpecializationInfo TSI);

  /// \brief If the given using decl \p Inst is an instantiation of a
  /// (possibly unresolved) using decl from a template instantiation,
  /// return it.
  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);

  /// \brief Remember that the using decl \p Inst is an instantiation
  /// of the using decl \p Pattern of a class template.
  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);

  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
                                          UsingShadowDecl *Pattern);
  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);

  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);

  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
  
  // Access to the set of methods overridden by the given C++ method.
  typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
  overridden_cxx_method_iterator
  overridden_methods_begin(const CXXMethodDecl *Method) const;

  overridden_cxx_method_iterator
  overridden_methods_end(const CXXMethodDecl *Method) const;

  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;

  /// \brief Note that the given C++ \p Method overrides the given \p
  /// Overridden method.
  void addOverriddenMethod(const CXXMethodDecl *Method, 
                           const CXXMethodDecl *Overridden);

  /// \brief Return C++ or ObjC overridden methods for the given \p Method.
  ///
  /// An ObjC method is considered to override any method in the class's
  /// base classes, its protocols, or its categories' protocols, that has
  /// the same selector and is of the same kind (class or instance).
  /// A method in an implementation is not considered as overriding the same
  /// method in the interface or its categories.
  void getOverriddenMethods(
                        const NamedDecl *Method,
                        SmallVectorImpl<const NamedDecl *> &Overridden) const;
  
  /// \brief Notify the AST context that a new import declaration has been
  /// parsed or implicitly created within this translation unit.
  void addedLocalImportDecl(ImportDecl *Import);

  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
    return Import->NextLocalImport;
  }
  
  typedef llvm::iterator_range<import_iterator> import_range;
  import_range local_imports() const {
    return import_range(import_iterator(FirstLocalImport), import_iterator());
  }

  Decl *getPrimaryMergedDecl(Decl *D) {
    Decl *Result = MergedDecls.lookup(D);
    return Result ? Result : D;
  }
  void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
    MergedDecls[D] = Primary;
  }

  /// \brief Note that the definition \p ND has been merged into module \p M,
  /// and should be visible whenever \p M is visible.
  void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
                                 bool NotifyListeners = true);
  /// \brief Clean up the merged definition list. Call this if you might have
  /// added duplicates into the list.
  void deduplicateMergedDefinitonsFor(NamedDecl *ND);

  /// \brief Get the additional modules in which the definition \p Def has
  /// been merged.
  ArrayRef<Module*> getModulesWithMergedDefinition(NamedDecl *Def) {
    auto MergedIt = MergedDefModules.find(Def);
    if (MergedIt == MergedDefModules.end())
      return None;
    return MergedIt->second;
  }

  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }

  ExternCContextDecl *getExternCContextDecl() const;

  // Builtin Types.
  CanQualType VoidTy;
  CanQualType BoolTy;
  CanQualType CharTy;
  CanQualType WCharTy;  // [C++ 3.9.1p5].
  CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
  CanQualType FloatTy, DoubleTy, LongDoubleTy;
  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
  CanQualType VoidPtrTy, NullPtrTy;
  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
  CanQualType BuiltinFnTy;
  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
  CanQualType ObjCBuiltinBoolTy;
  CanQualType OCLImage1dTy, OCLImage1dArrayTy, OCLImage1dBufferTy;
  CanQualType OCLImage2dTy, OCLImage2dArrayTy;
  CanQualType OCLImage3dTy;
  CanQualType OCLSamplerTy, OCLEventTy;

  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.

  // Type used to help define __builtin_va_list for some targets.
  // The type is built when constructing 'BuiltinVaListDecl'.
  mutable QualType VaListTagTy;

  ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
             SelectorTable &sels, Builtin::Context &builtins);

  ~ASTContext();

  /// \brief Attach an external AST source to the AST context.
  ///
  /// The external AST source provides the ability to load parts of
  /// the abstract syntax tree as needed from some external storage,
  /// e.g., a precompiled header.
  void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);

  /// \brief Retrieve a pointer to the external AST source associated
  /// with this AST context, if any.
  ExternalASTSource *getExternalSource() const {
    return ExternalSource.get();
  }

  /// \brief Attach an AST mutation listener to the AST context.
  ///
  /// The AST mutation listener provides the ability to track modifications to
  /// the abstract syntax tree entities committed after they were initially
  /// created.
  void setASTMutationListener(ASTMutationListener *Listener) {
    this->Listener = Listener;
  }

  /// \brief Retrieve a pointer to the AST mutation listener associated
  /// with this AST context, if any.
  ASTMutationListener *getASTMutationListener() const { return Listener; }

  void PrintStats() const;
  const SmallVectorImpl<Type *>& getTypes() const { return Types; }

  /// \brief Create a new implicit TU-level CXXRecordDecl or RecordDecl
  /// declaration.
  RecordDecl *buildImplicitRecord(StringRef Name,
                                  RecordDecl::TagKind TK = TTK_Struct) const;

  /// \brief Create a new implicit TU-level typedef declaration.
  TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;

  /// \brief Retrieve the declaration for the 128-bit signed integer type.
  TypedefDecl *getInt128Decl() const;

  /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
  TypedefDecl *getUInt128Decl() const;

  /// \brief Retrieve the declaration for a 128-bit float stub type.
  TypeDecl *getFloat128StubType() const;

  //===--------------------------------------------------------------------===//
  //                           Type Constructors
  //===--------------------------------------------------------------------===//

private:
  /// \brief Return a type with extended qualifiers.
  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;

  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;

public:
  /// \brief Return the uniqued reference to the type for an address space
  /// qualified type with the specified type and address space.
  ///
  /// The resulting type has a union of the qualifiers from T and the address
  /// space. If T already has an address space specifier, it is silently
  /// replaced.
  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;

  /// \brief Return the uniqued reference to the type for an Objective-C
  /// gc-qualified type.
  ///
  /// The retulting type has a union of the qualifiers from T and the gc
  /// attribute.
  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;

  /// \brief Return the uniqued reference to the type for a \c restrict
  /// qualified type.
  ///
  /// The resulting type has a union of the qualifiers from \p T and
  /// \c restrict.
  QualType getRestrictType(QualType T) const {
    return T.withFastQualifiers(Qualifiers::Restrict);
  }

  /// \brief Return the uniqued reference to the type for a \c volatile
  /// qualified type.
  ///
  /// The resulting type has a union of the qualifiers from \p T and
  /// \c volatile.
  QualType getVolatileType(QualType T) const {
    return T.withFastQualifiers(Qualifiers::Volatile);
  }

  /// \brief Return the uniqued reference to the type for a \c const
  /// qualified type.
  ///
  /// The resulting type has a union of the qualifiers from \p T and \c const.
  ///
  /// It can be reasonably expected that this will always be equivalent to
  /// calling T.withConst().
  QualType getConstType(QualType T) const { return T.withConst(); }

  /// \brief Change the ExtInfo on a function type.
  const FunctionType *adjustFunctionType(const FunctionType *Fn,
                                         FunctionType::ExtInfo EInfo);

  /// \brief Change the result type of a function type once it is deduced.
  void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);

  /// \brief Change the exception specification on a function once it is
  /// delay-parsed, instantiated, or computed.
  void adjustExceptionSpec(FunctionDecl *FD,
                           const FunctionProtoType::ExceptionSpecInfo &ESI,
                           bool AsWritten = false);

  /// \brief Return the uniqued reference to the type for a complex
  /// number with the specified element type.
  QualType getComplexType(QualType T) const;
  CanQualType getComplexType(CanQualType T) const {
    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
  }

  /// \brief Return the uniqued reference to the type for a pointer to
  /// the specified type.
  QualType getPointerType(QualType T) const;
  CanQualType getPointerType(CanQualType T) const {
    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
  }

  /// \brief Return the uniqued reference to a type adjusted from the original
  /// type to a new type.
  QualType getAdjustedType(QualType Orig, QualType New) const;
  CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
    return CanQualType::CreateUnsafe(
        getAdjustedType((QualType)Orig, (QualType)New));
  }

  /// \brief Return the uniqued reference to the decayed version of the given
  /// type.  Can only be called on array and function types which decay to
  /// pointer types.
  QualType getDecayedType(QualType T) const;
  CanQualType getDecayedType(CanQualType T) const {
    return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
  }

  /// \brief Return the uniqued reference to the atomic type for the specified
  /// type.
  QualType getAtomicType(QualType T) const;

  /// \brief Return the uniqued reference to the type for a block of the
  /// specified type.
  QualType getBlockPointerType(QualType T) const;

  /// Gets the struct used to keep track of the descriptor for pointer to
  /// blocks.
  QualType getBlockDescriptorType() const;

  /// Gets the struct used to keep track of the extended descriptor for
  /// pointer to blocks.
  QualType getBlockDescriptorExtendedType() const;

  void setcudaConfigureCallDecl(FunctionDecl *FD) {
    cudaConfigureCallDecl = FD;
  }
  FunctionDecl *getcudaConfigureCallDecl() {
    return cudaConfigureCallDecl;
  }

  /// Returns true iff we need copy/dispose helpers for the given type.
  bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
  
  
  /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
  /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
  /// has extended lifetime. 
  bool getByrefLifetime(QualType Ty,
                        Qualifiers::ObjCLifetime &Lifetime,
                        bool &HasByrefExtendedLayout) const;
  
  /// \brief Return the uniqued reference to the type for an lvalue reference
  /// to the specified type.
  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
    const;

  /// \brief Return the uniqued reference to the type for an rvalue reference
  /// to the specified type.
  QualType getRValueReferenceType(QualType T) const;

  /// \brief Return the uniqued reference to the type for a member pointer to
  /// the specified type in the specified class.
  ///
  /// The class \p Cls is a \c Type because it could be a dependent name.
  QualType getMemberPointerType(QualType T, const Type *Cls) const;

  /// \brief Return a non-unique reference to the type for a variable array of
  /// the specified element type.
  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
                                ArrayType::ArraySizeModifier ASM,
                                unsigned IndexTypeQuals,
                                SourceRange Brackets) const;

  /// \brief Return a non-unique reference to the type for a dependently-sized
  /// array of the specified element type.
  ///
  /// FIXME: We will need these to be uniqued, or at least comparable, at some
  /// point.
  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
                                      ArrayType::ArraySizeModifier ASM,
                                      unsigned IndexTypeQuals,
                                      SourceRange Brackets) const;

  /// \brief Return a unique reference to the type for an incomplete array of
  /// the specified element type.
  QualType getIncompleteArrayType(QualType EltTy,
                                  ArrayType::ArraySizeModifier ASM,
                                  unsigned IndexTypeQuals) const;

  /// \brief Return the unique reference to the type for a constant array of
  /// the specified element type.
  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
                                ArrayType::ArraySizeModifier ASM,
                                unsigned IndexTypeQuals) const;
  
  /// \brief Returns a vla type where known sizes are replaced with [*].
  QualType getVariableArrayDecayedType(QualType Ty) const;

  /// \brief Return the unique reference to a vector type of the specified
  /// element type and size.
  ///
  /// \pre \p VectorType must be a built-in type.
  QualType getVectorType(QualType VectorType, unsigned NumElts,
                         VectorType::VectorKind VecKind) const;

  /// \brief Return the unique reference to an extended vector type
  /// of the specified element type and size.
  ///
  /// \pre \p VectorType must be a built-in type.
  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;

  /// \pre Return a non-unique reference to the type for a dependently-sized
  /// vector of the specified element type.
  ///
  /// FIXME: We will need these to be uniqued, or at least comparable, at some
  /// point.
  QualType getDependentSizedExtVectorType(QualType VectorType,
                                          Expr *SizeExpr,
                                          SourceLocation AttrLoc) const;

  /// \brief Return a K&R style C function type like 'int()'.
  QualType getFunctionNoProtoType(QualType ResultTy,
                                  const FunctionType::ExtInfo &Info) const;

  QualType getFunctionNoProtoType(QualType ResultTy) const {
    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
  }

  /// \brief Return a normal function type with a typed argument list.
  QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
                           const FunctionProtoType::ExtProtoInfo &EPI) const;

  /// \brief Return the unique reference to the type for the specified type
  /// declaration.
  QualType getTypeDeclType(const TypeDecl *Decl,
                           const TypeDecl *PrevDecl = nullptr) const {
    assert(Decl && "Passed null for Decl param");
    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);

    if (PrevDecl) {
      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
      Decl->TypeForDecl = PrevDecl->TypeForDecl;
      return QualType(PrevDecl->TypeForDecl, 0);
    }

    return getTypeDeclTypeSlow(Decl);
  }

  /// \brief Return the unique reference to the type for the specified
  /// typedef-name decl.
  QualType getTypedefType(const TypedefNameDecl *Decl,
                          QualType Canon = QualType()) const;

  QualType getRecordType(const RecordDecl *Decl) const;

  QualType getEnumType(const EnumDecl *Decl) const;

  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;

  QualType getAttributedType(AttributedType::Kind attrKind,
                             QualType modifiedType,
                             QualType equivalentType);

  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
                                        QualType Replacement) const;
  QualType getSubstTemplateTypeParmPackType(
                                          const TemplateTypeParmType *Replaced,
                                            const TemplateArgument &ArgPack);

  QualType
  getTemplateTypeParmType(unsigned Depth, unsigned Index,
                          bool ParameterPack,
                          TemplateTypeParmDecl *ParmDecl = nullptr) const;

  QualType getTemplateSpecializationType(TemplateName T,
                                         const TemplateArgument *Args,
                                         unsigned NumArgs,
                                         QualType Canon = QualType()) const;

  QualType getCanonicalTemplateSpecializationType(TemplateName T,
                                                  const TemplateArgument *Args,
                                                  unsigned NumArgs) const;

  QualType getTemplateSpecializationType(TemplateName T,
                                         const TemplateArgumentListInfo &Args,
                                         QualType Canon = QualType()) const;

  TypeSourceInfo *
  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
                                    const TemplateArgumentListInfo &Args,
                                    QualType Canon = QualType()) const;

  QualType getParenType(QualType NamedType) const;

  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
                             NestedNameSpecifier *NNS,
                             QualType NamedType) const;
  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
                                NestedNameSpecifier *NNS,
                                const IdentifierInfo *Name,
                                QualType Canon = QualType()) const;

  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
                                                  NestedNameSpecifier *NNS,
                                                  const IdentifierInfo *Name,
                                    const TemplateArgumentListInfo &Args) const;
  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
                                                  NestedNameSpecifier *NNS,
                                                  const IdentifierInfo *Name,
                                                  unsigned NumArgs,
                                            const TemplateArgument *Args) const;

  QualType getPackExpansionType(QualType Pattern,
                                Optional<unsigned> NumExpansions);

  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
                                ObjCInterfaceDecl *PrevDecl = nullptr) const;

  /// Legacy interface: cannot provide type arguments or __kindof.
  QualType getObjCObjectType(QualType Base,
                             ObjCProtocolDecl * const *Protocols,
                             unsigned NumProtocols) const;

  QualType getObjCObjectType(QualType Base,
                             ArrayRef<QualType> typeArgs,
                             ArrayRef<ObjCProtocolDecl *> protocols,
                             bool isKindOf) const;
  
  bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
  /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
  /// QT's qualified-id protocol list adopt all protocols in IDecl's list
  /// of protocols.
  bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
                                            ObjCInterfaceDecl *IDecl);

  /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
  QualType getObjCObjectPointerType(QualType OIT) const;

  /// \brief GCC extension.
  QualType getTypeOfExprType(Expr *e) const;
  QualType getTypeOfType(QualType t) const;

  /// \brief C++11 decltype.
  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;

  /// \brief Unary type transforms
  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
                                 UnaryTransformType::UTTKind UKind) const;

  /// \brief C++11 deduced auto type.
  QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto,
                       bool IsDependent) const;

  /// \brief C++11 deduction pattern for 'auto' type.
  QualType getAutoDeductType() const;

  /// \brief C++11 deduction pattern for 'auto &&' type.
  QualType getAutoRRefDeductType() const;

  /// \brief Return the unique reference to the type for the specified TagDecl
  /// (struct/union/class/enum) decl.
  QualType getTagDeclType(const TagDecl *Decl) const;

  /// \brief Return the unique type for "size_t" (C99 7.17), defined in
  /// <stddef.h>.
  ///
  /// The sizeof operator requires this (C99 6.5.3.4p4).
  CanQualType getSizeType() const;

  /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
  /// <stdint.h>.
  CanQualType getIntMaxType() const;

  /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
  /// <stdint.h>.
  CanQualType getUIntMaxType() const;

  /// \brief Return the unique wchar_t type available in C++ (and available as
  /// __wchar_t as a Microsoft extension).
  QualType getWCharType() const { return WCharTy; }

  /// \brief Return the type of wide characters. In C++, this returns the
  /// unique wchar_t type. In C99, this returns a type compatible with the type
  /// defined in <stddef.h> as defined by the target.
  QualType getWideCharType() const { return WideCharTy; }

  /// \brief Return the type of "signed wchar_t".
  ///
  /// Used when in C++, as a GCC extension.
  QualType getSignedWCharType() const;

  /// \brief Return the type of "unsigned wchar_t".
  ///
  /// Used when in C++, as a GCC extension.
  QualType getUnsignedWCharType() const;

  /// \brief In C99, this returns a type compatible with the type
  /// defined in <stddef.h> as defined by the target.
  QualType getWIntType() const { return WIntTy; }

  /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
  /// as defined by the target.
  QualType getIntPtrType() const;

  /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
  /// as defined by the target.
  QualType getUIntPtrType() const;

  /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
  QualType getPointerDiffType() const;

  /// \brief Return the unique type for "pid_t" defined in
  /// <sys/types.h>. We need this to compute the correct type for vfork().
  QualType getProcessIDType() const;

  /// \brief Return the C structure type used to represent constant CFStrings.
  QualType getCFConstantStringType() const;
  
  /// \brief Returns the C struct type for objc_super
  QualType getObjCSuperType() const;
  void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
  
  /// Get the structure type used to representation CFStrings, or NULL
  /// if it hasn't yet been built.
  QualType getRawCFConstantStringType() const {
    if (CFConstantStringTypeDecl)
      return getTagDeclType(CFConstantStringTypeDecl);
    return QualType();
  }
  void setCFConstantStringType(QualType T);

  // This setter/getter represents the ObjC type for an NSConstantString.
  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
  QualType getObjCConstantStringInterface() const {
    return ObjCConstantStringType;
  }

  QualType getObjCNSStringType() const {
    return ObjCNSStringType;
  }
  
  void setObjCNSStringType(QualType T) {
    ObjCNSStringType = T;
  }
  
  /// \brief Retrieve the type that \c id has been defined to, which may be
  /// different from the built-in \c id if \c id has been typedef'd.
  QualType getObjCIdRedefinitionType() const {
    if (ObjCIdRedefinitionType.isNull())
      return getObjCIdType();
    return ObjCIdRedefinitionType;
  }
  
  /// \brief Set the user-written type that redefines \c id.
  void setObjCIdRedefinitionType(QualType RedefType) {
    ObjCIdRedefinitionType = RedefType;
  }

  /// \brief Retrieve the type that \c Class has been defined to, which may be
  /// different from the built-in \c Class if \c Class has been typedef'd.
  QualType getObjCClassRedefinitionType() const {
    if (ObjCClassRedefinitionType.isNull())
      return getObjCClassType();
    return ObjCClassRedefinitionType;
  }
  
  /// \brief Set the user-written type that redefines 'SEL'.
  void setObjCClassRedefinitionType(QualType RedefType) {
    ObjCClassRedefinitionType = RedefType;
  }

  /// \brief Retrieve the type that 'SEL' has been defined to, which may be
  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
  QualType getObjCSelRedefinitionType() const {
    if (ObjCSelRedefinitionType.isNull())
      return getObjCSelType();
    return ObjCSelRedefinitionType;
  }

  
  /// \brief Set the user-written type that redefines 'SEL'.
  void setObjCSelRedefinitionType(QualType RedefType) {
    ObjCSelRedefinitionType = RedefType;
  }

  /// Retrieve the identifier 'NSObject'.
  IdentifierInfo *getNSObjectName() {
    if (!NSObjectName) {
      NSObjectName = &Idents.get("NSObject");
    }

    return NSObjectName;
  }

  /// Retrieve the identifier 'NSCopying'.
  IdentifierInfo *getNSCopyingName() {
    if (!NSCopyingName) {
      NSCopyingName = &Idents.get("NSCopying");
    }

    return NSCopyingName;
  }

  /// \brief Retrieve the Objective-C "instancetype" type, if already known;
  /// otherwise, returns a NULL type;
  QualType getObjCInstanceType() {
    return getTypeDeclType(getObjCInstanceTypeDecl());
  }

  /// \brief Retrieve the typedef declaration corresponding to the Objective-C
  /// "instancetype" type.
  TypedefDecl *getObjCInstanceTypeDecl();
  
  /// \brief Set the type for the C FILE type.
  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }

  /// \brief Retrieve the C FILE type.
  QualType getFILEType() const {
    if (FILEDecl)
      return getTypeDeclType(FILEDecl);
    return QualType();
  }

  /// \brief Set the type for the C jmp_buf type.
  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
    this->jmp_bufDecl = jmp_bufDecl;
  }

  /// \brief Retrieve the C jmp_buf type.
  QualType getjmp_bufType() const {
    if (jmp_bufDecl)
      return getTypeDeclType(jmp_bufDecl);
    return QualType();
  }

  /// \brief Set the type for the C sigjmp_buf type.
  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
    this->sigjmp_bufDecl = sigjmp_bufDecl;
  }

  /// \brief Retrieve the C sigjmp_buf type.
  QualType getsigjmp_bufType() const {
    if (sigjmp_bufDecl)
      return getTypeDeclType(sigjmp_bufDecl);
    return QualType();
  }

  /// \brief Set the type for the C ucontext_t type.
  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
    this->ucontext_tDecl = ucontext_tDecl;
  }

  /// \brief Retrieve the C ucontext_t type.
  QualType getucontext_tType() const {
    if (ucontext_tDecl)
      return getTypeDeclType(ucontext_tDecl);
    return QualType();
  }

  /// \brief The result type of logical operations, '<', '>', '!=', etc.
  QualType getLogicalOperationType() const {
    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
  }

  /// \brief Emit the Objective-CC type encoding for the given type \p T into
  /// \p S.
  ///
  /// If \p Field is specified then record field names are also encoded.
  void getObjCEncodingForType(QualType T, std::string &S,
                              const FieldDecl *Field=nullptr,
                              QualType *NotEncodedT=nullptr) const;

  /// \brief Emit the Objective-C property type encoding for the given
  /// type \p T into \p S.
  void getObjCEncodingForPropertyType(QualType T, std::string &S) const;

  void getLegacyIntegralTypeEncoding(QualType &t) const;

  /// \brief Put the string version of the type qualifiers \p QT into \p S.
  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
                                       std::string &S) const;

  /// \brief Emit the encoded type for the function \p Decl into \p S.
  ///
  /// This is in the same format as Objective-C method encodings.
  ///
  /// \returns true if an error occurred (e.g., because one of the parameter
  /// types is incomplete), false otherwise.
  bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);

  /// \brief Emit the encoded type for the method declaration \p Decl into
  /// \p S.
  ///
  /// \returns true if an error occurred (e.g., because one of the parameter
  /// types is incomplete), false otherwise.
  bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
                                    bool Extended = false)
    const;

  /// \brief Return the encoded type for this block declaration.
  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
  
  /// getObjCEncodingForPropertyDecl - Return the encoded type for
  /// this method declaration. If non-NULL, Container must be either
  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
  /// only be NULL when getting encodings for protocol properties.
  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
                                      const Decl *Container,
                                      std::string &S) const;

  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
                                      ObjCProtocolDecl *rProto) const;
  
  ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
                                                  const ObjCPropertyDecl *PD,
                                                  const Decl *Container) const;

  /// \brief Return the size of type \p T for Objective-C encoding purpose,
  /// in characters.
  CharUnits getObjCEncodingTypeSize(QualType T) const;

  /// \brief Retrieve the typedef corresponding to the predefined \c id type
  /// in Objective-C.
  TypedefDecl *getObjCIdDecl() const;
  
  /// \brief Represents the Objective-CC \c id type.
  ///
  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
  /// pointer type, a pointer to a struct.
  QualType getObjCIdType() const {
    return getTypeDeclType(getObjCIdDecl());
  }

  /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
  /// in Objective-C.
  TypedefDecl *getObjCSelDecl() const;
  
  /// \brief Retrieve the type that corresponds to the predefined Objective-C
  /// 'SEL' type.
  QualType getObjCSelType() const { 
    return getTypeDeclType(getObjCSelDecl());
  }

  /// \brief Retrieve the typedef declaration corresponding to the predefined
  /// Objective-C 'Class' type.
  TypedefDecl *getObjCClassDecl() const;
  
  /// \brief Represents the Objective-C \c Class type.
  ///
  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
  /// pointer type, a pointer to a struct.
  QualType getObjCClassType() const { 
    return getTypeDeclType(getObjCClassDecl());
  }

  /// \brief Retrieve the Objective-C class declaration corresponding to 
  /// the predefined \c Protocol class.
  ObjCInterfaceDecl *getObjCProtocolDecl() const;

  /// \brief Retrieve declaration of 'BOOL' typedef
  TypedefDecl *getBOOLDecl() const {
    return BOOLDecl;
  }

  /// \brief Save declaration of 'BOOL' typedef
  void setBOOLDecl(TypedefDecl *TD) {
    BOOLDecl = TD;
  }

  /// \brief type of 'BOOL' type.
  QualType getBOOLType() const {
    return getTypeDeclType(getBOOLDecl());
  }
  
  /// \brief Retrieve the type of the Objective-C \c Protocol class.
  QualType getObjCProtoType() const {
    return getObjCInterfaceType(getObjCProtocolDecl());
  }
  
  /// \brief Retrieve the C type declaration corresponding to the predefined
  /// \c __builtin_va_list type.
  TypedefDecl *getBuiltinVaListDecl() const;

  /// \brief Retrieve the type of the \c __builtin_va_list type.
  QualType getBuiltinVaListType() const {
    return getTypeDeclType(getBuiltinVaListDecl());
  }

  /// \brief Retrieve the C type declaration corresponding to the predefined
  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
  /// for some targets.
  QualType getVaListTagType() const;

  /// \brief Return a type with additional \c const, \c volatile, or
  /// \c restrict qualifiers.
  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
  }

  /// \brief Un-split a SplitQualType.
  QualType getQualifiedType(SplitQualType split) const {
    return getQualifiedType(split.Ty, split.Quals);
  }

  /// \brief Return a type with additional qualifiers.
  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
    if (!Qs.hasNonFastQualifiers())
      return T.withFastQualifiers(Qs.getFastQualifiers());
    QualifierCollector Qc(Qs);
    const Type *Ptr = Qc.strip(T);
    return getExtQualType(Ptr, Qc);
  }

  /// \brief Return a type with additional qualifiers.
  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
    if (!Qs.hasNonFastQualifiers())
      return QualType(T, Qs.getFastQualifiers());
    return getExtQualType(T, Qs);
  }

  /// \brief Return a type with the given lifetime qualifier.
  ///
  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
  QualType getLifetimeQualifiedType(QualType type,
                                    Qualifiers::ObjCLifetime lifetime) {
    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
    assert(lifetime != Qualifiers::OCL_None);

    Qualifiers qs;
    qs.addObjCLifetime(lifetime);
    return getQualifiedType(type, qs);
  }
  
  /// getUnqualifiedObjCPointerType - Returns version of
  /// Objective-C pointer type with lifetime qualifier removed.
  QualType getUnqualifiedObjCPointerType(QualType type) const {
    if (!type.getTypePtr()->isObjCObjectPointerType() ||
        !type.getQualifiers().hasObjCLifetime())
      return type;
    Qualifiers Qs = type.getQualifiers();
    Qs.removeObjCLifetime();
    return getQualifiedType(type.getUnqualifiedType(), Qs);
  }
  
  DeclarationNameInfo getNameForTemplate(TemplateName Name,
                                         SourceLocation NameLoc) const;

  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
                                         UnresolvedSetIterator End) const;

  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
                                        bool TemplateKeyword,
                                        TemplateDecl *Template) const;

  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
                                        const IdentifierInfo *Name) const;
  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
                                        OverloadedOperatorKind Operator) const;
  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
                                            TemplateName replacement) const;
  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
                                        const TemplateArgument &ArgPack) const;
  
  enum GetBuiltinTypeError {
    GE_None,              ///< No error
    GE_Missing_stdio,     ///< Missing a type from <stdio.h>
    GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
    GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
  };

  /// \brief Return the type for the specified builtin.
  ///
  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
  /// arguments to the builtin that are required to be integer constant
  /// expressions.
  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
                          unsigned *IntegerConstantArgs = nullptr) const;

private:
  CanQualType getFromTargetType(unsigned Type) const;
  TypeInfo getTypeInfoImpl(const Type *T) const;

  //===--------------------------------------------------------------------===//
  //                         Type Predicates.
  //===--------------------------------------------------------------------===//

public:
  /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
  /// collection attributes.
  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;

  /// \brief Return true if the given vector types are of the same unqualified
  /// type or if they are equivalent to the same GCC vector type.
  ///
  /// \note This ignores whether they are target-specific (AltiVec or Neon)
  /// types.
  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);

  /// \brief Return true if this is an \c NSObject object with its \c NSObject
  /// attribute set.
  static bool isObjCNSObjectType(QualType Ty) {
    return Ty->isObjCNSObjectType();
  }

  //===--------------------------------------------------------------------===//
  //                         Type Sizing and Analysis
  //===--------------------------------------------------------------------===//

  /// \brief Return the APFloat 'semantics' for the specified scalar floating
  /// point type.
  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;

  /// \brief Get the size and alignment of the specified complete type in bits.
  TypeInfo getTypeInfo(const Type *T) const;
  TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }

  /// \brief Get default simd alignment of the specified complete type in bits.
  unsigned getOpenMPDefaultSimdAlign(QualType T) const;

  /// \brief Return the size of the specified (complete) type \p T, in bits.
  uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
  uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }

  /// \brief Return the size of the character type, in bits.
  uint64_t getCharWidth() const {
    return getTypeSize(CharTy);
  }
  
  /// \brief Convert a size in bits to a size in characters.
  CharUnits toCharUnitsFromBits(int64_t BitSize) const;

  /// \brief Convert a size in characters to a size in bits.
  int64_t toBits(CharUnits CharSize) const;

  /// \brief Return the size of the specified (complete) type \p T, in
  /// characters.
  CharUnits getTypeSizeInChars(QualType T) const;
  CharUnits getTypeSizeInChars(const Type *T) const;

  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
  /// bits.
  unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
  unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }

  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in 
  /// characters.
  CharUnits getTypeAlignInChars(QualType T) const;
  CharUnits getTypeAlignInChars(const Type *T) const;
  
  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
  // type is a record, its data size is returned.
  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;

  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;

  /// \brief Determine if the alignment the type has was required using an
  /// alignment attribute.
  bool isAlignmentRequired(const Type *T) const;
  bool isAlignmentRequired(QualType T) const;

  /// \brief Return the "preferred" alignment of the specified type \p T for
  /// the current target, in bits.
  ///
  /// This can be different than the ABI alignment in cases where it is
  /// beneficial for performance to overalign a data type.
  unsigned getPreferredTypeAlign(const Type *T) const;

  /// \brief Return the default alignment for __attribute__((aligned)) on
  /// this target, to be used if no alignment value is specified.
  unsigned getTargetDefaultAlignForAttributeAligned(void) const;

  /// \brief Return the alignment in bits that should be given to a
  /// global variable with type \p T.
  unsigned getAlignOfGlobalVar(QualType T) const;

  /// \brief Return the alignment in characters that should be given to a
  /// global variable with type \p T.
  CharUnits getAlignOfGlobalVarInChars(QualType T) const;

  /// \brief Return a conservative estimate of the alignment of the specified
  /// decl \p D.
  ///
  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
  /// alignment.
  ///
  /// If \p ForAlignof, references are treated like their underlying type
  /// and  large arrays don't get any special treatment. If not \p ForAlignof
  /// it computes the value expected by CodeGen: references are treated like
  /// pointers and large arrays get extra alignment.
  CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;

  /// \brief Get or compute information about the layout of the specified
  /// record (struct/union/class) \p D, which indicates its size and field
  /// position information.
  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
  const ASTRecordLayout *BuildMicrosoftASTRecordLayout(const RecordDecl *D) const;

  /// \brief Get or compute information about the layout of the specified
  /// Objective-C interface.
  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
    const;

  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
                        bool Simple = false) const;

  /// \brief Get or compute information about the layout of the specified
  /// Objective-C implementation.
  ///
  /// This may differ from the interface if synthesized ivars are present.
  const ASTRecordLayout &
  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;

  /// \brief Get our current best idea for the key function of the
  /// given record decl, or NULL if there isn't one.
  ///
  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
  ///   ...the first non-pure virtual function that is not inline at the
  ///   point of class definition.
  ///
  /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
  /// virtual functions that are defined 'inline', which means that
  /// the result of this computation can change.
  const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);

  /// \brief Observe that the given method cannot be a key function.
  /// Checks the key-function cache for the method's class and clears it
  /// if matches the given declaration.
  ///
  /// This is used in ABIs where out-of-line definitions marked
  /// inline are not considered to be key functions.
  ///
  /// \param method should be the declaration from the class definition
  void setNonKeyFunction(const CXXMethodDecl *method);

  /// Loading virtual member pointers using the virtual inheritance model
  /// always results in an adjustment using the vbtable even if the index is
  /// zero.
  ///
  /// This is usually OK because the first slot in the vbtable points
  /// backwards to the top of the MDC.  However, the MDC might be reusing a
  /// vbptr from an nv-base.  In this case, the first slot in the vbtable
  /// points to the start of the nv-base which introduced the vbptr and *not*
  /// the MDC.  Modify the NonVirtualBaseAdjustment to account for this.
  CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;

  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
  uint64_t getFieldOffset(const ValueDecl *FD) const;

  bool isNearlyEmpty(const CXXRecordDecl *RD) const;

  VTableContextBase *getVTableContext();

  MangleContext *createMangleContext();
  
  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
  
  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
  void CollectInheritedProtocols(const Decl *CDecl,
                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);

  //===--------------------------------------------------------------------===//
  //                            Type Operators
  //===--------------------------------------------------------------------===//

  /// \brief Return the canonical (structural) type corresponding to the
  /// specified potentially non-canonical type \p T.
  ///
  /// The non-canonical version of a type may have many "decorated" versions of
  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
  /// returned type is guaranteed to be free of any of these, allowing two
  /// canonical types to be compared for exact equality with a simple pointer
  /// comparison.
  CanQualType getCanonicalType(QualType T) const {
    return CanQualType::CreateUnsafe(T.getCanonicalType());
  }

  const Type *getCanonicalType(const Type *T) const {
    return T->getCanonicalTypeInternal().getTypePtr();
  }

  /// \brief Return the canonical parameter type corresponding to the specific
  /// potentially non-canonical one.
  ///
  /// Qualifiers are stripped off, functions are turned into function
  /// pointers, and arrays decay one level into pointers.
  CanQualType getCanonicalParamType(QualType T) const;

  /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
  bool hasSameType(QualType T1, QualType T2) const {
    return getCanonicalType(T1) == getCanonicalType(T2);
  }

  bool hasSameType(const Type *T1, const Type *T2) const {
    return getCanonicalType(T1) == getCanonicalType(T2);
  }

  /// \brief Return this type as a completely-unqualified array type,
  /// capturing the qualifiers in \p Quals.
  ///
  /// This will remove the minimal amount of sugaring from the types, similar
  /// to the behavior of QualType::getUnqualifiedType().
  ///
  /// \param T is the qualified type, which may be an ArrayType
  ///
  /// \param Quals will receive the full set of qualifiers that were
  /// applied to the array.
  ///
  /// \returns if this is an array type, the completely unqualified array type
  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);

  /// \brief Determine whether the given types are equivalent after
  /// cvr-qualifiers have been removed.
  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
    return getCanonicalType(T1).getTypePtr() ==
           getCanonicalType(T2).getTypePtr();
  }

  bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
                                       bool IsParam) const {
    auto SubTnullability = SubT->getNullability(*this);
    auto SuperTnullability = SuperT->getNullability(*this);
    if (SubTnullability.hasValue() == SuperTnullability.hasValue()) {
      // Neither has nullability; return true
      if (!SubTnullability)
        return true;
      // Both have nullability qualifier.
      if (*SubTnullability == *SuperTnullability ||
          *SubTnullability == NullabilityKind::Unspecified ||
          *SuperTnullability == NullabilityKind::Unspecified)
        return true;
      
      if (IsParam) {
        // Ok for the superclass method parameter to be "nonnull" and the subclass
        // method parameter to be "nullable"
        return (*SuperTnullability == NullabilityKind::NonNull &&
                *SubTnullability == NullabilityKind::Nullable);
      }
      else {
        // For the return type, it's okay for the superclass method to specify
        // "nullable" and the subclass method specify "nonnull"
        return (*SuperTnullability == NullabilityKind::Nullable &&
                *SubTnullability == NullabilityKind::NonNull);
      }
    }
    return true;
  }

  bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
                           const ObjCMethodDecl *MethodImp);
  
  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
  
  /// \brief Retrieves the "canonical" nested name specifier for a
  /// given nested name specifier.
  ///
  /// The canonical nested name specifier is a nested name specifier
  /// that uniquely identifies a type or namespace within the type
  /// system. For example, given:
  ///
  /// \code
  /// namespace N {
  ///   struct S {
  ///     template<typename T> struct X { typename T* type; };
  ///   };
  /// }
  ///
  /// template<typename T> struct Y {
  ///   typename N::S::X<T>::type member;
  /// };
  /// \endcode
  ///
  /// Here, the nested-name-specifier for N::S::X<T>:: will be
  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
  /// by declarations in the type system and the canonical type for
  /// the template type parameter 'T' is template-param-0-0.
  NestedNameSpecifier *
  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;

  /// \brief Retrieves the default calling convention for the current target.
  CallingConv getDefaultCallingConvention(bool isVariadic,
                                          bool IsCXXMethod) const;

  /// \brief Retrieves the "canonical" template name that refers to a
  /// given template.
  ///
  /// The canonical template name is the simplest expression that can
  /// be used to refer to a given template. For most templates, this
  /// expression is just the template declaration itself. For example,
  /// the template std::vector can be referred to via a variety of
  /// names---std::vector, \::std::vector, vector (if vector is in
  /// scope), etc.---but all of these names map down to the same
  /// TemplateDecl, which is used to form the canonical template name.
  ///
  /// Dependent template names are more interesting. Here, the
  /// template name could be something like T::template apply or
  /// std::allocator<T>::template rebind, where the nested name
  /// specifier itself is dependent. In this case, the canonical
  /// template name uses the shortest form of the dependent
  /// nested-name-specifier, which itself contains all canonical
  /// types, values, and templates.
  TemplateName getCanonicalTemplateName(TemplateName Name) const;

  /// \brief Determine whether the given template names refer to the same
  /// template.
  bool hasSameTemplateName(TemplateName X, TemplateName Y);
  
  /// \brief Retrieve the "canonical" template argument.
  ///
  /// The canonical template argument is the simplest template argument
  /// (which may be a type, value, expression, or declaration) that
  /// expresses the value of the argument.
  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
    const;

  /// Type Query functions.  If the type is an instance of the specified class,
  /// return the Type pointer for the underlying maximally pretty type.  This
  /// is a member of ASTContext because this may need to do some amount of
  /// canonicalization, e.g. to move type qualifiers into the element type.
  const ArrayType *getAsArrayType(QualType T) const;
  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
  }
  const VariableArrayType *getAsVariableArrayType(QualType T) const {
    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
  }
  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
  }
  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
    const {
    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
  }
  
  /// \brief Return the innermost element type of an array type.
  ///
  /// For example, will return "int" for int[m][n]
  QualType getBaseElementType(const ArrayType *VAT) const;

  /// \brief Return the innermost element type of a type (which needn't
  /// actually be an array type).
  QualType getBaseElementType(QualType QT) const;

  /// \brief Return number of constant array elements.
  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;

  /// \brief Perform adjustment on the parameter type of a function.
  ///
  /// This routine adjusts the given parameter type @p T to the actual
  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
  QualType getAdjustedParameterType(QualType T) const;
  
  /// \brief Retrieve the parameter type as adjusted for use in the signature
  /// of a function, decaying array and function types and removing top-level
  /// cv-qualifiers.
  QualType getSignatureParameterType(QualType T) const;
  
  QualType getExceptionObjectType(QualType T) const;
  
  /// \brief Return the properly qualified result of decaying the specified
  /// array type to a pointer.
  ///
  /// This operation is non-trivial when handling typedefs etc.  The canonical
  /// type of \p T must be an array type, this returns a pointer to a properly
  /// qualified element of the array.
  ///
  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
  QualType getArrayDecayedType(QualType T) const;

  /// \brief Return the type that \p PromotableType will promote to: C99
  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
  QualType getPromotedIntegerType(QualType PromotableType) const;

  /// \brief Recurses in pointer/array types until it finds an Objective-C
  /// retainable type and returns its ownership.
  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;

  /// \brief Whether this is a promotable bitfield reference according
  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
  ///
  /// \returns the type this bit-field will promote to, or NULL if no
  /// promotion occurs.
  QualType isPromotableBitField(Expr *E) const;

  /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1. 
  ///
  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
  /// \p LHS < \p RHS, return -1.
  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;

  /// \brief Compare the rank of the two specified floating point types,
  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
  ///
  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
  /// \p LHS < \p RHS, return -1.
  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;

  /// \brief Return a real floating point or a complex type (based on
  /// \p typeDomain/\p typeSize).
  ///
  /// \param typeDomain a real floating point or complex type.
  /// \param typeSize a real floating point or complex type.
  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
                                             QualType typeDomain) const;

  unsigned getTargetAddressSpace(QualType T) const {
    return getTargetAddressSpace(T.getQualifiers());
  }

  unsigned getTargetAddressSpace(Qualifiers Q) const {
    return getTargetAddressSpace(Q.getAddressSpace());
  }

  unsigned getTargetAddressSpace(unsigned AS) const {
    if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
      return AS;
    else
      return (*AddrSpaceMap)[AS - LangAS::Offset];
  }

  bool addressSpaceMapManglingFor(unsigned AS) const {
    return AddrSpaceMapMangling || 
           AS < LangAS::Offset || 
           AS >= LangAS::Offset + LangAS::Count;
  }

private:
  // Helper for integer ordering
  unsigned getIntegerRank(const Type *T) const;

public:

  //===--------------------------------------------------------------------===//
  //                    Type Compatibility Predicates
  //===--------------------------------------------------------------------===//

  /// Compatibility predicates used to check assignment expressions.
  bool typesAreCompatible(QualType T1, QualType T2, 
                          bool CompareUnqualified = false); // C99 6.2.7p1

  bool propertyTypesAreCompatible(QualType, QualType); 
  bool typesAreBlockPointerCompatible(QualType, QualType); 

  bool isObjCIdType(QualType T) const {
    return T == getObjCIdType();
  }
  bool isObjCClassType(QualType T) const {
    return T == getObjCClassType();
  }
  bool isObjCSelType(QualType T) const {
    return T == getObjCSelType();
  }
  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
                                         bool ForCompare);

  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
  
  // Check the safety of assignment from LHS to RHS
  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
                               const ObjCObjectPointerType *RHSOPT);
  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
                               const ObjCObjectType *RHS);
  bool canAssignObjCInterfacesInBlockPointer(
                                          const ObjCObjectPointerType *LHSOPT,
                                          const ObjCObjectPointerType *RHSOPT,
                                          bool BlockReturnType);
  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
                                   const ObjCObjectPointerType *RHSOPT);
  bool canBindObjCObjectType(QualType To, QualType From);

  // Functions for calculating composite types
  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
                      bool Unqualified = false, bool BlockReturnType = false);
  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
                              bool Unqualified = false);
  QualType mergeFunctionParameterTypes(QualType, QualType,
                                       bool OfBlockPointer = false,
                                       bool Unqualified = false);
  QualType mergeTransparentUnionType(QualType, QualType,
                                     bool OfBlockPointer=false,
                                     bool Unqualified = false);
  
  QualType mergeObjCGCQualifiers(QualType, QualType);
    
  bool FunctionTypesMatchOnNSConsumedAttrs(
         const FunctionProtoType *FromFunctionType,
         const FunctionProtoType *ToFunctionType);

  void ResetObjCLayout(const ObjCContainerDecl *CD) {
    ObjCLayouts[CD] = nullptr;
  }

  //===--------------------------------------------------------------------===//
  //                    Integer Predicates
  //===--------------------------------------------------------------------===//

  // The width of an integer, as defined in C99 6.2.6.2. This is the number
  // of bits in an integer type excluding any padding bits.
  unsigned getIntWidth(QualType T) const;

  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
  // unsigned integer type.  This method takes a signed type, and returns the
  // corresponding unsigned integer type.
  QualType getCorrespondingUnsignedType(QualType T) const;

  //===--------------------------------------------------------------------===//
  //                    Type Iterators.
  //===--------------------------------------------------------------------===//
  typedef llvm::iterator_range<SmallVectorImpl<Type *>::const_iterator>
    type_const_range;

  type_const_range types() const {
    return type_const_range(Types.begin(), Types.end());
  }

  //===--------------------------------------------------------------------===//
  //                    Integer Values
  //===--------------------------------------------------------------------===//

  /// \brief Make an APSInt of the appropriate width and signedness for the
  /// given \p Value and integer \p Type.
  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
    llvm::APSInt Res(getIntWidth(Type), 
                     !Type->isSignedIntegerOrEnumerationType());
    Res = Value;
    return Res;
  }

  bool isSentinelNullExpr(const Expr *E);

  /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
  /// none exists.
  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
  /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
  /// none exists.
  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);

  /// \brief Return true if there is at least one \@implementation in the TU.
  bool AnyObjCImplementation() {
    return !ObjCImpls.empty();
  }

  /// \brief Set the implementation of ObjCInterfaceDecl.
  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
                             ObjCImplementationDecl *ImplD);
  /// \brief Set the implementation of ObjCCategoryDecl.
  void setObjCImplementation(ObjCCategoryDecl *CatD,
                             ObjCCategoryImplDecl *ImplD);

  /// \brief Get the duplicate declaration of a ObjCMethod in the same
  /// interface, or null if none exists.
  const ObjCMethodDecl *getObjCMethodRedeclaration(
                                               const ObjCMethodDecl *MD) const {
    return ObjCMethodRedecls.lookup(MD);
  }

  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
                                  const ObjCMethodDecl *Redecl) {
    assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
    ObjCMethodRedecls[MD] = Redecl;
  }

  /// \brief Returns the Objective-C interface that \p ND belongs to if it is
  /// an Objective-C method/property/ivar etc. that is part of an interface,
  /// otherwise returns null.
  const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
  
  /// \brief Set the copy inialization expression of a block var decl.
  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
  /// \brief Get the copy initialization expression of the VarDecl \p VD, or
  /// NULL if none exists.
  Expr *getBlockVarCopyInits(const VarDecl* VD);

  /// \brief Allocate an uninitialized TypeSourceInfo.
  ///
  /// The caller should initialize the memory held by TypeSourceInfo using
  /// the TypeLoc wrappers.
  ///
  /// \param T the type that will be the basis for type source info. This type
  /// should refer to how the declarator was written in source code, not to
  /// what type semantic analysis resolved the declarator to.
  ///
  /// \param Size the size of the type info to create, or 0 if the size
  /// should be calculated based on the type.
  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;

  /// \brief Allocate a TypeSourceInfo where all locations have been
  /// initialized to a given location, which defaults to the empty
  /// location.
  TypeSourceInfo *
  getTrivialTypeSourceInfo(QualType T, 
                           SourceLocation Loc = SourceLocation()) const;

  /// \brief Add a deallocation callback that will be invoked when the 
  /// ASTContext is destroyed.
  ///
  /// \param Callback A callback function that will be invoked on destruction.
  ///
  /// \param Data Pointer data that will be provided to the callback function
  /// when it is called.
  void AddDeallocation(void (*Callback)(void*), void *Data);

  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);

  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
  /// lazily, only when used; this is only relevant for function or file scoped
  /// var definitions.
  ///
  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
  /// it is not used.
  bool DeclMustBeEmitted(const Decl *D);

  const CXXConstructorDecl *
  getCopyConstructorForExceptionObject(CXXRecordDecl *RD);

  void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
                                            CXXConstructorDecl *CD);

  void addDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
                                       unsigned ParmIdx, Expr *DAE);

  Expr *getDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
                                        unsigned ParmIdx);

  void setManglingNumber(const NamedDecl *ND, unsigned Number);
  unsigned getManglingNumber(const NamedDecl *ND) const;

  void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
  unsigned getStaticLocalNumber(const VarDecl *VD) const;

  /// \brief Retrieve the context for computing mangling numbers in the given
  /// DeclContext.
  MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);

  MangleNumberingContext *createMangleNumberingContext() const;

  /// \brief Used by ParmVarDecl to store on the side the
  /// index of the parameter when it exceeds the size of the normal bitfield.
  void setParameterIndex(const ParmVarDecl *D, unsigned index);

  /// \brief Used by ParmVarDecl to retrieve on the side the
  /// index of the parameter when it exceeds the size of the normal bitfield.
  unsigned getParameterIndex(const ParmVarDecl *D) const;

  /// \brief Get the storage for the constant value of a materialized temporary
  /// of static storage duration.
  APValue *getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
                                         bool MayCreate);

  //===--------------------------------------------------------------------===//
  //                    Statistics
  //===--------------------------------------------------------------------===//

  /// \brief The number of implicitly-declared default constructors.
  static unsigned NumImplicitDefaultConstructors;
  
  /// \brief The number of implicitly-declared default constructors for 
  /// which declarations were built.
  static unsigned NumImplicitDefaultConstructorsDeclared;

  /// \brief The number of implicitly-declared copy constructors.
  static unsigned NumImplicitCopyConstructors;
  
  /// \brief The number of implicitly-declared copy constructors for 
  /// which declarations were built.
  static unsigned NumImplicitCopyConstructorsDeclared;

  /// \brief The number of implicitly-declared move constructors.
  static unsigned NumImplicitMoveConstructors;

  /// \brief The number of implicitly-declared move constructors for
  /// which declarations were built.
  static unsigned NumImplicitMoveConstructorsDeclared;

  /// \brief The number of implicitly-declared copy assignment operators.
  static unsigned NumImplicitCopyAssignmentOperators;
  
  /// \brief The number of implicitly-declared copy assignment operators for 
  /// which declarations were built.
  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;

  /// \brief The number of implicitly-declared move assignment operators.
  static unsigned NumImplicitMoveAssignmentOperators;
  
  /// \brief The number of implicitly-declared move assignment operators for 
  /// which declarations were built.
  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;

  /// \brief The number of implicitly-declared destructors.
  static unsigned NumImplicitDestructors;
  
  /// \brief The number of implicitly-declared destructors for which 
  /// declarations were built.
  static unsigned NumImplicitDestructorsDeclared;
  
private:
  ASTContext(const ASTContext &) = delete;
  void operator=(const ASTContext &) = delete;

public:
  /// \brief Initialize built-in types.
  ///
  /// This routine may only be invoked once for a given ASTContext object.
  /// It is normally invoked after ASTContext construction.
  ///
  /// \param Target The target 
  void InitBuiltinTypes(const TargetInfo &Target);
  
private:
  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);

  // Return the Objective-C type encoding for a given type.
  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
                                  bool ExpandPointedToStructures,
                                  bool ExpandStructures,
                                  const FieldDecl *Field,
                                  bool OutermostType = false,
                                  bool EncodingProperty = false,
                                  bool StructField = false,
                                  bool EncodeBlockParameters = false,
                                  bool EncodeClassNames = false,
                                  bool EncodePointerToObjCTypedef = false,
                                  QualType *NotEncodedT=nullptr) const;

  // Adds the encoding of the structure's members.
  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
                                       const FieldDecl *Field,
                                       bool includeVBases = true,
                                       QualType *NotEncodedT=nullptr) const;
public:
  // Adds the encoding of a method parameter or return type.
  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
                                         QualType T, std::string& S,
                                         bool Extended) const;

  /// \brief Returns true if this is an inline-initialized static data member
  /// which is treated as a definition for MSVC compatibility.
  bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
  
private:
  const ASTRecordLayout &
  getObjCLayout(const ObjCInterfaceDecl *D,
                const ObjCImplementationDecl *Impl) const;

  /// \brief A set of deallocations that should be performed when the
  /// ASTContext is destroyed.
  typedef llvm::SmallDenseMap<void(*)(void*), llvm::SmallVector<void*, 16> >
    DeallocationMap;
  DeallocationMap Deallocations;

  // FIXME: This currently contains the set of StoredDeclMaps used
  // by DeclContext objects.  This probably should not be in ASTContext,
  // but we include it here so that ASTContext can quickly deallocate them.
  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;

  friend class DeclContext;
  friend class DeclarationNameTable;
  void ReleaseDeclContextMaps();
  void ReleaseParentMapEntries();

  std::unique_ptr<ParentMap> AllParents;

  std::unique_ptr<VTableContextBase> VTContext;

public:
  enum PragmaSectionFlag : unsigned {
    PSF_None = 0,
    PSF_Read = 0x1,
    PSF_Write = 0x2,
    PSF_Execute = 0x4,
    PSF_Implicit = 0x8,
    PSF_Invalid = 0x80000000U,
  };

  struct SectionInfo {
    DeclaratorDecl *Decl;
    SourceLocation PragmaSectionLocation;
    int SectionFlags;
    SectionInfo() {}
    SectionInfo(DeclaratorDecl *Decl,
                SourceLocation PragmaSectionLocation,
                int SectionFlags)
      : Decl(Decl),
        PragmaSectionLocation(PragmaSectionLocation),
        SectionFlags(SectionFlags) {}
  };

  llvm::StringMap<SectionInfo> SectionInfos;
};

/// \brief Utility function for constructing a nullary selector.
static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
  IdentifierInfo* II = &Ctx.Idents.get(name);
  return Ctx.Selectors.getSelector(0, &II);
}

/// \brief Utility function for constructing an unary selector.
static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
  IdentifierInfo* II = &Ctx.Idents.get(name);
  return Ctx.Selectors.getSelector(1, &II);
}

}  // end namespace clang

// operator new and delete aren't allowed inside namespaces.

/// @brief Placement new for using the ASTContext's allocator.
///
/// This placement form of operator new uses the ASTContext's allocator for
/// obtaining memory.
///
/// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
/// here need to also be made there.
///
/// We intentionally avoid using a nothrow specification here so that the calls
/// to this operator will not perform a null check on the result -- the
/// underlying allocator never returns null pointers.
///
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
/// @code
/// // Default alignment (8)
/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
/// // Specific alignment
/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
/// @endcode
/// Memory allocated through this placement new operator does not need to be
/// explicitly freed, as ASTContext will free all of this memory when it gets
/// destroyed. Please note that you cannot use delete on the pointer.
///
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
/// @param C The ASTContext that provides the allocator.
/// @param Alignment The alignment of the allocated memory (if the underlying
///                  allocator supports it).
/// @return The allocated memory. Could be NULL.
inline void *operator new(size_t Bytes, const clang::ASTContext &C,
                          size_t Alignment) {
  return C.Allocate(Bytes, Alignment);
}
/// @brief Placement delete companion to the new above.
///
/// This operator is just a companion to the new above. There is no way of
/// invoking it directly; see the new operator for more details. This operator
/// is called implicitly by the compiler if a placement new expression using
/// the ASTContext throws in the object constructor.
inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
  C.Deallocate(Ptr);
}

/// This placement form of operator new[] uses the ASTContext's allocator for
/// obtaining memory.
///
/// We intentionally avoid using a nothrow specification here so that the calls
/// to this operator will not perform a null check on the result -- the
/// underlying allocator never returns null pointers.
///
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
/// @code
/// // Default alignment (8)
/// char *data = new (Context) char[10];
/// // Specific alignment
/// char *data = new (Context, 4) char[10];
/// @endcode
/// Memory allocated through this placement new[] operator does not need to be
/// explicitly freed, as ASTContext will free all of this memory when it gets
/// destroyed. Please note that you cannot use delete on the pointer.
///
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
/// @param C The ASTContext that provides the allocator.
/// @param Alignment The alignment of the allocated memory (if the underlying
///                  allocator supports it).
/// @return The allocated memory. Could be NULL.
inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
                            size_t Alignment = 8) {
  return C.Allocate(Bytes, Alignment);
}

/// @brief Placement delete[] companion to the new[] above.
///
/// This operator is just a companion to the new[] above. There is no way of
/// invoking it directly; see the new[] operator for more details. This operator
/// is called implicitly by the compiler if a placement new[] expression using
/// the ASTContext throws in the object constructor.
inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
  C.Deallocate(Ptr);
}

/// \brief Create the representation of a LazyGenerationalUpdatePtr.
template <typename Owner, typename T,
          void (clang::ExternalASTSource::*Update)(Owner)>
typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
    clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
        const clang::ASTContext &Ctx, T Value) {
  // Note, this is implemented here so that ExternalASTSource.h doesn't need to
  // include ASTContext.h. We explicitly instantiate it for all relevant types
  // in ASTContext.cpp.
  if (auto *Source = Ctx.getExternalSource())
    return new (Ctx) LazyData(Source, Value);
  return Value;
}

#endif