aboutsummaryrefslogtreecommitdiff
path: root/include/clang/AST/Expr.h
blob: 2ed91124758d5218a93059cdc5ba7615764ab177 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines the Expr interface and subclasses.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_AST_EXPR_H
#define LLVM_CLANG_AST_EXPR_H

#include "clang/AST/APValue.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/SmallVector.h"
#include <vector>

namespace clang {
  class ASTContext;
  class APValue;
  class Decl;
  class IdentifierInfo;
  class ParmVarDecl;
  class NamedDecl;
  class ValueDecl;
  class BlockDecl;
  class CXXOperatorCallExpr;
  class CXXMemberCallExpr;

/// Expr - This represents one expression.  Note that Expr's are subclasses of
/// Stmt.  This allows an expression to be transparently used any place a Stmt
/// is required.
///
class Expr : public Stmt {
  QualType TR;

protected:
  /// TypeDependent - Whether this expression is type-dependent 
  /// (C++ [temp.dep.expr]).
  bool TypeDependent : 1;

  /// ValueDependent - Whether this expression is value-dependent 
  /// (C++ [temp.dep.constexpr]).
  bool ValueDependent : 1;

  // FIXME: Eventually, this constructor should go away and we should
  // require every subclass to provide type/value-dependence
  // information.
  Expr(StmtClass SC, QualType T) 
    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
    setType(T); 
  }

  Expr(StmtClass SC, QualType T, bool TD, bool VD)
    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
    setType(T);
  }

  /// \brief Construct an empty expression.
  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }

public:  
  QualType getType() const { return TR; }
  void setType(QualType t) { 
    // In C++, the type of an expression is always adjusted so that it
    // will not have reference type an expression will never have
    // reference type (C++ [expr]p6). Use
    // QualType::getNonReferenceType() to retrieve the non-reference
    // type. Additionally, inspect Expr::isLvalue to determine whether
    // an expression that is adjusted in this manner should be
    // considered an lvalue.
    assert((TR.isNull() || !TR->isReferenceType()) && 
           "Expressions can't have reference type");

    TR = t; 
  }

  /// isValueDependent - Determines whether this expression is
  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
  /// array bound of "Chars" in the following example is
  /// value-dependent. 
  /// @code
  /// template<int Size, char (&Chars)[Size]> struct meta_string;
  /// @endcode
  bool isValueDependent() const { return ValueDependent; }

  /// \brief Set whether this expression is value-dependent or not.
  void setValueDependent(bool VD) { ValueDependent = VD; }

  /// isTypeDependent - Determines whether this expression is
  /// type-dependent (C++ [temp.dep.expr]), which means that its type
  /// could change from one template instantiation to the next. For
  /// example, the expressions "x" and "x + y" are type-dependent in
  /// the following code, but "y" is not type-dependent:
  /// @code
  /// template<typename T> 
  /// void add(T x, int y) {
  ///   x + y;
  /// }
  /// @endcode
  bool isTypeDependent() const { return TypeDependent; }

  /// \brief Set whether this expression is type-dependent or not.
  void setTypeDependent(bool TD) { TypeDependent = TD; }

  /// SourceLocation tokens are not useful in isolation - they are low level
  /// value objects created/interpreted by SourceManager. We assume AST
  /// clients will have a pointer to the respective SourceManager.
  virtual SourceRange getSourceRange() const = 0;

  /// getExprLoc - Return the preferred location for the arrow when diagnosing
  /// a problem with a generic expression.
  virtual SourceLocation getExprLoc() const { return getLocStart(); }
  
  /// isUnusedResultAWarning - Return true if this immediate expression should
  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
  /// with location to warn on and the source range[s] to report with the
  /// warning.
  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
                              SourceRange &R2, ASTContext &Context) const;
  
  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
  /// incomplete type other than void. Nonarray expressions that can be lvalues:
  ///  - name, where name must be a variable
  ///  - e[i]
  ///  - (e), where e must be an lvalue
  ///  - e.name, where e must be an lvalue
  ///  - e->name
  ///  - *e, the type of e cannot be a function type
  ///  - string-constant
  ///  - reference type [C++ [expr]]
  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
  ///
  enum isLvalueResult {
    LV_Valid,
    LV_NotObjectType,
    LV_IncompleteVoidType,
    LV_DuplicateVectorComponents,
    LV_InvalidExpression,
    LV_MemberFunction
  };
  isLvalueResult isLvalue(ASTContext &Ctx) const;

  // Same as above, but excluding checks for non-object and void types in C
  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
  
  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
  /// does not have an incomplete type, does not have a const-qualified type,
  /// and if it is a structure or union, does not have any member (including, 
  /// recursively, any member or element of all contained aggregates or unions)
  /// with a const-qualified type.
  ///
  /// \param Loc [in] [out] - A source location which *may* be filled
  /// in with the location of the expression making this a
  /// non-modifiable lvalue, if specified.
  enum isModifiableLvalueResult {
    MLV_Valid,
    MLV_NotObjectType,
    MLV_IncompleteVoidType,
    MLV_DuplicateVectorComponents,
    MLV_InvalidExpression,
    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
    MLV_IncompleteType,
    MLV_ConstQualified,
    MLV_ArrayType,
    MLV_NotBlockQualified,
    MLV_ReadonlyProperty,
    MLV_NoSetterProperty,
    MLV_MemberFunction
  };
  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
                                              SourceLocation *Loc = 0) const;
  
  /// \brief If this expression refers to a bit-field, retrieve the
  /// declaration of that bit-field.
  FieldDecl *getBitField();

  const FieldDecl *getBitField() const {
    return const_cast<Expr*>(this)->getBitField();
  }
  
  /// isIntegerConstantExpr - Return true if this expression is a valid integer
  /// constant expression, and, if so, return its value in Result.  If not a
  /// valid i-c-e, return false and fill in Loc (if specified) with the location
  /// of the invalid expression.
  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
                             SourceLocation *Loc = 0,
                             bool isEvaluated = true) const;
  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
    llvm::APSInt X;
    return isIntegerConstantExpr(X, Ctx, Loc);
  }
  /// isConstantInitializer - Returns true if this expression is a constant
  /// initializer, which can be emitted at compile-time.
  bool isConstantInitializer(ASTContext &Ctx) const;
  
  /// EvalResult is a struct with detailed info about an evaluated expression.
  struct EvalResult {
    /// Val - This is the value the expression can be folded to.
    APValue Val;
    
    /// HasSideEffects - Whether the evaluated expression has side effects.
    /// For example, (f() && 0) can be folded, but it still has side effects.
    bool HasSideEffects;
    
    /// Diag - If the expression is unfoldable, then Diag contains a note
    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
    /// position for the error, and DiagExpr is the expression that caused
    /// the error.
    /// If the expression is foldable, but not an integer constant expression,
    /// Diag contains a note diagnostic that describes why it isn't an integer
    /// constant expression. If the expression *is* an integer constant
    /// expression, then Diag will be zero.
    unsigned Diag;
    const Expr *DiagExpr;
    SourceLocation DiagLoc;
    
    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
  };

  /// Evaluate - Return true if this is a constant which we can fold using
  /// any crazy technique (that has nothing to do with language standards) that
  /// we want to.  If this function returns true, it returns the folded constant
  /// in Result.
  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;

  /// isEvaluatable - Call Evaluate to see if this expression can be constant
  /// folded, but discard the result.
  bool isEvaluatable(ASTContext &Ctx) const;

  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
  /// must be called on an expression that constant folds to an integer.
  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;

  /// EvaluateAsLValue - Evaluate an expression to see if it's a valid LValue.
  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;

  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
  /// integer constant expression with the value zero, or if this is one that is
  /// cast to void*.
  bool isNullPointerConstant(ASTContext &Ctx) const;

  /// hasGlobalStorage - Return true if this expression has static storage
  /// duration.  This means that the address of this expression is a link-time
  /// constant.
  bool hasGlobalStorage() const;  

  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
  /// write barrier. 
  bool isOBJCGCCandidate(ASTContext &Ctx) const;
  
  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
  ///  its subexpression.  If that subexpression is also a ParenExpr, 
  ///  then this method recursively returns its subexpression, and so forth.
  ///  Otherwise, the method returns the current Expr.
  Expr* IgnoreParens();

  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
  /// or CastExprs, returning their operand.
  Expr *IgnoreParenCasts();
  
  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
  /// value (including ptr->int casts of the same size).  Strip off any
  /// ParenExpr or CastExprs, returning their operand.
  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
  
  const Expr* IgnoreParens() const {
    return const_cast<Expr*>(this)->IgnoreParens();
  }
  const Expr *IgnoreParenCasts() const {
    return const_cast<Expr*>(this)->IgnoreParenCasts();
  }
  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
  }
  
  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);

  static bool classof(const Stmt *T) { 
    return T->getStmtClass() >= firstExprConstant &&
           T->getStmtClass() <= lastExprConstant; 
  }
  static bool classof(const Expr *) { return true; }
};

  
//===----------------------------------------------------------------------===//
// Primary Expressions.
//===----------------------------------------------------------------------===//

/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
/// enum, etc.
class DeclRefExpr : public Expr {
  NamedDecl *D; 
  SourceLocation Loc;

protected:
  // FIXME: Eventually, this constructor will go away and all subclasses
  // will have to provide the type- and value-dependent flags.
  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
    Expr(SC, t), D(d), Loc(l) {}

  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
              bool VD) :
    Expr(SC, t, TD, VD), D(d), Loc(l) {}

public:
  // FIXME: Eventually, this constructor will go away and all clients
  // will have to provide the type- and value-dependent flags.
  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) : 
    Expr(DeclRefExprClass, t), D(d), Loc(l) {}

  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) : 
    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
  
  /// \brief Construct an empty declaration reference expression.
  explicit DeclRefExpr(EmptyShell Empty) 
    : Expr(DeclRefExprClass, Empty) { }

  NamedDecl *getDecl() { return D; }
  const NamedDecl *getDecl() const { return D; }
  void setDecl(NamedDecl *NewD) { D = NewD; }

  SourceLocation getLocation() const { return Loc; }
  void setLocation(SourceLocation L) { Loc = L; }
  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
  
  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == DeclRefExprClass ||
           T->getStmtClass() == CXXConditionDeclExprClass ||
           T->getStmtClass() == QualifiedDeclRefExprClass; 
  }
  static bool classof(const DeclRefExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
class PredefinedExpr : public Expr {
public:
  enum IdentType {
    Func,
    Function,
    PrettyFunction
  };
  
private:
  SourceLocation Loc;
  IdentType Type;
public:
  PredefinedExpr(SourceLocation l, QualType type, IdentType IT) 
    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
  
  /// \brief Construct an empty predefined expression.
  explicit PredefinedExpr(EmptyShell Empty) 
    : Expr(PredefinedExprClass, Empty) { }

  PredefinedExpr* Clone(ASTContext &C) const;

  IdentType getIdentType() const { return Type; }
  void setIdentType(IdentType IT) { Type = IT; }

  SourceLocation getLocation() const { return Loc; }
  void setLocation(SourceLocation L) { Loc = L; }

  // FIXME: The logic for computing the value of a predefined expr should go
  // into a method here that takes the inner-most code decl (a block, function
  // or objc method) that the expr lives in.  This would allow sema and codegen
  // to be consistent for things like sizeof(__func__) etc.
  
  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }

  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == PredefinedExprClass; 
  }
  static bool classof(const PredefinedExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

class IntegerLiteral : public Expr {
  llvm::APInt Value;
  SourceLocation Loc;
public:
  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy, 
  // or UnsignedLongLongTy
  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
  }

  /// \brief Construct an empty integer literal.
  explicit IntegerLiteral(EmptyShell Empty) 
    : Expr(IntegerLiteralClass, Empty) { }

  IntegerLiteral* Clone(ASTContext &C) const;
  
  const llvm::APInt &getValue() const { return Value; }
  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }

  /// \brief Retrieve the location of the literal.
  SourceLocation getLocation() const { return Loc; }

  void setValue(const llvm::APInt &Val) { Value = Val; }
  void setLocation(SourceLocation Location) { Loc = Location; }

  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == IntegerLiteralClass; 
  }
  static bool classof(const IntegerLiteral *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

class CharacterLiteral : public Expr {
  unsigned Value;
  SourceLocation Loc;
  bool IsWide;
public:
  // type should be IntTy
  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
  }

  /// \brief Construct an empty character literal.
  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }

  CharacterLiteral* Clone(ASTContext &C) const;

  SourceLocation getLoc() const { return Loc; }
  bool isWide() const { return IsWide; }
  
  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
  
  unsigned getValue() const { return Value; }

  void setLocation(SourceLocation Location) { Loc = Location; }
  void setWide(bool W) { IsWide = W; }
  void setValue(unsigned Val) { Value = Val; }

  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == CharacterLiteralClass; 
  }
  static bool classof(const CharacterLiteral *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

class FloatingLiteral : public Expr {
  llvm::APFloat Value;
  bool IsExact : 1;
  SourceLocation Loc;
public:
  FloatingLiteral(const llvm::APFloat &V, bool* isexact, 
                  QualType Type, SourceLocation L)
    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {} 

  /// \brief Construct an empty floating-point literal.
  explicit FloatingLiteral(EmptyShell Empty) 
    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }

  FloatingLiteral* Clone(ASTContext &C) const;

  const llvm::APFloat &getValue() const { return Value; }
  void setValue(const llvm::APFloat &Val) { Value = Val; }

  bool isExact() const { return IsExact; }
  void setExact(bool E) { IsExact = E; }

  /// getValueAsApproximateDouble - This returns the value as an inaccurate
  /// double.  Note that this may cause loss of precision, but is useful for
  /// debugging dumps, etc.
  double getValueAsApproximateDouble() const;
 
  SourceLocation getLocation() const { return Loc; }
  void setLocation(SourceLocation L) { Loc = L; }

  // FIXME: The logic for computing the value of a predefined expr should go
  // into a method here that takes the inner-most code decl (a block, function
  // or objc method) that the expr lives in.  This would allow sema and codegen
  // to be consistent for things like sizeof(__func__) etc.
  
  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }

  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == FloatingLiteralClass; 
  }
  static bool classof(const FloatingLiteral *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// ImaginaryLiteral - We support imaginary integer and floating point literals,
/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
/// IntegerLiteral classes.  Instances of this class always have a Complex type
/// whose element type matches the subexpression.
///
class ImaginaryLiteral : public Expr {
  Stmt *Val;
public:
  ImaginaryLiteral(Expr *val, QualType Ty)
    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
  
  /// \brief Build an empty imaginary literal.
  explicit ImaginaryLiteral(EmptyShell Empty) 
    : Expr(ImaginaryLiteralClass, Empty) { }

  const Expr *getSubExpr() const { return cast<Expr>(Val); }
  Expr *getSubExpr() { return cast<Expr>(Val); }
  void setSubExpr(Expr *E) { Val = E; }

  ImaginaryLiteral* Clone(ASTContext &C) const;

  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == ImaginaryLiteralClass; 
  }
  static bool classof(const ImaginaryLiteral *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// StringLiteral - This represents a string literal expression, e.g. "foo"
/// or L"bar" (wide strings).  The actual string is returned by getStrData()
/// is NOT null-terminated, and the length of the string is determined by
/// calling getByteLength().  The C type for a string is always a
/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
/// not.
///
/// Note that strings in C can be formed by concatenation of multiple string
/// literal pptokens in translation phase #6.  This keeps track of the locations
/// of each of these pieces.
///
/// Strings in C can also be truncated and extended by assigning into arrays,
/// e.g. with constructs like:
///   char X[2] = "foobar";
/// In this case, getByteLength() will return 6, but the string literal will
/// have type "char[2]".
class StringLiteral : public Expr {
  const char *StrData;
  unsigned ByteLength;
  bool IsWide;
  unsigned NumConcatenated;
  SourceLocation TokLocs[1];

  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
public:
  /// This is the "fully general" constructor that allows representation of
  /// strings formed from multiple concatenated tokens.
  static StringLiteral *Create(ASTContext &C, const char *StrData,
                               unsigned ByteLength, bool Wide, QualType Ty,
                               const SourceLocation *Loc, unsigned NumStrs);

  /// Simple constructor for string literals made from one token.
  static StringLiteral *Create(ASTContext &C, const char *StrData, 
                               unsigned ByteLength,
                               bool Wide, QualType Ty, SourceLocation Loc) {
    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
  }

  /// \brief Construct an empty string literal.
  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);

  StringLiteral* Clone(ASTContext &C) const;
  void Destroy(ASTContext &C);
  
  const char *getStrData() const { return StrData; }
  unsigned getByteLength() const { return ByteLength; }

  /// \brief Sets the string data to the given string data.
  void setStrData(ASTContext &C, const char *Str, unsigned Len);

  bool isWide() const { return IsWide; }
  void setWide(bool W) { IsWide = W; }

  bool containsNonAsciiOrNull() const {
    for (unsigned i = 0; i < getByteLength(); ++i)
      if (!isascii(getStrData()[i]) || !getStrData()[i])
        return true;
    return false;
  }
  /// getNumConcatenated - Get the number of string literal tokens that were
  /// concatenated in translation phase #6 to form this string literal.
  unsigned getNumConcatenated() const { return NumConcatenated; }
  
  SourceLocation getStrTokenLoc(unsigned TokNum) const {
    assert(TokNum < NumConcatenated && "Invalid tok number");
    return TokLocs[TokNum];
  }
  void setStrTokenLoc(unsigned TokNum, SourceLocation L) { 
    assert(TokNum < NumConcatenated && "Invalid tok number");
    TokLocs[TokNum] = L;
  }

  typedef const SourceLocation *tokloc_iterator;
  tokloc_iterator tokloc_begin() const { return TokLocs; }
  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }

  virtual SourceRange getSourceRange() const { 
    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]); 
  }
  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == StringLiteralClass; 
  }
  static bool classof(const StringLiteral *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
/// AST node is only formed if full location information is requested.
class ParenExpr : public Expr {
  SourceLocation L, R;
  Stmt *Val;
public:
  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
    : Expr(ParenExprClass, val->getType(),
           val->isTypeDependent(), val->isValueDependent()), 
      L(l), R(r), Val(val) {}
  
  /// \brief Construct an empty parenthesized expression.
  explicit ParenExpr(EmptyShell Empty) 
    : Expr(ParenExprClass, Empty) { }

  const Expr *getSubExpr() const { return cast<Expr>(Val); }
  Expr *getSubExpr() { return cast<Expr>(Val); }
  void setSubExpr(Expr *E) { Val = E; }

  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }

  /// \brief Get the location of the left parentheses '('.
  SourceLocation getLParen() const { return L; }
  void setLParen(SourceLocation Loc) { L = Loc; }

  /// \brief Get the location of the right parentheses ')'.
  SourceLocation getRParen() const { return R; }
  void setRParen(SourceLocation Loc) { R = Loc; }

  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == ParenExprClass; 
  }
  static bool classof(const ParenExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};


/// UnaryOperator - This represents the unary-expression's (except sizeof and
/// alignof), the postinc/postdec operators from postfix-expression, and various
/// extensions.
///
/// Notes on various nodes:
///
/// Real/Imag - These return the real/imag part of a complex operand.  If
///   applied to a non-complex value, the former returns its operand and the
///   later returns zero in the type of the operand.
///
/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
///   subexpression is a compound literal with the various MemberExpr and 
///   ArraySubscriptExpr's applied to it.
///
class UnaryOperator : public Expr {
public:
  // Note that additions to this should also update the StmtVisitor class.
  enum Opcode {
    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
    Real, Imag,       // "__real expr"/"__imag expr" Extension.
    Extension,        // __extension__ marker.
    OffsetOf          // __builtin_offsetof
  };
private:
  Stmt *Val;
  Opcode Opc;
  SourceLocation Loc;
public:  

  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
    : Expr(UnaryOperatorClass, type,
           input->isTypeDependent() && opc != OffsetOf,
           input->isValueDependent()), 
      Val(input), Opc(opc), Loc(l) {}

  /// \brief Build an empty unary operator.
  explicit UnaryOperator(EmptyShell Empty) 
    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }

  Opcode getOpcode() const { return Opc; }
  void setOpcode(Opcode O) { Opc = O; }

  Expr *getSubExpr() const { return cast<Expr>(Val); }
  void setSubExpr(Expr *E) { Val = E; }

  /// getOperatorLoc - Return the location of the operator.
  SourceLocation getOperatorLoc() const { return Loc; }
  void setOperatorLoc(SourceLocation L) { Loc = L; }

  /// isPostfix - Return true if this is a postfix operation, like x++.
  static bool isPostfix(Opcode Op) {
    return Op == PostInc || Op == PostDec;
  }

  /// isPostfix - Return true if this is a prefix operation, like --x.
  static bool isPrefix(Opcode Op) {
    return Op == PreInc || Op == PreDec;
  }

  bool isPrefix() const { return isPrefix(Opc); }
  bool isPostfix() const { return isPostfix(Opc); }
  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
  bool isOffsetOfOp() const { return Opc == OffsetOf; }
  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
  
  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
  /// corresponds to, e.g. "sizeof" or "[pre]++"
  static const char *getOpcodeStr(Opcode Op);

  /// \brief Retrieve the unary opcode that corresponds to the given
  /// overloaded operator.
  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);

  /// \brief Retrieve the overloaded operator kind that corresponds to
  /// the given unary opcode.
  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);

  virtual SourceRange getSourceRange() const {
    if (isPostfix())
      return SourceRange(Val->getLocStart(), Loc);
    else
      return SourceRange(Loc, Val->getLocEnd());
  }
  virtual SourceLocation getExprLoc() const { return Loc; }
  
  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == UnaryOperatorClass; 
  }
  static bool classof(const UnaryOperator *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
/// types and expressions.
class SizeOfAlignOfExpr : public Expr {
  bool isSizeof : 1;  // true if sizeof, false if alignof.
  bool isType : 1;    // true if operand is a type, false if an expression
  union {
    void *Ty;
    Stmt *Ex;
  } Argument;
  SourceLocation OpLoc, RParenLoc;
public:
  SizeOfAlignOfExpr(bool issizeof, QualType T, 
                    QualType resultType, SourceLocation op,
                    SourceLocation rp) :
      Expr(SizeOfAlignOfExprClass, resultType,
           false, // Never type-dependent (C++ [temp.dep.expr]p3).
           // Value-dependent if the argument is type-dependent.
           T->isDependentType()),
      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
    Argument.Ty = T.getAsOpaquePtr();
  }

  SizeOfAlignOfExpr(bool issizeof, Expr *E, 
                    QualType resultType, SourceLocation op,
                    SourceLocation rp) :
      Expr(SizeOfAlignOfExprClass, resultType,
           false, // Never type-dependent (C++ [temp.dep.expr]p3).
           // Value-dependent if the argument is type-dependent.
           E->isTypeDependent()),
      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
    Argument.Ex = E;
  }

  /// \brief Construct an empty sizeof/alignof expression.
  explicit SizeOfAlignOfExpr(EmptyShell Empty)
    : Expr(SizeOfAlignOfExprClass, Empty) { }

  virtual void Destroy(ASTContext& C);

  bool isSizeOf() const { return isSizeof; }
  void setSizeof(bool S) { isSizeof = S; }

  bool isArgumentType() const { return isType; }
  QualType getArgumentType() const {
    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
    return QualType::getFromOpaquePtr(Argument.Ty);
  }
  Expr *getArgumentExpr() {
    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
    return static_cast<Expr*>(Argument.Ex);
  }
  const Expr *getArgumentExpr() const {
    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
  }

  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
  void setArgument(QualType T) { 
    Argument.Ty = T.getAsOpaquePtr(); 
    isType = true; 
  }

  /// Gets the argument type, or the type of the argument expression, whichever
  /// is appropriate.
  QualType getTypeOfArgument() const {
    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
  }

  SourceLocation getOperatorLoc() const { return OpLoc; }
  void setOperatorLoc(SourceLocation L) { OpLoc = L; }

  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(OpLoc, RParenLoc);
  }

  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == SizeOfAlignOfExprClass; 
  }
  static bool classof(const SizeOfAlignOfExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

//===----------------------------------------------------------------------===//
// Postfix Operators.
//===----------------------------------------------------------------------===//

/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
class ArraySubscriptExpr : public Expr {
  enum { LHS, RHS, END_EXPR=2 };
  Stmt* SubExprs[END_EXPR]; 
  SourceLocation RBracketLoc;
public:
  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
                     SourceLocation rbracketloc)
  : Expr(ArraySubscriptExprClass, t,
         lhs->isTypeDependent() || rhs->isTypeDependent(),
         lhs->isValueDependent() || rhs->isValueDependent()),
    RBracketLoc(rbracketloc) {
    SubExprs[LHS] = lhs;
    SubExprs[RHS] = rhs;
  }
  
  /// \brief Create an empty array subscript expression.
  explicit ArraySubscriptExpr(EmptyShell Shell)
    : Expr(ArraySubscriptExprClass, Shell) { }

  /// An array access can be written A[4] or 4[A] (both are equivalent).
  /// - getBase() and getIdx() always present the normalized view: A[4].
  ///    In this case getBase() returns "A" and getIdx() returns "4".
  /// - getLHS() and getRHS() present the syntactic view. e.g. for
  ///    4[A] getLHS() returns "4".
  /// Note: Because vector element access is also written A[4] we must
  /// predicate the format conversion in getBase and getIdx only on the
  /// the type of the RHS, as it is possible for the LHS to be a vector of
  /// integer type
  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
  void setLHS(Expr *E) { SubExprs[LHS] = E; }

  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
  void setRHS(Expr *E) { SubExprs[RHS] = E; }
  
  Expr *getBase() { 
    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
  }
    
  const Expr *getBase() const { 
    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
  }
  
  Expr *getIdx() { 
    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
  }
  
  const Expr *getIdx() const {
    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
  }  
  
  virtual SourceRange getSourceRange() const { 
    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
  }
  
  SourceLocation getRBracketLoc() const { return RBracketLoc; }
  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }

  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }

  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == ArraySubscriptExprClass; 
  }
  static bool classof(const ArraySubscriptExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};


/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
/// CallExpr itself represents a normal function call, e.g., "f(x, 2)", 
/// while its subclasses may represent alternative syntax that (semantically)
/// results in a function call. For example, CXXOperatorCallExpr is 
/// a subclass for overloaded operator calls that use operator syntax, e.g.,
/// "str1 + str2" to resolve to a function call.
class CallExpr : public Expr {
  enum { FN=0, ARGS_START=1 };
  Stmt **SubExprs;
  unsigned NumArgs;
  SourceLocation RParenLoc;
  
protected:
  // This version of the constructor is for derived classes.
  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
           QualType t, SourceLocation rparenloc);
  
public:
  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t, 
           SourceLocation rparenloc);
  
  /// \brief Build an empty call expression.
  CallExpr(ASTContext &C, EmptyShell Empty);

  ~CallExpr() {}
  
  void Destroy(ASTContext& C);
  
  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
  void setCallee(Expr *F) { SubExprs[FN] = F; }
  
  /// getNumArgs - Return the number of actual arguments to this call.
  ///
  unsigned getNumArgs() const { return NumArgs; }
  
  /// getArg - Return the specified argument.
  Expr *getArg(unsigned Arg) {
    assert(Arg < NumArgs && "Arg access out of range!");
    return cast<Expr>(SubExprs[Arg+ARGS_START]);
  }
  const Expr *getArg(unsigned Arg) const {
    assert(Arg < NumArgs && "Arg access out of range!");
    return cast<Expr>(SubExprs[Arg+ARGS_START]);
  }
  
  /// setArg - Set the specified argument.
  void setArg(unsigned Arg, Expr *ArgExpr) {
    assert(Arg < NumArgs && "Arg access out of range!");
    SubExprs[Arg+ARGS_START] = ArgExpr;
  }
  
  /// setNumArgs - This changes the number of arguments present in this call.
  /// Any orphaned expressions are deleted by this, and any new operands are set
  /// to null.
  void setNumArgs(ASTContext& C, unsigned NumArgs);
  
  typedef ExprIterator arg_iterator;
  typedef ConstExprIterator const_arg_iterator;
    
  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
  
  /// getNumCommas - Return the number of commas that must have been present in
  /// this function call.
  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }

  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
  /// not, return 0.
  unsigned isBuiltinCall(ASTContext &Context) const;
  
  /// getCallReturnType - Get the return type of the call expr. This is not 
  /// always the type of the expr itself, if the return type is a reference 
  /// type.
  QualType getCallReturnType() const;
  
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  virtual SourceRange getSourceRange() const { 
    return SourceRange(getCallee()->getLocStart(), RParenLoc);
  }
  
  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == CallExprClass ||
           T->getStmtClass() == CXXOperatorCallExprClass ||
           T->getStmtClass() == CXXMemberCallExprClass; 
  }
  static bool classof(const CallExpr *) { return true; }
  static bool classof(const CXXOperatorCallExpr *) { return true; }
  static bool classof(const CXXMemberCallExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
///
class MemberExpr : public Expr {
  /// Base - the expression for the base pointer or structure references.  In
  /// X.F, this is "X".
  Stmt *Base;
  
  /// MemberDecl - This is the decl being referenced by the field/member name.
  /// In X.F, this is the decl referenced by F.
  NamedDecl *MemberDecl;
  
  /// MemberLoc - This is the location of the member name.
  SourceLocation MemberLoc;
  
  /// IsArrow - True if this is "X->F", false if this is "X.F".
  bool IsArrow;
public:
  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
             QualType ty) 
    : Expr(MemberExprClass, ty, 
           base->isTypeDependent(), base->isValueDependent()),
      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}

  /// \brief Build an empty member reference expression.
  explicit MemberExpr(EmptyShell Empty) : Expr(MemberExprClass, Empty) { }

  void setBase(Expr *E) { Base = E; }
  Expr *getBase() const { return cast<Expr>(Base); }

  /// \brief Retrieve the member declaration to which this expression refers.
  ///
  /// The returned declaration will either be a FieldDecl or (in C++)
  /// a CXXMethodDecl.
  NamedDecl *getMemberDecl() const { return MemberDecl; }
  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }

  bool isArrow() const { return IsArrow; }
  void setArrow(bool A) { IsArrow = A; }

  /// getMemberLoc - Return the location of the "member", in X->F, it is the
  /// location of 'F'.
  SourceLocation getMemberLoc() const { return MemberLoc; }
  void setMemberLoc(SourceLocation L) { MemberLoc = L; }

  virtual SourceRange getSourceRange() const {
    // If we have an implicit base (like a C++ implicit this),
    // make sure not to return its location
    SourceLocation BaseLoc = getBase()->getLocStart();
    if (BaseLoc.isInvalid())
      return SourceRange(MemberLoc, MemberLoc);
    return SourceRange(BaseLoc, MemberLoc);
  }
  
  virtual SourceLocation getExprLoc() const { return MemberLoc; }

  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == MemberExprClass; 
  }
  static bool classof(const MemberExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// CompoundLiteralExpr - [C99 6.5.2.5] 
///
class CompoundLiteralExpr : public Expr {
  /// LParenLoc - If non-null, this is the location of the left paren in a
  /// compound literal like "(int){4}".  This can be null if this is a
  /// synthesized compound expression.
  SourceLocation LParenLoc;
  Stmt *Init;
  bool FileScope;
public:
  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
                      bool fileScope)
    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
      FileScope(fileScope) {}
  
  /// \brief Construct an empty compound literal.
  explicit CompoundLiteralExpr(EmptyShell Empty)
    : Expr(CompoundLiteralExprClass, Empty) { }

  const Expr *getInitializer() const { return cast<Expr>(Init); }
  Expr *getInitializer() { return cast<Expr>(Init); }
  void setInitializer(Expr *E) { Init = E; }

  bool isFileScope() const { return FileScope; }
  void setFileScope(bool FS) { FileScope = FS; }

  SourceLocation getLParenLoc() const { return LParenLoc; }
  void setLParenLoc(SourceLocation L) { LParenLoc = L; }

  virtual SourceRange getSourceRange() const {
    // FIXME: Init should never be null.
    if (!Init)
      return SourceRange();
    if (LParenLoc.isInvalid())
      return Init->getSourceRange();
    return SourceRange(LParenLoc, Init->getLocEnd());
  }

  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == CompoundLiteralExprClass; 
  }
  static bool classof(const CompoundLiteralExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// CastExpr - Base class for type casts, including both implicit
/// casts (ImplicitCastExpr) and explicit casts that have some
/// representation in the source code (ExplicitCastExpr's derived
/// classes).
class CastExpr : public Expr {
  Stmt *Op;
protected:
  CastExpr(StmtClass SC, QualType ty, Expr *op) : 
    Expr(SC, ty,
         // Cast expressions are type-dependent if the type is
         // dependent (C++ [temp.dep.expr]p3).
         ty->isDependentType(),
         // Cast expressions are value-dependent if the type is
         // dependent or if the subexpression is value-dependent.
         ty->isDependentType() || (op && op->isValueDependent())), 
    Op(op) {}
  
  /// \brief Construct an empty cast.
  CastExpr(StmtClass SC, EmptyShell Empty) 
    : Expr(SC, Empty) { }
  
public:
  Expr *getSubExpr() { return cast<Expr>(Op); }
  const Expr *getSubExpr() const { return cast<Expr>(Op); }
  void setSubExpr(Expr *E) { Op = E; }

  static bool classof(const Stmt *T) { 
    StmtClass SC = T->getStmtClass();
    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
      return true;

    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
      return true;

    return false;
  }
  static bool classof(const CastExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// ImplicitCastExpr - Allows us to explicitly represent implicit type
/// conversions, which have no direct representation in the original
/// source code. For example: converting T[]->T*, void f()->void
/// (*f)(), float->double, short->int, etc.
///
/// In C, implicit casts always produce rvalues. However, in C++, an
/// implicit cast whose result is being bound to a reference will be
/// an lvalue. For example:
///
/// @code
/// class Base { };
/// class Derived : public Base { };
/// void f(Derived d) { 
///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
/// }
/// @endcode
class ImplicitCastExpr : public CastExpr {
  /// LvalueCast - Whether this cast produces an lvalue.
  bool LvalueCast;

public:
  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) : 
    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }

  /// \brief Construct an empty implicit cast.
  explicit ImplicitCastExpr(EmptyShell Shell) 
    : CastExpr(ImplicitCastExprClass, Shell) { }


  virtual SourceRange getSourceRange() const {
    return getSubExpr()->getSourceRange();
  }

  /// isLvalueCast - Whether this cast produces an lvalue.
  bool isLvalueCast() const { return LvalueCast; }

  /// setLvalueCast - Set whether this cast produces an lvalue.
  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }

  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == ImplicitCastExprClass; 
  }
  static bool classof(const ImplicitCastExpr *) { return true; }
};

/// ExplicitCastExpr - An explicit cast written in the source
/// code. 
///
/// This class is effectively an abstract class, because it provides
/// the basic representation of an explicitly-written cast without
/// specifying which kind of cast (C cast, functional cast, static
/// cast, etc.) was written; specific derived classes represent the
/// particular style of cast and its location information.
///
/// Unlike implicit casts, explicit cast nodes have two different
/// types: the type that was written into the source code, and the
/// actual type of the expression as determined by semantic
/// analysis. These types may differ slightly. For example, in C++ one
/// can cast to a reference type, which indicates that the resulting
/// expression will be an lvalue. The reference type, however, will
/// not be used as the type of the expression.
class ExplicitCastExpr : public CastExpr {
  /// TypeAsWritten - The type that this expression is casting to, as
  /// written in the source code.
  QualType TypeAsWritten;

protected:
  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy) 
    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}

  /// \brief Construct an empty explicit cast.
  ExplicitCastExpr(StmtClass SC, EmptyShell Shell) 
    : CastExpr(SC, Shell) { }

public:
  /// getTypeAsWritten - Returns the type that this expression is
  /// casting to, as written in the source code.
  QualType getTypeAsWritten() const { return TypeAsWritten; }
  void setTypeAsWritten(QualType T) { TypeAsWritten = T; }

  static bool classof(const Stmt *T) { 
    StmtClass SC = T->getStmtClass();
    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
      return true;
    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
      return true;

    return false;
  }
  static bool classof(const ExplicitCastExpr *) { return true; }
};

/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
/// cast in C++ (C++ [expr.cast]), which uses the syntax
/// (Type)expr. For example: @c (int)f.
class CStyleCastExpr : public ExplicitCastExpr {
  SourceLocation LPLoc; // the location of the left paren
  SourceLocation RPLoc; // the location of the right paren
public:
  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy, 
                    SourceLocation l, SourceLocation r) : 
    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy), 
    LPLoc(l), RPLoc(r) {}

  /// \brief Construct an empty C-style explicit cast.
  explicit CStyleCastExpr(EmptyShell Shell) 
    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }

  SourceLocation getLParenLoc() const { return LPLoc; }
  void setLParenLoc(SourceLocation L) { LPLoc = L; }

  SourceLocation getRParenLoc() const { return RPLoc; }
  void setRParenLoc(SourceLocation L) { RPLoc = L; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
  }
  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == CStyleCastExprClass; 
  }
  static bool classof(const CStyleCastExpr *) { return true; }
};

/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
///
/// This expression node kind describes a builtin binary operation,
/// such as "x + y" for integer values "x" and "y". The operands will
/// already have been converted to appropriate types (e.g., by
/// performing promotions or conversions).
///
/// In C++, where operators may be overloaded, a different kind of
/// expression node (CXXOperatorCallExpr) is used to express the
/// invocation of an overloaded operator with operator syntax. Within
/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
/// used to store an expression "x + y" depends on the subexpressions
/// for x and y. If neither x or y is type-dependent, and the "+"
/// operator resolves to a built-in operation, BinaryOperator will be
/// used to express the computation (x and y may still be
/// value-dependent). If either x or y is type-dependent, or if the
/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
/// be used to express the computation.
class BinaryOperator : public Expr {
public:
  enum Opcode {
    // Operators listed in order of precedence.
    // Note that additions to this should also update the StmtVisitor class.
    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
    Add, Sub,         // [C99 6.5.6] Additive operators.
    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
    EQ, NE,           // [C99 6.5.9] Equality operators.
    And,              // [C99 6.5.10] Bitwise AND operator.
    Xor,              // [C99 6.5.11] Bitwise XOR operator.
    Or,               // [C99 6.5.12] Bitwise OR operator.
    LAnd,             // [C99 6.5.13] Logical AND operator.
    LOr,              // [C99 6.5.14] Logical OR operator.
    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
    DivAssign, RemAssign,
    AddAssign, SubAssign,
    ShlAssign, ShrAssign,
    AndAssign, XorAssign,
    OrAssign,
    Comma             // [C99 6.5.17] Comma operator.
  };
private:
  enum { LHS, RHS, END_EXPR };
  Stmt* SubExprs[END_EXPR];
  Opcode Opc;
  SourceLocation OpLoc;
public:  
  
  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
                 SourceLocation opLoc)
    : Expr(BinaryOperatorClass, ResTy,
           lhs->isTypeDependent() || rhs->isTypeDependent(),
           lhs->isValueDependent() || rhs->isValueDependent()), 
      Opc(opc), OpLoc(opLoc) {
    SubExprs[LHS] = lhs;
    SubExprs[RHS] = rhs;
    assert(!isCompoundAssignmentOp() && 
           "Use ArithAssignBinaryOperator for compound assignments");
  }

  /// \brief Construct an empty binary operator.
  explicit BinaryOperator(EmptyShell Empty) 
    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }

  SourceLocation getOperatorLoc() const { return OpLoc; }
  void setOperatorLoc(SourceLocation L) { OpLoc = L; }

  Opcode getOpcode() const { return Opc; }
  void setOpcode(Opcode O) { Opc = O; }

  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
  void setLHS(Expr *E) { SubExprs[LHS] = E; }
  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
  void setRHS(Expr *E) { SubExprs[RHS] = E; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
  }
  
  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
  /// corresponds to, e.g. "<<=".
  static const char *getOpcodeStr(Opcode Op);

  /// \brief Retrieve the binary opcode that corresponds to the given
  /// overloaded operator.
  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);

  /// \brief Retrieve the overloaded operator kind that corresponds to
  /// the given binary opcode.
  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);

  /// predicates to categorize the respective opcodes.
  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }

  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
  bool isRelationalOp() const { return isRelationalOp(Opc); }

  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }  
  bool isEqualityOp() const { return isEqualityOp(Opc); }
  
  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
  bool isLogicalOp() const { return isLogicalOp(Opc); }

  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
  
  static bool classof(const Stmt *S) { 
    return S->getStmtClass() == BinaryOperatorClass ||
           S->getStmtClass() == CompoundAssignOperatorClass; 
  }
  static bool classof(const BinaryOperator *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();

protected:
  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
                 SourceLocation oploc, bool dead)
    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
    SubExprs[LHS] = lhs;
    SubExprs[RHS] = rhs;
  }

  BinaryOperator(StmtClass SC, EmptyShell Empty) 
    : Expr(SC, Empty), Opc(MulAssign) { }
};

/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
/// track of the type the operation is performed in.  Due to the semantics of
/// these operators, the operands are promoted, the aritmetic performed, an
/// implicit conversion back to the result type done, then the assignment takes
/// place.  This captures the intermediate type which the computation is done
/// in.
class CompoundAssignOperator : public BinaryOperator {
  QualType ComputationLHSType;
  QualType ComputationResultType;
public:
  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
                         QualType ResType, QualType CompLHSType,
                         QualType CompResultType,
                         SourceLocation OpLoc)
    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
      ComputationLHSType(CompLHSType),
      ComputationResultType(CompResultType) {
    assert(isCompoundAssignmentOp() && 
           "Only should be used for compound assignments");
  }

  /// \brief Build an empty compound assignment operator expression.
  explicit CompoundAssignOperator(EmptyShell Empty)
    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }

  // The two computation types are the type the LHS is converted
  // to for the computation and the type of the result; the two are
  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
  QualType getComputationLHSType() const { return ComputationLHSType; }
  void setComputationLHSType(QualType T) { ComputationLHSType = T; }

  QualType getComputationResultType() const { return ComputationResultType; }
  void setComputationResultType(QualType T) { ComputationResultType = T; }

  static bool classof(const CompoundAssignOperator *) { return true; }
  static bool classof(const Stmt *S) { 
    return S->getStmtClass() == CompoundAssignOperatorClass; 
  }
};

/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
/// GNU "missing LHS" extension is in use.
///
class ConditionalOperator : public Expr {
  enum { COND, LHS, RHS, END_EXPR };
  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
public:
  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
    : Expr(ConditionalOperatorClass, t,
           // FIXME: the type of the conditional operator doesn't
           // depend on the type of the conditional, but the standard
           // seems to imply that it could. File a bug!
           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
           (cond->isValueDependent() || 
            (lhs && lhs->isValueDependent()) ||
            (rhs && rhs->isValueDependent()))) {
    SubExprs[COND] = cond;
    SubExprs[LHS] = lhs;
    SubExprs[RHS] = rhs;
  }

  /// \brief Build an empty conditional operator.
  explicit ConditionalOperator(EmptyShell Empty)
    : Expr(ConditionalOperatorClass, Empty) { }

  // getCond - Return the expression representing the condition for
  //  the ?: operator.
  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
  void setCond(Expr *E) { SubExprs[COND] = E; }

  // getTrueExpr - Return the subexpression representing the value of the ?:
  //  expression if the condition evaluates to true.  In most cases this value
  //  will be the same as getLHS() except a GCC extension allows the left
  //  subexpression to be omitted, and instead of the condition be returned.
  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
  //  is only evaluated once.  
  Expr *getTrueExpr() const {
    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
  }
  
  // getTrueExpr - Return the subexpression representing the value of the ?:
  // expression if the condition evaluates to false. This is the same as getRHS.
  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
  
  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
  void setLHS(Expr *E) { SubExprs[LHS] = E; }

  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
  void setRHS(Expr *E) { SubExprs[RHS] = E; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
  }
  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == ConditionalOperatorClass; 
  }
  static bool classof(const ConditionalOperator *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// AddrLabelExpr - The GNU address of label extension, representing &&label.
class AddrLabelExpr : public Expr {
  SourceLocation AmpAmpLoc, LabelLoc;
  LabelStmt *Label;
public:
  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
                QualType t)
    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
  
  /// \brief Build an empty address of a label expression.
  explicit AddrLabelExpr(EmptyShell Empty) 
    : Expr(AddrLabelExprClass, Empty) { }

  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
  SourceLocation getLabelLoc() const { return LabelLoc; }
  void setLabelLoc(SourceLocation L) { LabelLoc = L; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(AmpAmpLoc, LabelLoc);
  }
  
  LabelStmt *getLabel() const { return Label; }
  void setLabel(LabelStmt *S) { Label = S; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == AddrLabelExprClass; 
  }
  static bool classof(const AddrLabelExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
/// takes the value of the last subexpression.
class StmtExpr : public Expr {
  Stmt *SubStmt;
  SourceLocation LParenLoc, RParenLoc;
public:
  StmtExpr(CompoundStmt *substmt, QualType T,
           SourceLocation lp, SourceLocation rp) :
    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
  
  /// \brief Build an empty statement expression.
  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }

  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
  void setSubStmt(CompoundStmt *S) { SubStmt = S; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(LParenLoc, RParenLoc);
  }
  
  SourceLocation getLParenLoc() const { return LParenLoc; }
  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
  
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == StmtExprClass; 
  }
  static bool classof(const StmtExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
/// This AST node represents a function that returns 1 if two *types* (not
/// expressions) are compatible. The result of this built-in function can be
/// used in integer constant expressions.
class TypesCompatibleExpr : public Expr {
  QualType Type1;
  QualType Type2;
  SourceLocation BuiltinLoc, RParenLoc;
public:
  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc, 
                      QualType t1, QualType t2, SourceLocation RP) : 
    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
    BuiltinLoc(BLoc), RParenLoc(RP) {}

  /// \brief Build an empty __builtin_type_compatible_p expression.
  explicit TypesCompatibleExpr(EmptyShell Empty)
    : Expr(TypesCompatibleExprClass, Empty) { }

  QualType getArgType1() const { return Type1; }
  void setArgType1(QualType T) { Type1 = T; }
  QualType getArgType2() const { return Type2; }
  void setArgType2(QualType T) { Type2 = T; }
    
  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
  
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
  
  virtual SourceRange getSourceRange() const {
    return SourceRange(BuiltinLoc, RParenLoc);
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == TypesCompatibleExprClass; 
  }
  static bool classof(const TypesCompatibleExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// ShuffleVectorExpr - clang-specific builtin-in function
/// __builtin_shufflevector.
/// This AST node represents a operator that does a constant
/// shuffle, similar to LLVM's shufflevector instruction. It takes
/// two vectors and a variable number of constant indices,
/// and returns the appropriately shuffled vector.
class ShuffleVectorExpr : public Expr {
  SourceLocation BuiltinLoc, RParenLoc;

  // SubExprs - the list of values passed to the __builtin_shufflevector
  // function. The first two are vectors, and the rest are constant
  // indices.  The number of values in this list is always
  // 2+the number of indices in the vector type.
  Stmt **SubExprs;
  unsigned NumExprs;

public:
  ShuffleVectorExpr(Expr **args, unsigned nexpr,
                    QualType Type, SourceLocation BLoc, 
                    SourceLocation RP) : 
    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
    RParenLoc(RP), NumExprs(nexpr) {
      
    SubExprs = new Stmt*[nexpr];
    for (unsigned i = 0; i < nexpr; i++)
      SubExprs[i] = args[i];
  }

  /// \brief Build an empty vector-shuffle expression.
  explicit ShuffleVectorExpr(EmptyShell Empty) 
    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }

  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
  
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(BuiltinLoc, RParenLoc);
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ShuffleVectorExprClass; 
  }
  static bool classof(const ShuffleVectorExpr *) { return true; }
  
  ~ShuffleVectorExpr() {
    delete [] SubExprs;
  }
  
  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
  /// constant expression, the actual arguments passed in, and the function
  /// pointers.
  unsigned getNumSubExprs() const { return NumExprs; }
  
  /// getExpr - Return the Expr at the specified index.
  Expr *getExpr(unsigned Index) {
    assert((Index < NumExprs) && "Arg access out of range!");
    return cast<Expr>(SubExprs[Index]);
  }
  const Expr *getExpr(unsigned Index) const {
    assert((Index < NumExprs) && "Arg access out of range!");
    return cast<Expr>(SubExprs[Index]);
  }

  void setExprs(Expr ** Exprs, unsigned NumExprs);

  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
  }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
/// This AST node is similar to the conditional operator (?:) in C, with 
/// the following exceptions:
/// - the test expression must be a integer constant expression.
/// - the expression returned acts like the chosen subexpression in every
///   visible way: the type is the same as that of the chosen subexpression,
///   and all predicates (whether it's an l-value, whether it's an integer
///   constant expression, etc.) return the same result as for the chosen
///   sub-expression.
class ChooseExpr : public Expr {
  enum { COND, LHS, RHS, END_EXPR };
  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
  SourceLocation BuiltinLoc, RParenLoc;
public:
  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
             SourceLocation RP)
    : Expr(ChooseExprClass, t),  
      BuiltinLoc(BLoc), RParenLoc(RP) {
      SubExprs[COND] = cond;
      SubExprs[LHS] = lhs;
      SubExprs[RHS] = rhs;
    }        

  /// \brief Build an empty __builtin_choose_expr.
  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }

  /// isConditionTrue - Return whether the condition is true (i.e. not
  /// equal to zero).
  bool isConditionTrue(ASTContext &C) const;

  /// getChosenSubExpr - Return the subexpression chosen according to the
  /// condition.
  Expr *getChosenSubExpr(ASTContext &C) const {
    return isConditionTrue(C) ? getLHS() : getRHS();
  }

  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
  void setCond(Expr *E) { SubExprs[COND] = E; }
  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
  void setLHS(Expr *E) { SubExprs[LHS] = E; }
  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
  void setRHS(Expr *E) { SubExprs[RHS] = E; }

  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
  
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(BuiltinLoc, RParenLoc);
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ChooseExprClass; 
  }
  static bool classof(const ChooseExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// GNUNullExpr - Implements the GNU __null extension, which is a name
/// for a null pointer constant that has integral type (e.g., int or
/// long) and is the same size and alignment as a pointer. The __null
/// extension is typically only used by system headers, which define
/// NULL as __null in C++ rather than using 0 (which is an integer
/// that may not match the size of a pointer).
class GNUNullExpr : public Expr {
  /// TokenLoc - The location of the __null keyword.
  SourceLocation TokenLoc;

public:
  GNUNullExpr(QualType Ty, SourceLocation Loc) 
    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }

  /// \brief Build an empty GNU __null expression.
  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }

  GNUNullExpr* Clone(ASTContext &C) const;

  /// getTokenLocation - The location of the __null token.
  SourceLocation getTokenLocation() const { return TokenLoc; }
  void setTokenLocation(SourceLocation L) { TokenLoc = L; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(TokenLoc);
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == GNUNullExprClass; 
  }
  static bool classof(const GNUNullExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// VAArgExpr, used for the builtin function __builtin_va_start.
class VAArgExpr : public Expr {
  Stmt *Val;
  SourceLocation BuiltinLoc, RParenLoc;
public:
  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
    : Expr(VAArgExprClass, t),
      Val(e),
      BuiltinLoc(BLoc),
      RParenLoc(RPLoc) { }
  
  /// \brief Create an empty __builtin_va_start expression.
  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }

  const Expr *getSubExpr() const { return cast<Expr>(Val); }
  Expr *getSubExpr() { return cast<Expr>(Val); }
  void setSubExpr(Expr *E) { Val = E; }

  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
  
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(BuiltinLoc, RParenLoc);
  }  
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == VAArgExprClass;
  }
  static bool classof(const VAArgExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();  
};
  
/// @brief Describes an C or C++ initializer list.
///
/// InitListExpr describes an initializer list, which can be used to
/// initialize objects of different types, including
/// struct/class/union types, arrays, and vectors. For example:
///
/// @code
/// struct foo x = { 1, { 2, 3 } };
/// @endcode
///
/// Prior to semantic analysis, an initializer list will represent the
/// initializer list as written by the user, but will have the
/// placeholder type "void". This initializer list is called the
/// syntactic form of the initializer, and may contain C99 designated
/// initializers (represented as DesignatedInitExprs), initializations
/// of subobject members without explicit braces, and so on. Clients
/// interested in the original syntax of the initializer list should
/// use the syntactic form of the initializer list.
///
/// After semantic analysis, the initializer list will represent the
/// semantic form of the initializer, where the initializations of all
/// subobjects are made explicit with nested InitListExpr nodes and
/// C99 designators have been eliminated by placing the designated
/// initializations into the subobject they initialize. Additionally,
/// any "holes" in the initialization, where no initializer has been
/// specified for a particular subobject, will be replaced with
/// implicitly-generated ImplicitValueInitExpr expressions that
/// value-initialize the subobjects. Note, however, that the
/// initializer lists may still have fewer initializers than there are
/// elements to initialize within the object.
///
/// Given the semantic form of the initializer list, one can retrieve
/// the original syntactic form of that initializer list (if it
/// exists) using getSyntacticForm(). Since many initializer lists
/// have the same syntactic and semantic forms, getSyntacticForm() may
/// return NULL, indicating that the current initializer list also
/// serves as its syntactic form.
class InitListExpr : public Expr {
  std::vector<Stmt *> InitExprs;
  SourceLocation LBraceLoc, RBraceLoc;
  
  /// Contains the initializer list that describes the syntactic form
  /// written in the source code.
  InitListExpr *SyntacticForm;

  /// If this initializer list initializes a union, specifies which
  /// field within the union will be initialized.
  FieldDecl *UnionFieldInit;

  /// Whether this initializer list originally had a GNU array-range
  /// designator in it. This is a temporary marker used by CodeGen.
  bool HadArrayRangeDesignator;

public:
  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
               SourceLocation rbraceloc);

  /// \brief Build an empty initializer list.
  explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
  
  unsigned getNumInits() const { return InitExprs.size(); }
  
  const Expr* getInit(unsigned Init) const { 
    assert(Init < getNumInits() && "Initializer access out of range!");
    return cast_or_null<Expr>(InitExprs[Init]);
  }
  
  Expr* getInit(unsigned Init) { 
    assert(Init < getNumInits() && "Initializer access out of range!");
    return cast_or_null<Expr>(InitExprs[Init]);
  }
  
  void setInit(unsigned Init, Expr *expr) { 
    assert(Init < getNumInits() && "Initializer access out of range!");
    InitExprs[Init] = expr;
  }

  /// \brief Reserve space for some number of initializers.
  void reserveInits(unsigned NumInits);
  
  /// @brief Specify the number of initializers
  ///
  /// If there are more than @p NumInits initializers, the remaining
  /// initializers will be destroyed. If there are fewer than @p
  /// NumInits initializers, NULL expressions will be added for the
  /// unknown initializers.
  void resizeInits(ASTContext &Context, unsigned NumInits);

  /// @brief Updates the initializer at index @p Init with the new
  /// expression @p expr, and returns the old expression at that
  /// location.
  ///
  /// When @p Init is out of range for this initializer list, the
  /// initializer list will be extended with NULL expressions to
  /// accomodate the new entry.
  Expr *updateInit(unsigned Init, Expr *expr);

  /// \brief If this initializes a union, specifies which field in the
  /// union to initialize.
  ///
  /// Typically, this field is the first named field within the
  /// union. However, a designated initializer can specify the
  /// initialization of a different field within the union.
  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }

  // Explicit InitListExpr's originate from source code (and have valid source
  // locations). Implicit InitListExpr's are created by the semantic analyzer.
  bool isExplicit() {
    return LBraceLoc.isValid() && RBraceLoc.isValid();
  }
  
  SourceLocation getLBraceLoc() const { return LBraceLoc; }
  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
  SourceLocation getRBraceLoc() const { return RBraceLoc; }
  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }

  /// @brief Retrieve the initializer list that describes the
  /// syntactic form of the initializer.
  ///
  /// 
  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }

  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
  void sawArrayRangeDesignator(bool ARD = true) { 
    HadArrayRangeDesignator = ARD;
  }

  virtual SourceRange getSourceRange() const {
    return SourceRange(LBraceLoc, RBraceLoc);
  } 
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == InitListExprClass; 
  }
  static bool classof(const InitListExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
  
  typedef std::vector<Stmt *>::iterator iterator;
  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
  
  iterator begin() { return InitExprs.begin(); }
  iterator end() { return InitExprs.end(); }
  reverse_iterator rbegin() { return InitExprs.rbegin(); }
  reverse_iterator rend() { return InitExprs.rend(); }
};

/// @brief Represents a C99 designated initializer expression.
///
/// A designated initializer expression (C99 6.7.8) contains one or
/// more designators (which can be field designators, array
/// designators, or GNU array-range designators) followed by an
/// expression that initializes the field or element(s) that the
/// designators refer to. For example, given:
/// 
/// @code
/// struct point {
///   double x;
///   double y;
/// };
/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
/// @endcode
///
/// The InitListExpr contains three DesignatedInitExprs, the first of
/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
/// designators, one array designator for @c [2] followed by one field
/// designator for @c .y. The initalization expression will be 1.0.
class DesignatedInitExpr : public Expr {
public:
  /// \brief Forward declaration of the Designator class.
  class Designator;

private:
  /// The location of the '=' or ':' prior to the actual initializer
  /// expression.
  SourceLocation EqualOrColonLoc;

  /// Whether this designated initializer used the GNU deprecated
  /// syntax rather than the C99 '=' syntax.
  bool GNUSyntax : 1;

  /// The number of designators in this initializer expression.
  unsigned NumDesignators : 15;

  /// \brief The designators in this designated initialization
  /// expression.
  Designator *Designators;

  /// The number of subexpressions of this initializer expression,
  /// which contains both the initializer and any additional
  /// expressions used by array and array-range designators.
  unsigned NumSubExprs : 16;


  DesignatedInitExpr(QualType Ty, unsigned NumDesignators, 
                     const Designator *Designators,
                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
                     Expr **IndexExprs, unsigned NumIndexExprs,
                     Expr *Init);

  explicit DesignatedInitExpr(unsigned NumSubExprs)
    : Expr(DesignatedInitExprClass, EmptyShell()),
      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }

public:
  /// A field designator, e.g., ".x".
  struct FieldDesignator {
    /// Refers to the field that is being initialized. The low bit
    /// of this field determines whether this is actually a pointer
    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
    /// initially constructed, a field designator will store an
    /// IdentifierInfo*. After semantic analysis has resolved that
    /// name, the field designator will instead store a FieldDecl*.
    uintptr_t NameOrField;
    
    /// The location of the '.' in the designated initializer.
    unsigned DotLoc;
    
    /// The location of the field name in the designated initializer.
    unsigned FieldLoc;
  };

  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
  struct ArrayOrRangeDesignator {
    /// Location of the first index expression within the designated
    /// initializer expression's list of subexpressions.
    unsigned Index;
    /// The location of the '[' starting the array range designator.
    unsigned LBracketLoc;
    /// The location of the ellipsis separating the start and end
    /// indices. Only valid for GNU array-range designators.
    unsigned EllipsisLoc;
    /// The location of the ']' terminating the array range designator.
    unsigned RBracketLoc;    
  };

  /// @brief Represents a single C99 designator.
  ///
  /// @todo This class is infuriatingly similar to clang::Designator,
  /// but minor differences (storing indices vs. storing pointers)
  /// keep us from reusing it. Try harder, later, to rectify these
  /// differences.
  class Designator {
    /// @brief The kind of designator this describes.
    enum {
      FieldDesignator,
      ArrayDesignator,
      ArrayRangeDesignator
    } Kind;

    union {
      /// A field designator, e.g., ".x".
      struct FieldDesignator Field;
      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
      struct ArrayOrRangeDesignator ArrayOrRange;
    };
    friend class DesignatedInitExpr;

  public:
    Designator() {}

    /// @brief Initializes a field designator.
    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc, 
               SourceLocation FieldLoc) 
      : Kind(FieldDesignator) {
      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
      Field.DotLoc = DotLoc.getRawEncoding();
      Field.FieldLoc = FieldLoc.getRawEncoding();
    }

    /// @brief Initializes an array designator.
    Designator(unsigned Index, SourceLocation LBracketLoc, 
               SourceLocation RBracketLoc)
      : Kind(ArrayDesignator) {
      ArrayOrRange.Index = Index;
      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
    }

    /// @brief Initializes a GNU array-range designator.
    Designator(unsigned Index, SourceLocation LBracketLoc, 
               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
      : Kind(ArrayRangeDesignator) {
      ArrayOrRange.Index = Index;
      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
    }

    bool isFieldDesignator() const { return Kind == FieldDesignator; }
    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }

    IdentifierInfo * getFieldName();

    FieldDecl *getField() {
      assert(Kind == FieldDesignator && "Only valid on a field designator");
      if (Field.NameOrField & 0x01)
        return 0;
      else
        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
    }

    void setField(FieldDecl *FD) {
      assert(Kind == FieldDesignator && "Only valid on a field designator");
      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
    }

    SourceLocation getDotLoc() const {
      assert(Kind == FieldDesignator && "Only valid on a field designator");
      return SourceLocation::getFromRawEncoding(Field.DotLoc);
    }

    SourceLocation getFieldLoc() const {
      assert(Kind == FieldDesignator && "Only valid on a field designator");
      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
    }

    SourceLocation getLBracketLoc() const {
      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
             "Only valid on an array or array-range designator");
      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
    }

    SourceLocation getRBracketLoc() const {
      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
             "Only valid on an array or array-range designator");
      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
    }

    SourceLocation getEllipsisLoc() const {
      assert(Kind == ArrayRangeDesignator &&
             "Only valid on an array-range designator");
      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
    }

    unsigned getFirstExprIndex() const {
      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
             "Only valid on an array or array-range designator");
      return ArrayOrRange.Index;
    }

    SourceLocation getStartLocation() const {
      if (Kind == FieldDesignator)
        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
      else
        return getLBracketLoc();
    }
  };

  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators, 
                                    unsigned NumDesignators,
                                    Expr **IndexExprs, unsigned NumIndexExprs,
                                    SourceLocation EqualOrColonLoc,
                                    bool GNUSyntax, Expr *Init);

  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);

  /// @brief Returns the number of designators in this initializer.
  unsigned size() const { return NumDesignators; }

  // Iterator access to the designators.
  typedef Designator* designators_iterator;
  designators_iterator designators_begin() { return Designators; }
  designators_iterator designators_end() { 
    return Designators + NumDesignators; 
  }

  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }

  void setDesignators(const Designator *Desigs, unsigned NumDesigs);

  Expr *getArrayIndex(const Designator& D);
  Expr *getArrayRangeStart(const Designator& D);
  Expr *getArrayRangeEnd(const Designator& D);

  /// @brief Retrieve the location of the '=' that precedes the
  /// initializer value itself, if present.
  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }

  /// @brief Determines whether this designated initializer used the
  /// deprecated GNU syntax for designated initializers.
  bool usesGNUSyntax() const { return GNUSyntax; }
  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }

  /// @brief Retrieve the initializer value.
  Expr *getInit() const { 
    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
  }

  void setInit(Expr *init) {
    *child_begin() = init;
  }

  /// \brief Retrieve the total number of subexpressions in this
  /// designated initializer expression, including the actual
  /// initialized value and any expressions that occur within array
  /// and array-range designators.
  unsigned getNumSubExprs() const { return NumSubExprs; }

  Expr *getSubExpr(unsigned Idx) {
    assert(Idx < NumSubExprs && "Subscript out of range");
    char* Ptr = static_cast<char*>(static_cast<void *>(this));
    Ptr += sizeof(DesignatedInitExpr);
    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
  }

  void setSubExpr(unsigned Idx, Expr *E) {
    assert(Idx < NumSubExprs && "Subscript out of range");
    char* Ptr = static_cast<char*>(static_cast<void *>(this));
    Ptr += sizeof(DesignatedInitExpr);
    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
  }

  /// \brief Replaces the designator at index @p Idx with the series
  /// of designators in [First, Last).
  void ExpandDesignator(unsigned Idx, const Designator *First, 
                        const Designator *Last);

  virtual SourceRange getSourceRange() const;

  virtual void Destroy(ASTContext &C);

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == DesignatedInitExprClass; 
  }
  static bool classof(const DesignatedInitExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end(); 
};

/// \brief Represents an implicitly-generated value initialization of
/// an object of a given type.
///
/// Implicit value initializations occur within semantic initializer
/// list expressions (InitListExpr) as placeholders for subobject
/// initializations not explicitly specified by the user.
///
/// \see InitListExpr
class ImplicitValueInitExpr : public Expr { 
public:
  explicit ImplicitValueInitExpr(QualType ty) 
    : Expr(ImplicitValueInitExprClass, ty) { }

  /// \brief Construct an empty implicit value initialization.
  explicit ImplicitValueInitExpr(EmptyShell Empty)
    : Expr(ImplicitValueInitExprClass, Empty) { }

  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == ImplicitValueInitExprClass;
  }
  static bool classof(const ImplicitValueInitExpr *) { return true; }

  virtual SourceRange getSourceRange() const {
    return SourceRange();
  }

  ImplicitValueInitExpr *Clone(ASTContext &C) const;

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end(); 
};

//===----------------------------------------------------------------------===//
// Clang Extensions
//===----------------------------------------------------------------------===//


/// ExtVectorElementExpr - This represents access to specific elements of a
/// vector, and may occur on the left hand side or right hand side.  For example
/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
///
/// Note that the base may have either vector or pointer to vector type, just
/// like a struct field reference.
///
class ExtVectorElementExpr : public Expr {
  Stmt *Base;
  IdentifierInfo *Accessor;
  SourceLocation AccessorLoc;
public:
  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
                       SourceLocation loc)
    : Expr(ExtVectorElementExprClass, ty), 
      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
                     
  /// \brief Build an empty vector element expression.
  explicit ExtVectorElementExpr(EmptyShell Empty)
    : Expr(ExtVectorElementExprClass, Empty) { }

  const Expr *getBase() const { return cast<Expr>(Base); }
  Expr *getBase() { return cast<Expr>(Base); }
  void setBase(Expr *E) { Base = E; }

  IdentifierInfo &getAccessor() const { return *Accessor; }
  void setAccessor(IdentifierInfo *II) { Accessor = II; }

  SourceLocation getAccessorLoc() const { return AccessorLoc; }
  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }

  /// getNumElements - Get the number of components being selected.
  unsigned getNumElements() const;
  
  /// containsDuplicateElements - Return true if any element access is
  /// repeated.
  bool containsDuplicateElements() const;
  
  /// getEncodedElementAccess - Encode the elements accessed into an llvm
  /// aggregate Constant of ConstantInt(s).
  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
  
  virtual SourceRange getSourceRange() const {
    return SourceRange(getBase()->getLocStart(), AccessorLoc);
  }
  
  /// isArrow - Return true if the base expression is a pointer to vector,
  /// return false if the base expression is a vector.
  bool isArrow() const;
  
  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == ExtVectorElementExprClass; 
  }
  static bool classof(const ExtVectorElementExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};


/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
class BlockExpr : public Expr {
protected:
  BlockDecl *TheBlock;
  bool HasBlockDeclRefExprs;
public:
  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
    : Expr(BlockExprClass, ty), 
      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}

  /// \brief Build an empty block expression.
  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }

  const BlockDecl *getBlockDecl() const { return TheBlock; }
  BlockDecl *getBlockDecl() { return TheBlock; }
  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }

  // Convenience functions for probing the underlying BlockDecl.
  SourceLocation getCaretLocation() const;
  const Stmt *getBody() const;
  Stmt *getBody();

  const Stmt *getBody(ASTContext &C) const { return getBody(); }
  Stmt *getBody(ASTContext &C) { return getBody(); }

  virtual SourceRange getSourceRange() const {
    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
  }

  /// getFunctionType - Return the underlying function type for this block.
  const FunctionType *getFunctionType() const;

  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
  /// inside of the block that reference values outside the block.
  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }

  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == BlockExprClass;
  }
  static bool classof(const BlockExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};
    
/// BlockDeclRefExpr - A reference to a declared variable, function,
/// enum, etc.
class BlockDeclRefExpr : public Expr {
  ValueDecl *D; 
  SourceLocation Loc;
  bool IsByRef : 1;
  bool ConstQualAdded : 1;
public:
  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef, 
                   bool constAdded = false) :
       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef),
                                       ConstQualAdded(constAdded) {}

  // \brief Build an empty reference to a declared variable in a
  // block.
  explicit BlockDeclRefExpr(EmptyShell Empty)
    : Expr(BlockDeclRefExprClass, Empty) { }
  
  ValueDecl *getDecl() { return D; }
  const ValueDecl *getDecl() const { return D; }
  void setDecl(ValueDecl *VD) { D = VD; }

  SourceLocation getLocation() const { return Loc; }
  void setLocation(SourceLocation L) { Loc = L; }

  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
  
  bool isByRef() const { return IsByRef; }
  void setByRef(bool BR) { IsByRef = BR; }
  
  bool isConstQualAdded() const { return ConstQualAdded; }
  void setConstQualAdded(bool C) { ConstQualAdded = C; }

  static bool classof(const Stmt *T) { 
    return T->getStmtClass() == BlockDeclRefExprClass; 
  }
  static bool classof(const BlockDeclRefExpr *) { return true; }
  
  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

}  // end namespace clang

#endif