1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
|
//===--- Decl.h - Classes for representing declarations ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Decl subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECL_H
#define LLVM_CLANG_AST_DECL_H
#include "clang/AST/APValue.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/Redeclarable.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExternalASTSource.h"
namespace clang {
class CXXTemporary;
class Expr;
class FunctionTemplateDecl;
class Stmt;
class CompoundStmt;
class StringLiteral;
class TemplateArgumentList;
class MemberSpecializationInfo;
class FunctionTemplateSpecializationInfo;
class TypeLoc;
/// \brief A container of type source information.
///
/// A client can read the relevant info using TypeLoc wrappers, e.g:
/// @code
/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
/// if (PointerLoc *PL = dyn_cast<PointerLoc>(&TL))
/// PL->getStarLoc().print(OS, SrcMgr);
/// @endcode
///
class TypeSourceInfo {
QualType Ty;
// Contains a memory block after the class, used for type source information,
// allocated by ASTContext.
friend class ASTContext;
TypeSourceInfo(QualType ty) : Ty(ty) { }
public:
/// \brief Return the type wrapped by this type source info.
QualType getType() const { return Ty; }
/// \brief Return the TypeLoc wrapper for the type source info.
TypeLoc getTypeLoc() const;
};
/// UnresolvedSet - A set of unresolved declarations. This is needed
/// in a lot of places, but isn't really worth breaking into its own
/// header right now.
class UnresolvedSet {
typedef llvm::SmallVector<NamedDecl*, 4> DeclsTy;
DeclsTy Decls;
public:
void addDecl(NamedDecl *D) {
Decls.push_back(D);
}
bool replace(const NamedDecl* Old, NamedDecl *New) {
for (DeclsTy::iterator I = Decls.begin(), E = Decls.end(); I != E; ++I)
if (*I == Old)
return (*I = New, true);
return false;
}
unsigned size() const { return Decls.size(); }
typedef DeclsTy::const_iterator iterator;
iterator begin() const { return Decls.begin(); }
iterator end() const { return Decls.end(); }
};
/// TranslationUnitDecl - The top declaration context.
class TranslationUnitDecl : public Decl, public DeclContext {
ASTContext &Ctx;
/// The (most recently entered) anonymous namespace for this
/// translation unit, if one has been created.
NamespaceDecl *AnonymousNamespace;
explicit TranslationUnitDecl(ASTContext &ctx)
: Decl(TranslationUnit, 0, SourceLocation()),
DeclContext(TranslationUnit),
Ctx(ctx), AnonymousNamespace(0) {}
public:
ASTContext &getASTContext() const { return Ctx; }
NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
static TranslationUnitDecl *Create(ASTContext &C);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return D->getKind() == TranslationUnit; }
static bool classof(const TranslationUnitDecl *D) { return true; }
static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
}
static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
}
};
/// NamedDecl - This represents a decl with a name. Many decls have names such
/// as ObjCMethodDecl, but not @class, etc.
class NamedDecl : public Decl {
/// Name - The name of this declaration, which is typically a normal
/// identifier but may also be a special kind of name (C++
/// constructor, Objective-C selector, etc.)
DeclarationName Name;
protected:
NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
: Decl(DK, DC, L), Name(N) { }
public:
/// getIdentifier - Get the identifier that names this declaration,
/// if there is one. This will return NULL if this declaration has
/// no name (e.g., for an unnamed class) or if the name is a special
/// name (C++ constructor, Objective-C selector, etc.).
IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
/// getName - Get the name of identifier for this declaration as a StringRef.
/// This requires that the declaration have a name and that it be a simple
/// identifier.
llvm::StringRef getName() const {
assert(Name.isIdentifier() && "Name is not a simple identifier");
return getIdentifier() ? getIdentifier()->getName() : "";
}
/// getNameAsCString - Get the name of identifier for this declaration as a
/// C string (const char*). This requires that the declaration have a name
/// and that it be a simple identifier.
//
// FIXME: Deprecated, move clients to getName().
const char *getNameAsCString() const {
assert(Name.isIdentifier() && "Name is not a simple identifier");
return getIdentifier() ? getIdentifier()->getNameStart() : "";
}
/// getNameAsString - Get a human-readable name for the declaration, even if
/// it is one of the special kinds of names (C++ constructor, Objective-C
/// selector, etc). Creating this name requires expensive string
/// manipulation, so it should be called only when performance doesn't matter.
/// For simple declarations, getNameAsCString() should suffice.
//
// FIXME: This function should be renamed to indicate that it is not just an
// alternate form of getName(), and clients should move as appropriate.
//
// FIXME: Deprecated, move clients to getName().
std::string getNameAsString() const { return Name.getAsString(); }
/// getDeclName - Get the actual, stored name of the declaration,
/// which may be a special name.
DeclarationName getDeclName() const { return Name; }
/// \brief Set the name of this declaration.
void setDeclName(DeclarationName N) { Name = N; }
/// getQualifiedNameAsString - Returns human-readable qualified name for
/// declaration, like A::B::i, for i being member of namespace A::B.
/// If declaration is not member of context which can be named (record,
/// namespace), it will return same result as getNameAsString().
/// Creating this name is expensive, so it should be called only when
/// performance doesn't matter.
std::string getQualifiedNameAsString() const;
std::string getQualifiedNameAsString(const PrintingPolicy &Policy) const;
/// getNameForDiagnostic - Appends a human-readable name for this
/// declaration into the given string.
///
/// This is the method invoked by Sema when displaying a NamedDecl
/// in a diagnostic. It does not necessarily produce the same
/// result as getNameAsString(); for example, class template
/// specializations are printed with their template arguments.
///
/// TODO: use an API that doesn't require so many temporary strings
virtual void getNameForDiagnostic(std::string &S,
const PrintingPolicy &Policy,
bool Qualified) const {
if (Qualified)
S += getQualifiedNameAsString(Policy);
else
S += getNameAsString();
}
/// declarationReplaces - Determine whether this declaration, if
/// known to be well-formed within its context, will replace the
/// declaration OldD if introduced into scope. A declaration will
/// replace another declaration if, for example, it is a
/// redeclaration of the same variable or function, but not if it is
/// a declaration of a different kind (function vs. class) or an
/// overloaded function.
bool declarationReplaces(NamedDecl *OldD) const;
/// \brief Determine whether this declaration has linkage.
bool hasLinkage() const;
/// \brief Determine whether this declaration is a C++ class member.
bool isCXXClassMember() const {
const DeclContext *DC = getDeclContext();
// C++0x [class.mem]p1:
// The enumerators of an unscoped enumeration defined in
// the class are members of the class.
// FIXME: support C++0x scoped enumerations.
if (isa<EnumDecl>(DC))
DC = DC->getParent();
return DC->isRecord();
}
/// \brief Describes the different kinds of linkage
/// (C++ [basic.link], C99 6.2.2) that an entity may have.
enum Linkage {
/// \brief No linkage, which means that the entity is unique and
/// can only be referred to from within its scope.
NoLinkage = 0,
/// \brief Internal linkage, which indicates that the entity can
/// be referred to from within the translation unit (but not other
/// translation units).
InternalLinkage,
/// \brief External linkage, which indicates that the entity can
/// be referred to from other translation units.
ExternalLinkage
};
/// \brief Determine what kind of linkage this entity has.
Linkage getLinkage() const;
/// \brief Looks through UsingDecls and ObjCCompatibleAliasDecls for
/// the underlying named decl.
NamedDecl *getUnderlyingDecl();
const NamedDecl *getUnderlyingDecl() const {
return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
}
static bool classof(const Decl *D) {
return D->getKind() >= NamedFirst && D->getKind() <= NamedLast;
}
static bool classof(const NamedDecl *D) { return true; }
};
/// NamespaceDecl - Represent a C++ namespace.
class NamespaceDecl : public NamedDecl, public DeclContext {
SourceLocation LBracLoc, RBracLoc;
// For extended namespace definitions:
//
// namespace A { int x; }
// namespace A { int y; }
//
// there will be one NamespaceDecl for each declaration.
// NextNamespace points to the next extended declaration.
// OrigNamespace points to the original namespace declaration.
// OrigNamespace of the first namespace decl points to itself.
NamespaceDecl *OrigNamespace, *NextNamespace;
// The (most recently entered) anonymous namespace inside this
// namespace.
NamespaceDecl *AnonymousNamespace;
NamespaceDecl(DeclContext *DC, SourceLocation L, IdentifierInfo *Id)
: NamedDecl(Namespace, DC, L, Id), DeclContext(Namespace) {
OrigNamespace = this;
NextNamespace = 0;
AnonymousNamespace = 0;
}
public:
static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id);
virtual void Destroy(ASTContext& C);
// \brief Returns true if this is an anonymous namespace declaration.
//
// For example:
// namespace {
// ...
// };
// q.v. C++ [namespace.unnamed]
bool isAnonymousNamespace() const {
return !getIdentifier();
}
NamespaceDecl *getNextNamespace() { return NextNamespace; }
const NamespaceDecl *getNextNamespace() const { return NextNamespace; }
void setNextNamespace(NamespaceDecl *ND) { NextNamespace = ND; }
NamespaceDecl *getOriginalNamespace() const {
return OrigNamespace;
}
void setOriginalNamespace(NamespaceDecl *ND) { OrigNamespace = ND; }
NamespaceDecl *getAnonymousNamespace() const {
return AnonymousNamespace;
}
void setAnonymousNamespace(NamespaceDecl *D) {
assert(D->isAnonymousNamespace());
assert(D->getParent() == this);
AnonymousNamespace = D;
}
virtual NamespaceDecl *getCanonicalDecl() { return OrigNamespace; }
const NamespaceDecl *getCanonicalDecl() const { return OrigNamespace; }
virtual SourceRange getSourceRange() const {
return SourceRange(getLocation(), RBracLoc);
}
SourceLocation getLBracLoc() const { return LBracLoc; }
SourceLocation getRBracLoc() const { return RBracLoc; }
void setLBracLoc(SourceLocation LBrace) { LBracLoc = LBrace; }
void setRBracLoc(SourceLocation RBrace) { RBracLoc = RBrace; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return D->getKind() == Namespace; }
static bool classof(const NamespaceDecl *D) { return true; }
static DeclContext *castToDeclContext(const NamespaceDecl *D) {
return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
}
static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
}
};
/// ValueDecl - Represent the declaration of a variable (in which case it is
/// an lvalue) a function (in which case it is a function designator) or
/// an enum constant.
class ValueDecl : public NamedDecl {
QualType DeclType;
protected:
ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T)
: NamedDecl(DK, DC, L, N), DeclType(T) {}
public:
QualType getType() const { return DeclType; }
void setType(QualType newType) { DeclType = newType; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) {
return D->getKind() >= ValueFirst && D->getKind() <= ValueLast;
}
static bool classof(const ValueDecl *D) { return true; }
};
/// \brief Represents a ValueDecl that came out of a declarator.
/// Contains type source information through TypeSourceInfo.
class DeclaratorDecl : public ValueDecl {
TypeSourceInfo *DeclInfo;
protected:
DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T, TypeSourceInfo *TInfo)
: ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo) {}
public:
TypeSourceInfo *getTypeSourceInfo() const { return DeclInfo; }
void setTypeSourceInfo(TypeSourceInfo *TInfo) { DeclInfo = TInfo; }
SourceLocation getTypeSpecStartLoc() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) {
return D->getKind() >= DeclaratorFirst && D->getKind() <= DeclaratorLast;
}
static bool classof(const DeclaratorDecl *D) { return true; }
};
/// \brief Structure used to store a statement, the constant value to
/// which it was evaluated (if any), and whether or not the statement
/// is an integral constant expression (if known).
struct EvaluatedStmt {
EvaluatedStmt() : WasEvaluated(false), IsEvaluating(false), CheckedICE(false),
CheckingICE(false), IsICE(false) { }
/// \brief Whether this statement was already evaluated.
bool WasEvaluated : 1;
/// \brief Whether this statement is being evaluated.
bool IsEvaluating : 1;
/// \brief Whether we already checked whether this statement was an
/// integral constant expression.
bool CheckedICE : 1;
/// \brief Whether we are checking whether this statement is an
/// integral constant expression.
bool CheckingICE : 1;
/// \brief Whether this statement is an integral constant
/// expression. Only valid if CheckedICE is true.
bool IsICE : 1;
Stmt *Value;
APValue Evaluated;
};
// \brief Describes the kind of template specialization that a
// particular template specialization declaration represents.
enum TemplateSpecializationKind {
/// This template specialization was formed from a template-id but
/// has not yet been declared, defined, or instantiated.
TSK_Undeclared = 0,
/// This template specialization was implicitly instantiated from a
/// template. (C++ [temp.inst]).
TSK_ImplicitInstantiation,
/// This template specialization was declared or defined by an
/// explicit specialization (C++ [temp.expl.spec]) or partial
/// specialization (C++ [temp.class.spec]).
TSK_ExplicitSpecialization,
/// This template specialization was instantiated from a template
/// due to an explicit instantiation declaration request
/// (C++0x [temp.explicit]).
TSK_ExplicitInstantiationDeclaration,
/// This template specialization was instantiated from a template
/// due to an explicit instantiation definition request
/// (C++ [temp.explicit]).
TSK_ExplicitInstantiationDefinition
};
/// VarDecl - An instance of this class is created to represent a variable
/// declaration or definition.
class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
public:
enum StorageClass {
None, Auto, Register, Extern, Static, PrivateExtern
};
/// getStorageClassSpecifierString - Return the string used to
/// specify the storage class \arg SC.
///
/// It is illegal to call this function with SC == None.
static const char *getStorageClassSpecifierString(StorageClass SC);
protected:
/// \brief Placeholder type used in Init to denote an unparsed C++ default
/// argument.
struct UnparsedDefaultArgument;
/// \brief Placeholder type used in Init to denote an uninstantiated C++
/// default argument.
struct UninstantiatedDefaultArgument;
typedef llvm::PointerUnion4<Stmt *, EvaluatedStmt *,
UnparsedDefaultArgument *,
UninstantiatedDefaultArgument *> InitType;
/// \brief The initializer for this variable or, for a ParmVarDecl, the
/// C++ default argument.
mutable InitType Init;
private:
// FIXME: This can be packed into the bitfields in Decl.
unsigned SClass : 3;
bool ThreadSpecified : 1;
bool HasCXXDirectInit : 1;
/// DeclaredInCondition - Whether this variable was declared in a
/// condition, e.g., if (int x = foo()) { ... }.
bool DeclaredInCondition : 1;
friend class StmtIteratorBase;
protected:
VarDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo, StorageClass SC)
: DeclaratorDecl(DK, DC, L, Id, T, TInfo), Init(),
ThreadSpecified(false), HasCXXDirectInit(false),
DeclaredInCondition(false) {
SClass = SC;
}
typedef Redeclarable<VarDecl> redeclarable_base;
virtual VarDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
public:
typedef redeclarable_base::redecl_iterator redecl_iterator;
redecl_iterator redecls_begin() const {
return redeclarable_base::redecls_begin();
}
redecl_iterator redecls_end() const {
return redeclarable_base::redecls_end();
}
static VarDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo, StorageClass S);
virtual ~VarDecl();
virtual void Destroy(ASTContext& C);
StorageClass getStorageClass() const { return (StorageClass)SClass; }
void setStorageClass(StorageClass SC) { SClass = SC; }
virtual SourceRange getSourceRange() const;
const Expr *getInit() const {
if (Init.isNull())
return 0;
const Stmt *S = Init.dyn_cast<Stmt *>();
if (!S) {
if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
S = ES->Value;
}
return (const Expr*) S;
}
Expr *getInit() {
if (Init.isNull())
return 0;
Stmt *S = Init.dyn_cast<Stmt *>();
if (!S) {
if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
S = ES->Value;
}
return (Expr*) S;
}
/// \brief Retrieve the address of the initializer expression.
Stmt **getInitAddress() {
if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
return &ES->Value;
// This union hack tip-toes around strict-aliasing rules.
union {
InitType *InitPtr;
Stmt **StmtPtr;
};
InitPtr = &Init;
return StmtPtr;
}
void setInit(ASTContext &C, Expr *I);
EvaluatedStmt *EnsureEvaluatedStmt() const {
EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
if (!Eval) {
Stmt *S = Init.get<Stmt *>();
Eval = new (getASTContext()) EvaluatedStmt;
Eval->Value = S;
Init = Eval;
}
return Eval;
}
/// \brief Check whether we are in the process of checking whether the
/// initializer can be evaluated.
bool isEvaluatingValue() const {
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
return Eval->IsEvaluating;
return false;
}
/// \brief Note that we now are checking whether the initializer can be
/// evaluated.
void setEvaluatingValue() const {
EvaluatedStmt *Eval = EnsureEvaluatedStmt();
Eval->IsEvaluating = true;
}
/// \brief Note that constant evaluation has computed the given
/// value for this variable's initializer.
void setEvaluatedValue(const APValue &Value) const {
EvaluatedStmt *Eval = EnsureEvaluatedStmt();
Eval->IsEvaluating = false;
Eval->WasEvaluated = true;
Eval->Evaluated = Value;
}
/// \brief Return the already-evaluated value of this variable's
/// initializer, or NULL if the value is not yet known. Returns pointer
/// to untyped APValue if the value could not be evaluated.
APValue *getEvaluatedValue() const {
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
if (Eval->WasEvaluated)
return &Eval->Evaluated;
return 0;
}
/// \brief Determines whether it is already known whether the
/// initializer is an integral constant expression or not.
bool isInitKnownICE() const {
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
return Eval->CheckedICE;
return false;
}
/// \brief Determines whether the initializer is an integral
/// constant expression.
///
/// \pre isInitKnownICE()
bool isInitICE() const {
assert(isInitKnownICE() &&
"Check whether we already know that the initializer is an ICE");
return Init.get<EvaluatedStmt *>()->IsICE;
}
/// \brief Check whether we are in the process of checking the initializer
/// is an integral constant expression.
bool isCheckingICE() const {
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
return Eval->CheckingICE;
return false;
}
/// \brief Note that we now are checking whether the initializer is an
/// integral constant expression.
void setCheckingICE() const {
EvaluatedStmt *Eval = EnsureEvaluatedStmt();
Eval->CheckingICE = true;
}
/// \brief Note that we now know whether the initializer is an
/// integral constant expression.
void setInitKnownICE(bool IsICE) const {
EvaluatedStmt *Eval = EnsureEvaluatedStmt();
Eval->CheckingICE = false;
Eval->CheckedICE = true;
Eval->IsICE = IsICE;
}
/// \brief Retrieve the definition of this variable, which may come
/// from a previous declaration. Def will be set to the VarDecl that
/// contains the initializer, and the result will be that
/// initializer.
const Expr *getDefinition(const VarDecl *&Def) const;
void setThreadSpecified(bool T) { ThreadSpecified = T; }
bool isThreadSpecified() const {
return ThreadSpecified;
}
void setCXXDirectInitializer(bool T) { HasCXXDirectInit = T; }
/// hasCXXDirectInitializer - If true, the initializer was a direct
/// initializer, e.g: "int x(1);". The Init expression will be the expression
/// inside the parens or a "ClassType(a,b,c)" class constructor expression for
/// class types. Clients can distinguish between "int x(1);" and "int x=1;"
/// by checking hasCXXDirectInitializer.
///
bool hasCXXDirectInitializer() const {
return HasCXXDirectInit;
}
/// isDeclaredInCondition - Whether this variable was declared as
/// part of a condition in an if/switch/while statement, e.g.,
/// @code
/// if (int x = foo()) { ... }
/// @endcode
bool isDeclaredInCondition() const {
return DeclaredInCondition;
}
void setDeclaredInCondition(bool InCondition) {
DeclaredInCondition = InCondition;
}
virtual VarDecl *getCanonicalDecl();
const VarDecl *getCanonicalDecl() const {
return const_cast<VarDecl*>(this)->getCanonicalDecl();
}
/// hasLocalStorage - Returns true if a variable with function scope
/// is a non-static local variable.
bool hasLocalStorage() const {
if (getStorageClass() == None)
return !isFileVarDecl();
// Return true for: Auto, Register.
// Return false for: Extern, Static, PrivateExtern.
return getStorageClass() <= Register;
}
/// hasExternStorage - Returns true if a variable has extern or
/// __private_extern__ storage.
bool hasExternalStorage() const {
return getStorageClass() == Extern || getStorageClass() == PrivateExtern;
}
/// hasGlobalStorage - Returns true for all variables that do not
/// have local storage. This includs all global variables as well
/// as static variables declared within a function.
bool hasGlobalStorage() const { return !hasLocalStorage(); }
/// isBlockVarDecl - Returns true for local variable declarations. Note that
/// this includes static variables inside of functions.
///
/// void foo() { int x; static int y; extern int z; }
///
bool isBlockVarDecl() const {
if (getKind() != Decl::Var)
return false;
if (const DeclContext *DC = getDeclContext())
return DC->getLookupContext()->isFunctionOrMethod();
return false;
}
/// \brief Determines whether this is a static data member.
///
/// This will only be true in C++, and applies to, e.g., the
/// variable 'x' in:
/// \code
/// struct S {
/// static int x;
/// };
/// \endcode
bool isStaticDataMember() const {
return getDeclContext()->isRecord();
}
/// \brief Determine whether this is or was instantiated from an out-of-line
/// definition of a static data member.
bool isOutOfLine() const;
/// \brief If this is a static data member, find its out-of-line definition.
VarDecl *getOutOfLineDefinition();
/// \brief If this variable is an instantiated static data member of a
/// class template specialization, returns the templated static data member
/// from which it was instantiated.
VarDecl *getInstantiatedFromStaticDataMember() const;
/// \brief If this variable is a static data member, determine what kind of
/// template specialization or instantiation this is.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// \brief If this variable is an instantiation of a static data member of a
/// class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const;
/// \brief For a static data member that was instantiated from a static
/// data member of a class template, set the template specialiation kind.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation = SourceLocation());
/// isFileVarDecl - Returns true for file scoped variable declaration.
bool isFileVarDecl() const {
if (getKind() != Decl::Var)
return false;
if (const DeclContext *Ctx = getDeclContext()) {
Ctx = Ctx->getLookupContext();
if (isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx) )
return true;
}
if (isStaticDataMember())
return true;
return false;
}
/// \brief Determine whether this is a tentative definition of a
/// variable in C.
bool isTentativeDefinition(ASTContext &Context) const;
/// \brief Determines whether this variable is a variable with
/// external, C linkage.
bool isExternC() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) {
return D->getKind() >= VarFirst && D->getKind() <= VarLast;
}
static bool classof(const VarDecl *D) { return true; }
};
class ImplicitParamDecl : public VarDecl {
protected:
ImplicitParamDecl(Kind DK, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType Tw)
: VarDecl(DK, DC, L, Id, Tw, /*TInfo=*/0, VarDecl::None) {}
public:
static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
QualType T);
// Implement isa/cast/dyncast/etc.
static bool classof(const ImplicitParamDecl *D) { return true; }
static bool classof(const Decl *D) { return D->getKind() == ImplicitParam; }
};
/// ParmVarDecl - Represent a parameter to a function.
class ParmVarDecl : public VarDecl {
// NOTE: VC++ treats enums as signed, avoid using the ObjCDeclQualifier enum
/// FIXME: Also can be paced into the bitfields in Decl.
/// in, inout, etc.
unsigned objcDeclQualifier : 6;
protected:
ParmVarDecl(Kind DK, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
StorageClass S, Expr *DefArg)
: VarDecl(DK, DC, L, Id, T, TInfo, S), objcDeclQualifier(OBJC_TQ_None) {
setDefaultArg(DefArg);
}
public:
static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L,IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo,
StorageClass S, Expr *DefArg);
ObjCDeclQualifier getObjCDeclQualifier() const {
return ObjCDeclQualifier(objcDeclQualifier);
}
void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
objcDeclQualifier = QTVal;
}
Expr *getDefaultArg();
const Expr *getDefaultArg() const {
return const_cast<ParmVarDecl *>(this)->getDefaultArg();
}
void setDefaultArg(Expr *defarg) {
Init = reinterpret_cast<Stmt *>(defarg);
}
unsigned getNumDefaultArgTemporaries() const;
CXXTemporary *getDefaultArgTemporary(unsigned i);
const CXXTemporary *getDefaultArgTemporary(unsigned i) const {
return const_cast<ParmVarDecl *>(this)->getDefaultArgTemporary(i);
}
/// \brief Retrieve the source range that covers the entire default
/// argument.
SourceRange getDefaultArgRange() const;
void setUninstantiatedDefaultArg(Expr *arg) {
Init = reinterpret_cast<UninstantiatedDefaultArgument *>(arg);
}
Expr *getUninstantiatedDefaultArg() {
return (Expr *)Init.get<UninstantiatedDefaultArgument *>();
}
const Expr *getUninstantiatedDefaultArg() const {
return (const Expr *)Init.get<UninstantiatedDefaultArgument *>();
}
/// hasDefaultArg - Determines whether this parameter has a default argument,
/// either parsed or not.
bool hasDefaultArg() const {
return getInit() || hasUnparsedDefaultArg() ||
hasUninstantiatedDefaultArg();
}
/// hasUnparsedDefaultArg - Determines whether this parameter has a
/// default argument that has not yet been parsed. This will occur
/// during the processing of a C++ class whose member functions have
/// default arguments, e.g.,
/// @code
/// class X {
/// public:
/// void f(int x = 17); // x has an unparsed default argument now
/// }; // x has a regular default argument now
/// @endcode
bool hasUnparsedDefaultArg() const {
return Init.is<UnparsedDefaultArgument*>();
}
bool hasUninstantiatedDefaultArg() const {
return Init.is<UninstantiatedDefaultArgument*>();
}
/// setUnparsedDefaultArg - Specify that this parameter has an
/// unparsed default argument. The argument will be replaced with a
/// real default argument via setDefaultArg when the class
/// definition enclosing the function declaration that owns this
/// default argument is completed.
void setUnparsedDefaultArg() {
Init = (UnparsedDefaultArgument *)0;
}
QualType getOriginalType() const {
if (getTypeSourceInfo())
return getTypeSourceInfo()->getType();
return getType();
}
/// setOwningFunction - Sets the function declaration that owns this
/// ParmVarDecl. Since ParmVarDecls are often created before the
/// FunctionDecls that own them, this routine is required to update
/// the DeclContext appropriately.
void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) {
return (D->getKind() == ParmVar);
}
static bool classof(const ParmVarDecl *D) { return true; }
};
/// FunctionDecl - An instance of this class is created to represent a
/// function declaration or definition.
///
/// Since a given function can be declared several times in a program,
/// there may be several FunctionDecls that correspond to that
/// function. Only one of those FunctionDecls will be found when
/// traversing the list of declarations in the context of the
/// FunctionDecl (e.g., the translation unit); this FunctionDecl
/// contains all of the information known about the function. Other,
/// previous declarations of the function are available via the
/// getPreviousDeclaration() chain.
class FunctionDecl : public DeclaratorDecl, public DeclContext,
public Redeclarable<FunctionDecl> {
public:
enum StorageClass {
None, Extern, Static, PrivateExtern
};
private:
/// ParamInfo - new[]'d array of pointers to VarDecls for the formal
/// parameters of this function. This is null if a prototype or if there are
/// no formals.
ParmVarDecl **ParamInfo;
LazyDeclStmtPtr Body;
// FIXME: This can be packed into the bitfields in Decl.
// NOTE: VC++ treats enums as signed, avoid using the StorageClass enum
unsigned SClass : 2;
bool IsInline : 1;
bool IsVirtualAsWritten : 1;
bool IsPure : 1;
bool HasInheritedPrototype : 1;
bool HasWrittenPrototype : 1;
bool IsDeleted : 1;
bool IsTrivial : 1; // sunk from CXXMethodDecl
bool IsCopyAssignment : 1; // sunk from CXXMethodDecl
bool HasImplicitReturnZero : 1;
/// \brief End part of this FunctionDecl's source range.
///
/// We could compute the full range in getSourceRange(). However, when we're
/// dealing with a function definition deserialized from a PCH/AST file,
/// we can only compute the full range once the function body has been
/// de-serialized, so it's far better to have the (sometimes-redundant)
/// EndRangeLoc.
SourceLocation EndRangeLoc;
/// \brief The template or declaration that this declaration
/// describes or was instantiated from, respectively.
///
/// For non-templates, this value will be NULL. For function
/// declarations that describe a function template, this will be a
/// pointer to a FunctionTemplateDecl. For member functions
/// of class template specializations, this will be a MemberSpecializationInfo
/// pointer containing information about the specialization.
/// For function template specializations, this will be a
/// FunctionTemplateSpecializationInfo, which contains information about
/// the template being specialized and the template arguments involved in
/// that specialization.
llvm::PointerUnion3<FunctionTemplateDecl *,
MemberSpecializationInfo *,
FunctionTemplateSpecializationInfo *>
TemplateOrSpecialization;
protected:
FunctionDecl(Kind DK, DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T, TypeSourceInfo *TInfo,
StorageClass S, bool isInline)
: DeclaratorDecl(DK, DC, L, N, T, TInfo),
DeclContext(DK),
ParamInfo(0), Body(),
SClass(S), IsInline(isInline),
IsVirtualAsWritten(false), IsPure(false), HasInheritedPrototype(false),
HasWrittenPrototype(true), IsDeleted(false), IsTrivial(false),
IsCopyAssignment(false),
HasImplicitReturnZero(false),
EndRangeLoc(L), TemplateOrSpecialization() {}
virtual ~FunctionDecl() {}
virtual void Destroy(ASTContext& C);
typedef Redeclarable<FunctionDecl> redeclarable_base;
virtual FunctionDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
public:
typedef redeclarable_base::redecl_iterator redecl_iterator;
redecl_iterator redecls_begin() const {
return redeclarable_base::redecls_begin();
}
redecl_iterator redecls_end() const {
return redeclarable_base::redecls_end();
}
static FunctionDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T,
TypeSourceInfo *TInfo,
StorageClass S = None, bool isInline = false,
bool hasWrittenPrototype = true);
virtual void getNameForDiagnostic(std::string &S,
const PrintingPolicy &Policy,
bool Qualified) const;
virtual SourceRange getSourceRange() const {
return SourceRange(getLocation(), EndRangeLoc);
}
void setLocEnd(SourceLocation E) {
EndRangeLoc = E;
}
/// getBody - Retrieve the body (definition) of the function. The
/// function body might be in any of the (re-)declarations of this
/// function. The variant that accepts a FunctionDecl pointer will
/// set that function declaration to the actual declaration
/// containing the body (if there is one).
Stmt *getBody(const FunctionDecl *&Definition) const;
virtual Stmt *getBody() const {
const FunctionDecl* Definition;
return getBody(Definition);
}
/// isThisDeclarationADefinition - Returns whether this specific
/// declaration of the function is also a definition. This does not
/// determine whether the function has been defined (e.g., in a
/// previous definition); for that information, use getBody.
/// FIXME: Should return true if function is deleted or defaulted. However,
/// CodeGenModule.cpp uses it, and I don't know if this would break it.
bool isThisDeclarationADefinition() const { return Body; }
void setBody(Stmt *B);
void setLazyBody(uint64_t Offset) { Body = Offset; }
/// Whether this function is marked as virtual explicitly.
bool isVirtualAsWritten() const { return IsVirtualAsWritten; }
void setVirtualAsWritten(bool V) { IsVirtualAsWritten = V; }
/// Whether this virtual function is pure, i.e. makes the containing class
/// abstract.
bool isPure() const { return IsPure; }
void setPure(bool P = true) { IsPure = P; }
/// Whether this function is "trivial" in some specialized C++ senses.
/// Can only be true for default constructors, copy constructors,
/// copy assignment operators, and destructors. Not meaningful until
/// the class has been fully built by Sema.
bool isTrivial() const { return IsTrivial; }
void setTrivial(bool IT) { IsTrivial = IT; }
bool isCopyAssignment() const { return IsCopyAssignment; }
void setCopyAssignment(bool CA) { IsCopyAssignment = CA; }
/// Whether falling off this function implicitly returns null/zero.
/// If a more specific implicit return value is required, front-ends
/// should synthesize the appropriate return statements.
bool hasImplicitReturnZero() const { return HasImplicitReturnZero; }
void setHasImplicitReturnZero(bool IRZ) { HasImplicitReturnZero = IRZ; }
/// \brief Whether this function has a prototype, either because one
/// was explicitly written or because it was "inherited" by merging
/// a declaration without a prototype with a declaration that has a
/// prototype.
bool hasPrototype() const {
return HasWrittenPrototype || HasInheritedPrototype;
}
bool hasWrittenPrototype() const { return HasWrittenPrototype; }
void setHasWrittenPrototype(bool P) { HasWrittenPrototype = P; }
/// \brief Whether this function inherited its prototype from a
/// previous declaration.
bool hasInheritedPrototype() const { return HasInheritedPrototype; }
void setHasInheritedPrototype(bool P = true) { HasInheritedPrototype = P; }
/// \brief Whether this function has been deleted.
///
/// A function that is "deleted" (via the C++0x "= delete" syntax)
/// acts like a normal function, except that it cannot actually be
/// called or have its address taken. Deleted functions are
/// typically used in C++ overload resolution to attract arguments
/// whose type or lvalue/rvalue-ness would permit the use of a
/// different overload that would behave incorrectly. For example,
/// one might use deleted functions to ban implicit conversion from
/// a floating-point number to an Integer type:
///
/// @code
/// struct Integer {
/// Integer(long); // construct from a long
/// Integer(double) = delete; // no construction from float or double
/// Integer(long double) = delete; // no construction from long double
/// };
/// @endcode
bool isDeleted() const { return IsDeleted; }
void setDeleted(bool D = true) { IsDeleted = D; }
/// \brief Determines whether this is a function "main", which is
/// the entry point into an executable program.
bool isMain() const;
/// \brief Determines whether this function is a function with
/// external, C linkage.
bool isExternC() const;
/// \brief Determines whether this is a global function.
bool isGlobal() const;
void setPreviousDeclaration(FunctionDecl * PrevDecl);
virtual const FunctionDecl *getCanonicalDecl() const;
virtual FunctionDecl *getCanonicalDecl();
unsigned getBuiltinID() const;
unsigned getNumParmVarDeclsFromType() const;
// Iterator access to formal parameters.
unsigned param_size() const { return getNumParams(); }
typedef ParmVarDecl **param_iterator;
typedef ParmVarDecl * const *param_const_iterator;
param_iterator param_begin() { return ParamInfo; }
param_iterator param_end() { return ParamInfo+param_size(); }
param_const_iterator param_begin() const { return ParamInfo; }
param_const_iterator param_end() const { return ParamInfo+param_size(); }
/// getNumParams - Return the number of parameters this function must have
/// based on its functiontype. This is the length of the PararmInfo array
/// after it has been created.
unsigned getNumParams() const;
const ParmVarDecl *getParamDecl(unsigned i) const {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
ParmVarDecl *getParamDecl(unsigned i) {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
void setParams(ASTContext& C, ParmVarDecl **NewParamInfo, unsigned NumParams);
/// getMinRequiredArguments - Returns the minimum number of arguments
/// needed to call this function. This may be fewer than the number of
/// function parameters, if some of the parameters have default
/// arguments (in C++).
unsigned getMinRequiredArguments() const;
QualType getResultType() const {
return getType()->getAs<FunctionType>()->getResultType();
}
StorageClass getStorageClass() const { return StorageClass(SClass); }
void setStorageClass(StorageClass SC) { SClass = SC; }
/// \brief Determine whether the "inline" keyword was specified for this
/// function.
bool isInlineSpecified() const { return IsInline; }
/// Set whether the "inline" keyword was specified for this function.
void setInlineSpecified(bool I) { IsInline = I; }
/// \brief Determine whether this function should be inlined, because it is
/// either marked "inline" or is a member function of a C++ class that
/// was defined in the class body.
bool isInlined() const;
bool isInlineDefinitionExternallyVisible() const;
/// isOverloadedOperator - Whether this function declaration
/// represents an C++ overloaded operator, e.g., "operator+".
bool isOverloadedOperator() const {
return getOverloadedOperator() != OO_None;
}
OverloadedOperatorKind getOverloadedOperator() const;
/// \brief If this function is an instantiation of a member function
/// of a class template specialization, retrieves the function from
/// which it was instantiated.
///
/// This routine will return non-NULL for (non-templated) member
/// functions of class templates and for instantiations of function
/// templates. For example, given:
///
/// \code
/// template<typename T>
/// struct X {
/// void f(T);
/// };
/// \endcode
///
/// The declaration for X<int>::f is a (non-templated) FunctionDecl
/// whose parent is the class template specialization X<int>. For
/// this declaration, getInstantiatedFromFunction() will return
/// the FunctionDecl X<T>::A. When a complete definition of
/// X<int>::A is required, it will be instantiated from the
/// declaration returned by getInstantiatedFromMemberFunction().
FunctionDecl *getInstantiatedFromMemberFunction() const;
/// \brief If this function is an instantiation of a member function of a
/// class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const;
/// \brief Specify that this record is an instantiation of the
/// member function FD.
void setInstantiationOfMemberFunction(FunctionDecl *FD,
TemplateSpecializationKind TSK);
/// \brief Retrieves the function template that is described by this
/// function declaration.
///
/// Every function template is represented as a FunctionTemplateDecl
/// and a FunctionDecl (or something derived from FunctionDecl). The
/// former contains template properties (such as the template
/// parameter lists) while the latter contains the actual
/// description of the template's
/// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
/// FunctionDecl that describes the function template,
/// getDescribedFunctionTemplate() retrieves the
/// FunctionTemplateDecl from a FunctionDecl.
FunctionTemplateDecl *getDescribedFunctionTemplate() const {
return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl*>();
}
void setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
TemplateOrSpecialization = Template;
}
/// \brief Determine whether this function is a function template
/// specialization.
bool isFunctionTemplateSpecialization() const {
return getPrimaryTemplate() != 0;
}
/// \brief If this function is actually a function template specialization,
/// retrieve information about this function template specialization.
/// Otherwise, returns NULL.
FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const {
return TemplateOrSpecialization.
dyn_cast<FunctionTemplateSpecializationInfo*>();
}
/// \brief Determines whether this function is a function template
/// specialization or a member of a class template specialization that can
/// be implicitly instantiated.
bool isImplicitlyInstantiable() const;
/// \brief Retrieve the function declaration from which this function could
/// be instantiated, if it is an instantiation (rather than a non-template
/// or a specialization, for example).
FunctionDecl *getTemplateInstantiationPattern() const;
/// \brief Retrieve the primary template that this function template
/// specialization either specializes or was instantiated from.
///
/// If this function declaration is not a function template specialization,
/// returns NULL.
FunctionTemplateDecl *getPrimaryTemplate() const;
/// \brief Retrieve the template arguments used to produce this function
/// template specialization from the primary template.
///
/// If this function declaration is not a function template specialization,
/// returns NULL.
const TemplateArgumentList *getTemplateSpecializationArgs() const;
/// \brief Specify that this function declaration is actually a function
/// template specialization.
///
/// \param Context the AST context in which this function resides.
///
/// \param Template the function template that this function template
/// specialization specializes.
///
/// \param TemplateArgs the template arguments that produced this
/// function template specialization from the template.
///
/// \param InsertPos If non-NULL, the position in the function template
/// specialization set where the function template specialization data will
/// be inserted.
///
/// \param TSK the kind of template specialization this is.
void setFunctionTemplateSpecialization(ASTContext &Context,
FunctionTemplateDecl *Template,
const TemplateArgumentList *TemplateArgs,
void *InsertPos,
TemplateSpecializationKind TSK = TSK_ImplicitInstantiation);
/// \brief Determine what kind of template instantiation this function
/// represents.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// \brief Determine what kind of template instantiation this function
/// represents.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation = SourceLocation());
/// \brief Retrieve the (first) point of instantiation of a function template
/// specialization or a member of a class template specialization.
///
/// \returns the first point of instantiation, if this function was
/// instantiated from a template; otherwie, returns an invalid source
/// location.
SourceLocation getPointOfInstantiation() const;
/// \brief Determine whether this is or was instantiated from an out-of-line
/// definition of a member function.
bool isOutOfLine() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) {
return D->getKind() >= FunctionFirst && D->getKind() <= FunctionLast;
}
static bool classof(const FunctionDecl *D) { return true; }
static DeclContext *castToDeclContext(const FunctionDecl *D) {
return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
}
static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
}
};
/// FieldDecl - An instance of this class is created by Sema::ActOnField to
/// represent a member of a struct/union/class.
class FieldDecl : public DeclaratorDecl {
// FIXME: This can be packed into the bitfields in Decl.
bool Mutable : 1;
Expr *BitWidth;
protected:
FieldDecl(Kind DK, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
Expr *BW, bool Mutable)
: DeclaratorDecl(DK, DC, L, Id, T, TInfo), Mutable(Mutable), BitWidth(BW) {
}
public:
static FieldDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T,
TypeSourceInfo *TInfo, Expr *BW, bool Mutable);
/// isMutable - Determines whether this field is mutable (C++ only).
bool isMutable() const { return Mutable; }
/// \brief Set whether this field is mutable (C++ only).
void setMutable(bool M) { Mutable = M; }
/// isBitfield - Determines whether this field is a bitfield.
bool isBitField() const { return BitWidth != NULL; }
/// @brief Determines whether this is an unnamed bitfield.
bool isUnnamedBitfield() const { return BitWidth != NULL && !getDeclName(); }
/// isAnonymousStructOrUnion - Determines whether this field is a
/// representative for an anonymous struct or union. Such fields are
/// unnamed and are implicitly generated by the implementation to
/// store the data for the anonymous union or struct.
bool isAnonymousStructOrUnion() const;
Expr *getBitWidth() const { return BitWidth; }
void setBitWidth(Expr *BW) { BitWidth = BW; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) {
return D->getKind() >= FieldFirst && D->getKind() <= FieldLast;
}
static bool classof(const FieldDecl *D) { return true; }
};
/// EnumConstantDecl - An instance of this object exists for each enum constant
/// that is defined. For example, in "enum X {a,b}", each of a/b are
/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
/// TagType for the X EnumDecl.
class EnumConstantDecl : public ValueDecl {
Stmt *Init; // an integer constant expression
llvm::APSInt Val; // The value.
protected:
EnumConstantDecl(DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T, Expr *E,
const llvm::APSInt &V)
: ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
virtual ~EnumConstantDecl() {}
public:
static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
SourceLocation L, IdentifierInfo *Id,
QualType T, Expr *E,
const llvm::APSInt &V);
virtual void Destroy(ASTContext& C);
const Expr *getInitExpr() const { return (const Expr*) Init; }
Expr *getInitExpr() { return (Expr*) Init; }
const llvm::APSInt &getInitVal() const { return Val; }
void setInitExpr(Expr *E) { Init = (Stmt*) E; }
void setInitVal(const llvm::APSInt &V) { Val = V; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return D->getKind() == EnumConstant; }
static bool classof(const EnumConstantDecl *D) { return true; }
friend class StmtIteratorBase;
};
/// TypeDecl - Represents a declaration of a type.
///
class TypeDecl : public NamedDecl {
/// TypeForDecl - This indicates the Type object that represents
/// this TypeDecl. It is a cache maintained by
/// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
/// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
mutable Type *TypeForDecl;
friend class ASTContext;
friend class DeclContext;
friend class TagDecl;
friend class TemplateTypeParmDecl;
friend class ClassTemplateSpecializationDecl;
friend class TagType;
protected:
TypeDecl(Kind DK, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id)
: NamedDecl(DK, DC, L, Id), TypeForDecl(0) {}
public:
// Low-level accessor
Type *getTypeForDecl() const { return TypeForDecl; }
void setTypeForDecl(Type *TD) { TypeForDecl = TD; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) {
return D->getKind() >= TypeFirst && D->getKind() <= TypeLast;
}
static bool classof(const TypeDecl *D) { return true; }
};
class TypedefDecl : public TypeDecl, public Redeclarable<TypedefDecl> {
/// UnderlyingType - This is the type the typedef is set to.
TypeSourceInfo *TInfo;
TypedefDecl(DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, TypeSourceInfo *TInfo)
: TypeDecl(Typedef, DC, L, Id), TInfo(TInfo) {}
virtual ~TypedefDecl();
public:
static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
TypeSourceInfo *TInfo);
TypeSourceInfo *getTypeSourceInfo() const {
return TInfo;
}
/// Retrieves the canonical declaration of this typedef.
TypedefDecl *getCanonicalDecl() {
return getFirstDeclaration();
}
const TypedefDecl *getCanonicalDecl() const {
return getFirstDeclaration();
}
QualType getUnderlyingType() const {
return TInfo->getType();
}
void setTypeSourceInfo(TypeSourceInfo *newType) {
TInfo = newType;
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return D->getKind() == Typedef; }
static bool classof(const TypedefDecl *D) { return true; }
};
class TypedefDecl;
/// TagDecl - Represents the declaration of a struct/union/class/enum.
class TagDecl
: public TypeDecl, public DeclContext, public Redeclarable<TagDecl> {
public:
// This is really ugly.
typedef ElaboratedType::TagKind TagKind;
static const TagKind TK_struct = ElaboratedType::TK_struct;
static const TagKind TK_union = ElaboratedType::TK_union;
static const TagKind TK_class = ElaboratedType::TK_class;
static const TagKind TK_enum = ElaboratedType::TK_enum;
private:
// FIXME: This can be packed into the bitfields in Decl.
/// TagDeclKind - The TagKind enum.
unsigned TagDeclKind : 2;
/// IsDefinition - True if this is a definition ("struct foo {};"), false if
/// it is a declaration ("struct foo;").
bool IsDefinition : 1;
/// TypedefForAnonDecl - If a TagDecl is anonymous and part of a typedef,
/// this points to the TypedefDecl. Used for mangling.
TypedefDecl *TypedefForAnonDecl;
SourceLocation TagKeywordLoc;
SourceLocation RBraceLoc;
protected:
TagDecl(Kind DK, TagKind TK, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, TagDecl *PrevDecl,
SourceLocation TKL = SourceLocation())
: TypeDecl(DK, DC, L, Id), DeclContext(DK), TypedefForAnonDecl(0),
TagKeywordLoc(TKL) {
assert((DK != Enum || TK == TK_enum) &&"EnumDecl not matched with TK_enum");
TagDeclKind = TK;
IsDefinition = false;
setPreviousDeclaration(PrevDecl);
}
typedef Redeclarable<TagDecl> redeclarable_base;
virtual TagDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
public:
typedef redeclarable_base::redecl_iterator redecl_iterator;
redecl_iterator redecls_begin() const {
return redeclarable_base::redecls_begin();
}
redecl_iterator redecls_end() const {
return redeclarable_base::redecls_end();
}
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
SourceLocation getTagKeywordLoc() const { return TagKeywordLoc; }
void setTagKeywordLoc(SourceLocation TKL) { TagKeywordLoc = TKL; }
virtual SourceRange getSourceRange() const;
virtual TagDecl* getCanonicalDecl();
const TagDecl* getCanonicalDecl() const {
return const_cast<TagDecl*>(this)->getCanonicalDecl();
}
/// isDefinition - Return true if this decl has its body specified.
bool isDefinition() const {
return IsDefinition;
}
/// \brief Whether this declaration declares a type that is
/// dependent, i.e., a type that somehow depends on template
/// parameters.
bool isDependentType() const { return isDependentContext(); }
/// @brief Starts the definition of this tag declaration.
///
/// This method should be invoked at the beginning of the definition
/// of this tag declaration. It will set the tag type into a state
/// where it is in the process of being defined.
void startDefinition();
/// @brief Completes the definition of this tag declaration.
void completeDefinition();
/// getDefinition - Returns the TagDecl that actually defines this
/// struct/union/class/enum. When determining whether or not a
/// struct/union/class/enum is completely defined, one should use this method
/// as opposed to 'isDefinition'. 'isDefinition' indicates whether or not a
/// specific TagDecl is defining declaration, not whether or not the
/// struct/union/class/enum type is defined. This method returns NULL if
/// there is no TagDecl that defines the struct/union/class/enum.
TagDecl* getDefinition(ASTContext& C) const;
const char *getKindName() const {
return ElaboratedType::getNameForTagKind(getTagKind());
}
/// getTagKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
/// into a tag kind. It is an error to provide a type specifier
/// which *isn't* a tag kind here.
static TagKind getTagKindForTypeSpec(unsigned TypeSpec);
TagKind getTagKind() const {
return TagKind(TagDeclKind);
}
void setTagKind(TagKind TK) { TagDeclKind = TK; }
bool isStruct() const { return getTagKind() == TK_struct; }
bool isClass() const { return getTagKind() == TK_class; }
bool isUnion() const { return getTagKind() == TK_union; }
bool isEnum() const { return getTagKind() == TK_enum; }
TypedefDecl *getTypedefForAnonDecl() const { return TypedefForAnonDecl; }
void setTypedefForAnonDecl(TypedefDecl *TDD) { TypedefForAnonDecl = TDD; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) {
return D->getKind() >= TagFirst && D->getKind() <= TagLast;
}
static bool classof(const TagDecl *D) { return true; }
static DeclContext *castToDeclContext(const TagDecl *D) {
return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
}
static TagDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
}
void setDefinition(bool V) { IsDefinition = V; }
};
/// EnumDecl - Represents an enum. As an extension, we allow forward-declared
/// enums.
class EnumDecl : public TagDecl {
/// IntegerType - This represent the integer type that the enum corresponds
/// to for code generation purposes. Note that the enumerator constants may
/// have a different type than this does.
QualType IntegerType;
/// PromotionType - The integer type that values of this type should
/// promote to. In C, enumerators are generally of an integer type
/// directly, but gcc-style large enumerators (and all enumerators
/// in C++) are of the enum type instead.
QualType PromotionType;
/// \brief If the enumeration was instantiated from an enumeration
/// within a class or function template, this pointer refers to the
/// enumeration declared within the template.
EnumDecl *InstantiatedFrom;
EnumDecl(DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, EnumDecl *PrevDecl, SourceLocation TKL)
: TagDecl(Enum, TK_enum, DC, L, Id, PrevDecl, TKL), InstantiatedFrom(0) {
IntegerType = QualType();
}
public:
EnumDecl *getCanonicalDecl() {
return cast<EnumDecl>(TagDecl::getCanonicalDecl());
}
const EnumDecl *getCanonicalDecl() const {
return cast<EnumDecl>(TagDecl::getCanonicalDecl());
}
static EnumDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
SourceLocation TKL, EnumDecl *PrevDecl);
virtual void Destroy(ASTContext& C);
/// completeDefinition - When created, the EnumDecl corresponds to a
/// forward-declared enum. This method is used to mark the
/// declaration as being defined; it's enumerators have already been
/// added (via DeclContext::addDecl). NewType is the new underlying
/// type of the enumeration type.
void completeDefinition(ASTContext &C, QualType NewType,
QualType PromotionType);
// enumerator_iterator - Iterates through the enumerators of this
// enumeration.
typedef specific_decl_iterator<EnumConstantDecl> enumerator_iterator;
enumerator_iterator enumerator_begin() const {
return enumerator_iterator(this->decls_begin());
}
enumerator_iterator enumerator_end() const {
return enumerator_iterator(this->decls_end());
}
/// getPromotionType - Return the integer type that enumerators
/// should promote to.
QualType getPromotionType() const { return PromotionType; }
/// \brief Set the promotion type.
void setPromotionType(QualType T) { PromotionType = T; }
/// getIntegerType - Return the integer type this enum decl corresponds to.
/// This returns a null qualtype for an enum forward definition.
QualType getIntegerType() const { return IntegerType; }
/// \brief Set the underlying integer type.
void setIntegerType(QualType T) { IntegerType = T; }
/// \brief Returns the enumeration (declared within the template)
/// from which this enumeration type was instantiated, or NULL if
/// this enumeration was not instantiated from any template.
EnumDecl *getInstantiatedFromMemberEnum() const {
return InstantiatedFrom;
}
void setInstantiationOfMemberEnum(EnumDecl *IF) { InstantiatedFrom = IF; }
static bool classof(const Decl *D) { return D->getKind() == Enum; }
static bool classof(const EnumDecl *D) { return true; }
};
/// RecordDecl - Represents a struct/union/class. For example:
/// struct X; // Forward declaration, no "body".
/// union Y { int A, B; }; // Has body with members A and B (FieldDecls).
/// This decl will be marked invalid if *any* members are invalid.
///
class RecordDecl : public TagDecl {
// FIXME: This can be packed into the bitfields in Decl.
/// HasFlexibleArrayMember - This is true if this struct ends with a flexible
/// array member (e.g. int X[]) or if this union contains a struct that does.
/// If so, this cannot be contained in arrays or other structs as a member.
bool HasFlexibleArrayMember : 1;
/// AnonymousStructOrUnion - Whether this is the type of an
/// anonymous struct or union.
bool AnonymousStructOrUnion : 1;
/// HasObjectMember - This is true if this struct has at least one
/// member containing an object
bool HasObjectMember : 1;
protected:
RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
RecordDecl *PrevDecl, SourceLocation TKL);
virtual ~RecordDecl();
public:
static RecordDecl *Create(ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
SourceLocation TKL = SourceLocation(),
RecordDecl* PrevDecl = 0);
virtual void Destroy(ASTContext& C);
bool hasFlexibleArrayMember() const { return HasFlexibleArrayMember; }
void setHasFlexibleArrayMember(bool V) { HasFlexibleArrayMember = V; }
/// isAnonymousStructOrUnion - Whether this is an anonymous struct
/// or union. To be an anonymous struct or union, it must have been
/// declared without a name and there must be no objects of this
/// type declared, e.g.,
/// @code
/// union { int i; float f; };
/// @endcode
/// is an anonymous union but neither of the following are:
/// @code
/// union X { int i; float f; };
/// union { int i; float f; } obj;
/// @endcode
bool isAnonymousStructOrUnion() const { return AnonymousStructOrUnion; }
void setAnonymousStructOrUnion(bool Anon) {
AnonymousStructOrUnion = Anon;
}
bool hasObjectMember() const { return HasObjectMember; }
void setHasObjectMember (bool val) { HasObjectMember = val; }
/// \brief Determines whether this declaration represents the
/// injected class name.
///
/// The injected class name in C++ is the name of the class that
/// appears inside the class itself. For example:
///
/// \code
/// struct C {
/// // C is implicitly declared here as a synonym for the class name.
/// };
///
/// C::C c; // same as "C c;"
/// \endcode
bool isInjectedClassName() const;
/// getDefinition - Returns the RecordDecl that actually defines this
/// struct/union/class. When determining whether or not a struct/union/class
/// is completely defined, one should use this method as opposed to
/// 'isDefinition'. 'isDefinition' indicates whether or not a specific
/// RecordDecl is defining declaration, not whether or not the record
/// type is defined. This method returns NULL if there is no RecordDecl
/// that defines the struct/union/tag.
RecordDecl* getDefinition(ASTContext& C) const {
return cast_or_null<RecordDecl>(TagDecl::getDefinition(C));
}
// Iterator access to field members. The field iterator only visits
// the non-static data members of this class, ignoring any static
// data members, functions, constructors, destructors, etc.
typedef specific_decl_iterator<FieldDecl> field_iterator;
field_iterator field_begin() const {
return field_iterator(decls_begin());
}
field_iterator field_end() const {
return field_iterator(decls_end());
}
// field_empty - Whether there are any fields (non-static data
// members) in this record.
bool field_empty() const {
return field_begin() == field_end();
}
/// completeDefinition - Notes that the definition of this type is
/// now complete.
void completeDefinition(ASTContext& C);
static bool classof(const Decl *D) {
return D->getKind() >= RecordFirst && D->getKind() <= RecordLast;
}
static bool classof(const RecordDecl *D) { return true; }
};
class FileScopeAsmDecl : public Decl {
StringLiteral *AsmString;
FileScopeAsmDecl(DeclContext *DC, SourceLocation L, StringLiteral *asmstring)
: Decl(FileScopeAsm, DC, L), AsmString(asmstring) {}
public:
static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, StringLiteral *Str);
const StringLiteral *getAsmString() const { return AsmString; }
StringLiteral *getAsmString() { return AsmString; }
void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
static bool classof(const Decl *D) {
return D->getKind() == FileScopeAsm;
}
static bool classof(const FileScopeAsmDecl *D) { return true; }
};
/// BlockDecl - This represents a block literal declaration, which is like an
/// unnamed FunctionDecl. For example:
/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
///
class BlockDecl : public Decl, public DeclContext {
// FIXME: This can be packed into the bitfields in Decl.
bool isVariadic : 1;
/// ParamInfo - new[]'d array of pointers to ParmVarDecls for the formal
/// parameters of this function. This is null if a prototype or if there are
/// no formals.
ParmVarDecl **ParamInfo;
unsigned NumParams;
Stmt *Body;
protected:
BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
: Decl(Block, DC, CaretLoc), DeclContext(Block),
isVariadic(false), ParamInfo(0), NumParams(0), Body(0) {}
virtual ~BlockDecl();
virtual void Destroy(ASTContext& C);
public:
static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
SourceLocation getCaretLocation() const { return getLocation(); }
bool IsVariadic() const { return isVariadic; }
void setIsVariadic(bool value) { isVariadic = value; }
CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
Stmt *getBody() const { return (Stmt*) Body; }
void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
// Iterator access to formal parameters.
unsigned param_size() const { return getNumParams(); }
typedef ParmVarDecl **param_iterator;
typedef ParmVarDecl * const *param_const_iterator;
bool param_empty() const { return NumParams == 0; }
param_iterator param_begin() { return ParamInfo; }
param_iterator param_end() { return ParamInfo+param_size(); }
param_const_iterator param_begin() const { return ParamInfo; }
param_const_iterator param_end() const { return ParamInfo+param_size(); }
unsigned getNumParams() const;
const ParmVarDecl *getParamDecl(unsigned i) const {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
ParmVarDecl *getParamDecl(unsigned i) {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
void setParams(ASTContext& C, ParmVarDecl **NewParamInfo, unsigned NumParams);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return D->getKind() == Block; }
static bool classof(const BlockDecl *D) { return true; }
static DeclContext *castToDeclContext(const BlockDecl *D) {
return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
}
static BlockDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
}
};
/// Insertion operator for diagnostics. This allows sending NamedDecl's
/// into a diagnostic with <<.
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
NamedDecl* ND) {
DB.AddTaggedVal(reinterpret_cast<intptr_t>(ND), Diagnostic::ak_nameddecl);
return DB;
}
} // end namespace clang
#endif
|