aboutsummaryrefslogtreecommitdiff
path: root/include/clang/AST/ExprCXX.h
blob: 6e2e832e3542dbd896a468b20ef97483ed6f0be9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines the Expr interface and subclasses for C++ expressions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_AST_EXPRCXX_H
#define LLVM_CLANG_AST_EXPRCXX_H

#include "clang/Basic/TypeTraits.h"
#include "clang/AST/Expr.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/AST/TemplateBase.h"

namespace clang {

  class CXXConstructorDecl;
  class CXXDestructorDecl;
  class CXXMethodDecl;
  class CXXTemporary;
  class TemplateArgumentListInfo;

//===--------------------------------------------------------------------===//
// C++ Expressions.
//===--------------------------------------------------------------------===//

/// \brief A call to an overloaded operator written using operator
/// syntax.
///
/// Represents a call to an overloaded operator written using operator
/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
/// normal call, this AST node provides better information about the
/// syntactic representation of the call.
///
/// In a C++ template, this expression node kind will be used whenever
/// any of the arguments are type-dependent. In this case, the
/// function itself will be a (possibly empty) set of functions and
/// function templates that were found by name lookup at template
/// definition time.
class CXXOperatorCallExpr : public CallExpr {
  /// \brief The overloaded operator.
  OverloadedOperatorKind Operator;

public:
  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
                      Expr **args, unsigned numargs, QualType t,
                      SourceLocation operatorloc)
    : CallExpr(C, CXXOperatorCallExprClass, fn, args, numargs, t, operatorloc),
      Operator(Op) {}
  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
    CallExpr(C, CXXOperatorCallExprClass, Empty) { }


  /// getOperator - Returns the kind of overloaded operator that this
  /// expression refers to.
  OverloadedOperatorKind getOperator() const { return Operator; }
  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }

  /// getOperatorLoc - Returns the location of the operator symbol in
  /// the expression. When @c getOperator()==OO_Call, this is the
  /// location of the right parentheses; when @c
  /// getOperator()==OO_Subscript, this is the location of the right
  /// bracket.
  SourceLocation getOperatorLoc() const { return getRParenLoc(); }

  virtual SourceRange getSourceRange() const;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXOperatorCallExprClass;
  }
  static bool classof(const CXXOperatorCallExpr *) { return true; }
};

/// CXXMemberCallExpr - Represents a call to a member function that
/// may be written either with member call syntax (e.g., "obj.func()"
/// or "objptr->func()") or with normal function-call syntax
/// ("func()") within a member function that ends up calling a member
/// function. The callee in either case is a MemberExpr that contains
/// both the object argument and the member function, while the
/// arguments are the arguments within the parentheses (not including
/// the object argument).
class CXXMemberCallExpr : public CallExpr {
public:
  CXXMemberCallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
                    QualType t, SourceLocation rparenloc)
    : CallExpr(C, CXXMemberCallExprClass, fn, args, numargs, t, rparenloc) {}

  /// getImplicitObjectArgument - Retrieves the implicit object
  /// argument for the member call. For example, in "x.f(5)", this
  /// operation would return "x".
  Expr *getImplicitObjectArgument();

  virtual SourceRange getSourceRange() const;
  
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXMemberCallExprClass;
  }
  static bool classof(const CXXMemberCallExpr *) { return true; }
};

/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
/// const_cast.
///
/// This abstract class is inherited by all of the classes
/// representing "named" casts, e.g., CXXStaticCastExpr,
/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
class CXXNamedCastExpr : public ExplicitCastExpr {
private:
  SourceLocation Loc; // the location of the casting op

protected:
  CXXNamedCastExpr(StmtClass SC, QualType ty, CastKind kind, Expr *op,
                   TypeSourceInfo *writtenTy, SourceLocation l)
    : ExplicitCastExpr(SC, ty, kind, op, writtenTy), Loc(l) {}

  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell)
    : ExplicitCastExpr(SC, Shell) { }

public:
  const char *getCastName() const;

  /// \brief Retrieve the location of the cast operator keyword, e.g.,
  /// "static_cast".
  SourceLocation getOperatorLoc() const { return Loc; }
  void setOperatorLoc(SourceLocation L) { Loc = L; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(Loc, getSubExpr()->getSourceRange().getEnd());
  }
  static bool classof(const Stmt *T) {
    switch (T->getStmtClass()) {
    case CXXNamedCastExprClass:
    case CXXStaticCastExprClass:
    case CXXDynamicCastExprClass:
    case CXXReinterpretCastExprClass:
    case CXXConstCastExprClass:
      return true;
    default:
      return false;
    }
  }
  static bool classof(const CXXNamedCastExpr *) { return true; }
};

/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
///
/// This expression node represents a C++ static cast, e.g.,
/// @c static_cast<int>(1.0).
class CXXStaticCastExpr : public CXXNamedCastExpr {
public:
  CXXStaticCastExpr(QualType ty, CastKind kind, Expr *op,
                    TypeSourceInfo *writtenTy, SourceLocation l)
    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, kind, op, writtenTy, l) {}

  explicit CXXStaticCastExpr(EmptyShell Empty)
    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty) { }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXStaticCastExprClass;
  }
  static bool classof(const CXXStaticCastExpr *) { return true; }
};

/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
/// determine how to perform the type cast.
///
/// This expression node represents a dynamic cast, e.g.,
/// @c dynamic_cast<Derived*>(BasePtr).
class CXXDynamicCastExpr : public CXXNamedCastExpr {
public:
  CXXDynamicCastExpr(QualType ty, CastKind kind, Expr *op,
                     TypeSourceInfo *writtenTy, SourceLocation l)
    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, kind, op, writtenTy, l) {}

  explicit CXXDynamicCastExpr(EmptyShell Empty)
    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty) { }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDynamicCastExprClass;
  }
  static bool classof(const CXXDynamicCastExpr *) { return true; }
};

/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
/// [expr.reinterpret.cast]), which provides a differently-typed view
/// of a value but performs no actual work at run time.
///
/// This expression node represents a reinterpret cast, e.g.,
/// @c reinterpret_cast<int>(VoidPtr).
class CXXReinterpretCastExpr : public CXXNamedCastExpr {
public:
  CXXReinterpretCastExpr(QualType ty, CastKind kind, Expr *op, 
                         TypeSourceInfo *writtenTy, SourceLocation l)
    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, kind, op,
                       writtenTy, l) {}

  explicit CXXReinterpretCastExpr(EmptyShell Empty)
    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty) { }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXReinterpretCastExprClass;
  }
  static bool classof(const CXXReinterpretCastExpr *) { return true; }
};

/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
/// which can remove type qualifiers but does not change the underlying value.
///
/// This expression node represents a const cast, e.g.,
/// @c const_cast<char*>(PtrToConstChar).
class CXXConstCastExpr : public CXXNamedCastExpr {
public:
  CXXConstCastExpr(QualType ty, Expr *op, TypeSourceInfo *writtenTy,
                   SourceLocation l)
    : CXXNamedCastExpr(CXXConstCastExprClass, ty, CK_NoOp, op, writtenTy, l) {}

  explicit CXXConstCastExpr(EmptyShell Empty)
    : CXXNamedCastExpr(CXXConstCastExprClass, Empty) { }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXConstCastExprClass;
  }
  static bool classof(const CXXConstCastExpr *) { return true; }
};

/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
///
class CXXBoolLiteralExpr : public Expr {
  bool Value;
  SourceLocation Loc;
public:
  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
    Expr(CXXBoolLiteralExprClass, Ty, false, false), Value(val), Loc(l) {}

  explicit CXXBoolLiteralExpr(EmptyShell Empty)
    : Expr(CXXBoolLiteralExprClass, Empty) { }

  bool getValue() const { return Value; }
  void setValue(bool V) { Value = V; }

  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }

  SourceLocation getLocation() const { return Loc; }
  void setLocation(SourceLocation L) { Loc = L; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXBoolLiteralExprClass;
  }
  static bool classof(const CXXBoolLiteralExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
class CXXNullPtrLiteralExpr : public Expr {
  SourceLocation Loc;
public:
  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
    Expr(CXXNullPtrLiteralExprClass, Ty, false, false), Loc(l) {}

  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
    : Expr(CXXNullPtrLiteralExprClass, Empty) { }

  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }

  SourceLocation getLocation() const { return Loc; }
  void setLocation(SourceLocation L) { Loc = L; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
  }
  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }

  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
/// the type_info that corresponds to the supplied type, or the (possibly
/// dynamic) type of the supplied expression.
///
/// This represents code like @c typeid(int) or @c typeid(*objPtr)
class CXXTypeidExpr : public Expr {
private:
  bool isTypeOp : 1;
  union {
    void *Ty;
    Stmt *Ex;
  } Operand;
  SourceRange Range;

public:
  CXXTypeidExpr(bool isTypeOp, void *op, QualType Ty, const SourceRange r) :
      Expr(CXXTypeidExprClass, Ty,
        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
        false,
        // typeid is value-dependent if the type or expression are dependent
        (isTypeOp ? QualType::getFromOpaquePtr(op)->isDependentType()
                  : static_cast<Expr*>(op)->isValueDependent())),
      isTypeOp(isTypeOp), Range(r) {
    if (isTypeOp)
      Operand.Ty = op;
    else
      // op was an Expr*, so cast it back to that to be safe
      Operand.Ex = static_cast<Expr*>(op);
  }

  bool isTypeOperand() const { return isTypeOp; }
  QualType getTypeOperand() const {
    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
    return QualType::getFromOpaquePtr(Operand.Ty);
  }
  Expr* getExprOperand() const {
    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
    return static_cast<Expr*>(Operand.Ex);
  }

  virtual SourceRange getSourceRange() const {
    return Range;
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXTypeidExprClass;
  }
  static bool classof(const CXXTypeidExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// CXXThisExpr - Represents the "this" expression in C++, which is a
/// pointer to the object on which the current member function is
/// executing (C++ [expr.prim]p3). Example:
///
/// @code
/// class Foo {
/// public:
///   void bar();
///   void test() { this->bar(); }
/// };
/// @endcode
class CXXThisExpr : public Expr {
  SourceLocation Loc;
  bool Implicit : 1;
  
public:
  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
    : Expr(CXXThisExprClass, Type,
           // 'this' is type-dependent if the class type of the enclosing
           // member function is dependent (C++ [temp.dep.expr]p2)
           Type->isDependentType(), Type->isDependentType()),
      Loc(L), Implicit(isImplicit) { }

  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }

  bool isImplicit() const { return Implicit; }
  void setImplicit(bool I) { Implicit = I; }
  
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXThisExprClass;
  }
  static bool classof(const CXXThisExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
///  'throw' and 'throw' assignment-expression.  When
///  assignment-expression isn't present, Op will be null.
///
class CXXThrowExpr : public Expr {
  Stmt *Op;
  SourceLocation ThrowLoc;
public:
  // Ty is the void type which is used as the result type of the
  // exepression.  The l is the location of the throw keyword.  expr
  // can by null, if the optional expression to throw isn't present.
  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
    Expr(CXXThrowExprClass, Ty, false, false), Op(expr), ThrowLoc(l) {}
  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
  void setSubExpr(Expr *E) { Op = E; }

  SourceLocation getThrowLoc() const { return ThrowLoc; }
  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }

  virtual SourceRange getSourceRange() const {
    if (getSubExpr() == 0)
      return SourceRange(ThrowLoc, ThrowLoc);
    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXThrowExprClass;
  }
  static bool classof(const CXXThrowExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
/// function call argument that was created from the corresponding
/// parameter's default argument, when the call did not explicitly
/// supply arguments for all of the parameters.
class CXXDefaultArgExpr : public Expr {
  /// \brief The parameter whose default is being used.
  ///
  /// When the bit is set, the subexpression is stored after the 
  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
  /// actual default expression is the subexpression.
  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;

  /// \brief The location where the default argument expression was used.
  SourceLocation Loc;
  
protected:
  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
    : Expr(SC, 
           param->hasUnparsedDefaultArg()
             ? param->getType().getNonReferenceType()
             : param->getDefaultArg()->getType(),
           false, false),
      Param(param, false), Loc(Loc) { }

  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param, 
                    Expr *SubExpr)
    : Expr(SC, SubExpr->getType(), false, false), Param(param, true), Loc(Loc)
  {
    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
  }
  
protected:
  virtual void DoDestroy(ASTContext &C);
  
public:
  // Param is the parameter whose default argument is used by this
  // expression.
  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
                                   ParmVarDecl *Param) {
    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
  }

  // Param is the parameter whose default argument is used by this
  // expression, and SubExpr is the expression that will actually be used.
  static CXXDefaultArgExpr *Create(ASTContext &C, 
                                   SourceLocation Loc,
                                   ParmVarDecl *Param, 
                                   Expr *SubExpr);
  
  // Retrieve the parameter that the argument was created from.
  const ParmVarDecl *getParam() const { return Param.getPointer(); }
  ParmVarDecl *getParam() { return Param.getPointer(); }

  // Retrieve the actual argument to the function call.
  const Expr *getExpr() const { 
    if (Param.getInt())
      return *reinterpret_cast<Expr const * const*> (this + 1);
    return getParam()->getDefaultArg(); 
  }
  Expr *getExpr() { 
    if (Param.getInt())
      return *reinterpret_cast<Expr **> (this + 1);
    return getParam()->getDefaultArg(); 
  }

  /// \brief Retrieve the location where this default argument was actually 
  /// used.
  SourceLocation getUsedLocation() const { return Loc; }
  
  virtual SourceRange getSourceRange() const {
    // Default argument expressions have no representation in the
    // source, so they have an empty source range.
    return SourceRange();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDefaultArgExprClass;
  }
  static bool classof(const CXXDefaultArgExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// CXXTemporary - Represents a C++ temporary.
class CXXTemporary {
  /// Destructor - The destructor that needs to be called.
  const CXXDestructorDecl *Destructor;

  CXXTemporary(const CXXDestructorDecl *destructor)
    : Destructor(destructor) { }
  ~CXXTemporary() { }

public:
  static CXXTemporary *Create(ASTContext &C,
                              const CXXDestructorDecl *Destructor);

  void Destroy(ASTContext &Ctx);

  const CXXDestructorDecl *getDestructor() const { return Destructor; }
};

/// CXXBindTemporaryExpr - Represents binding an expression to a temporary,
/// so its destructor can be called later.
class CXXBindTemporaryExpr : public Expr {
  CXXTemporary *Temp;

  Stmt *SubExpr;

  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* subexpr)
   : Expr(CXXBindTemporaryExprClass, subexpr->getType(), false, false),
     Temp(temp), SubExpr(subexpr) { }
  ~CXXBindTemporaryExpr() { }

protected:
  virtual void DoDestroy(ASTContext &C);

public:
  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
                                      Expr* SubExpr);

  CXXTemporary *getTemporary() { return Temp; }
  const CXXTemporary *getTemporary() const { return Temp; }

  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
  void setSubExpr(Expr *E) { SubExpr = E; }

  virtual SourceRange getSourceRange() const { 
    return SubExpr->getSourceRange();
  }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXBindTemporaryExprClass;
  }
  static bool classof(const CXXBindTemporaryExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// CXXBindReferenceExpr - Represents binding an expression to a reference.
/// In the example:
///
/// const int &i = 10;
///
/// a bind reference expression is inserted to indicate that 10 is bound to
/// a reference. (Ans also that a temporary needs to be created to hold the
/// value).
class CXXBindReferenceExpr : public Expr {
  // SubExpr - The expression being bound.
  Stmt *SubExpr;
  
  // ExtendsLifetime - Whether binding this reference extends the lifetime of
  // the expression being bound. FIXME: Add C++ reference.
  bool ExtendsLifetime;

  /// RequiresTemporaryCopy - Whether binding the subexpression requires a
  /// temporary copy.
  bool RequiresTemporaryCopy;
  
  CXXBindReferenceExpr(Expr *subexpr, bool ExtendsLifetime, 
                       bool RequiresTemporaryCopy)
  : Expr(CXXBindReferenceExprClass, subexpr->getType(), false, false),
    SubExpr(subexpr), ExtendsLifetime(ExtendsLifetime), 
    RequiresTemporaryCopy(RequiresTemporaryCopy) { }
  ~CXXBindReferenceExpr() { }

protected:
  virtual void DoDestroy(ASTContext &C);

public:
  static CXXBindReferenceExpr *Create(ASTContext &C, Expr *SubExpr,
                                      bool ExtendsLifetime, 
                                      bool RequiresTemporaryCopy);

  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
  void setSubExpr(Expr *E) { SubExpr = E; }

  virtual SourceRange getSourceRange() const { 
    return SubExpr->getSourceRange();
  }

  /// requiresTemporaryCopy - Whether binding the subexpression requires a
  /// temporary copy.
  bool requiresTemporaryCopy() const { return RequiresTemporaryCopy; }

  // extendsLifetime - Whether binding this reference extends the lifetime of
  // the expression being bound. FIXME: Add C++ reference.
  bool extendsLifetime() { return ExtendsLifetime; }
    
  // Implement isa/cast/dyncast/etc.
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXBindReferenceExprClass;
  }
  static bool classof(const CXXBindReferenceExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// CXXConstructExpr - Represents a call to a C++ constructor.
class CXXConstructExpr : public Expr {
  CXXConstructorDecl *Constructor;

  SourceLocation Loc;
  bool Elidable : 1;
  bool ZeroInitialization : 1;
  bool BaseInitialization : 1;
  Stmt **Args;
  unsigned NumArgs;

protected:
  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
                   SourceLocation Loc,
                   CXXConstructorDecl *d, bool elidable,
                   Expr **args, unsigned numargs,
                   bool ZeroInitialization = false,
                   bool BaseInitialization = false);
  ~CXXConstructExpr() { }

  virtual void DoDestroy(ASTContext &C);

public:
  /// \brief Construct an empty C++ construction expression that will store
  /// \p numargs arguments.
  CXXConstructExpr(EmptyShell Empty, ASTContext &C, unsigned numargs);
  
  static CXXConstructExpr *Create(ASTContext &C, QualType T,
                                  SourceLocation Loc,
                                  CXXConstructorDecl *D, bool Elidable,
                                  Expr **Args, unsigned NumArgs,
                                  bool ZeroInitialization = false,
                                  bool BaseInitialization = false);


  CXXConstructorDecl* getConstructor() const { return Constructor; }
  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
  
  SourceLocation getLocation() const { return Loc; }
  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
  
  /// \brief Whether this construction is elidable.
  bool isElidable() const { return Elidable; }
  void setElidable(bool E) { Elidable = E; }
  
  /// \brief Whether this construction first requires
  /// zero-initialization before the initializer is called.
  bool requiresZeroInitialization() const { return ZeroInitialization; }
  void setRequiresZeroInitialization(bool ZeroInit) {
    ZeroInitialization = ZeroInit;
  }
  
  /// \brief Determines whether this constructor is actually constructing
  /// a base class (rather than a complete object).
  bool isBaseInitialization() const { return BaseInitialization; }
  void setBaseInitialization(bool BI) { BaseInitialization = BI; }
  
  typedef ExprIterator arg_iterator;
  typedef ConstExprIterator const_arg_iterator;

  arg_iterator arg_begin() { return Args; }
  arg_iterator arg_end() { return Args + NumArgs; }
  const_arg_iterator arg_begin() const { return Args; }
  const_arg_iterator arg_end() const { return Args + NumArgs; }

  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
  unsigned getNumArgs() const { return NumArgs; }

  /// getArg - Return the specified argument.
  Expr *getArg(unsigned Arg) {
    assert(Arg < NumArgs && "Arg access out of range!");
    return cast<Expr>(Args[Arg]);
  }
  const Expr *getArg(unsigned Arg) const {
    assert(Arg < NumArgs && "Arg access out of range!");
    return cast<Expr>(Args[Arg]);
  }

  /// setArg - Set the specified argument.
  void setArg(unsigned Arg, Expr *ArgExpr) {
    assert(Arg < NumArgs && "Arg access out of range!");
    Args[Arg] = ArgExpr;
  }

  virtual SourceRange getSourceRange() const;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXConstructExprClass ||
      T->getStmtClass() == CXXTemporaryObjectExprClass;
  }
  static bool classof(const CXXConstructExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
/// x = int(0.5);
class CXXFunctionalCastExpr : public ExplicitCastExpr {
  SourceLocation TyBeginLoc;
  SourceLocation RParenLoc;
public:
  CXXFunctionalCastExpr(QualType ty, TypeSourceInfo *writtenTy,
                        SourceLocation tyBeginLoc, CastKind kind,
                        Expr *castExpr, SourceLocation rParenLoc) 
    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, kind, castExpr, 
                       writtenTy),
      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}

  explicit CXXFunctionalCastExpr(EmptyShell Shell)
    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell) { }

  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(TyBeginLoc, RParenLoc);
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXFunctionalCastExprClass;
  }
  static bool classof(const CXXFunctionalCastExpr *) { return true; }
};

/// @brief Represents a C++ functional cast expression that builds a
/// temporary object.
///
/// This expression type represents a C++ "functional" cast
/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
/// constructor to build a temporary object. If N == 0 but no
/// constructor will be called (because the functional cast is
/// performing a value-initialized an object whose class type has no
/// user-declared constructors), CXXZeroInitValueExpr will represent
/// the functional cast. Finally, with N == 1 arguments the functional
/// cast expression will be represented by CXXFunctionalCastExpr.
/// Example:
/// @code
/// struct X { X(int, float); }
///
/// X create_X() {
///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
/// };
/// @endcode
class CXXTemporaryObjectExpr : public CXXConstructExpr {
  SourceLocation TyBeginLoc;
  SourceLocation RParenLoc;

public:
  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
                         QualType writtenTy, SourceLocation tyBeginLoc,
                         Expr **Args,unsigned NumArgs,
                         SourceLocation rParenLoc);

  ~CXXTemporaryObjectExpr() { }

  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
  SourceLocation getRParenLoc() const { return RParenLoc; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(TyBeginLoc, RParenLoc);
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXTemporaryObjectExprClass;
  }
  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
};

/// CXXZeroInitValueExpr - [C++ 5.2.3p2]
/// Expression "T()" which creates a value-initialized rvalue of type
/// T, which is either a non-class type or a class type without any
/// user-defined constructors.
///
class CXXZeroInitValueExpr : public Expr {
  SourceLocation TyBeginLoc;
  SourceLocation RParenLoc;

public:
  CXXZeroInitValueExpr(QualType ty, SourceLocation tyBeginLoc,
                       SourceLocation rParenLoc ) :
    Expr(CXXZeroInitValueExprClass, ty, false, false),
    TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}

  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
  SourceLocation getRParenLoc() const { return RParenLoc; }

  /// @brief Whether this initialization expression was
  /// implicitly-generated.
  bool isImplicit() const {
    return TyBeginLoc.isInvalid() && RParenLoc.isInvalid();
  }

  virtual SourceRange getSourceRange() const {
    return SourceRange(TyBeginLoc, RParenLoc);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXZeroInitValueExprClass;
  }
  static bool classof(const CXXZeroInitValueExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// CXXNewExpr - A new expression for memory allocation and constructor calls,
/// e.g: "new CXXNewExpr(foo)".
class CXXNewExpr : public Expr {
  // Was the usage ::new, i.e. is the global new to be used?
  bool GlobalNew : 1;
  // Was the form (type-id) used? Otherwise, it was new-type-id.
  bool ParenTypeId : 1;
  // Is there an initializer? If not, built-ins are uninitialized, else they're
  // value-initialized.
  bool Initializer : 1;
  // Do we allocate an array? If so, the first SubExpr is the size expression.
  bool Array : 1;
  // The number of placement new arguments.
  unsigned NumPlacementArgs : 14;
  // The number of constructor arguments. This may be 1 even for non-class
  // types; use the pseudo copy constructor.
  unsigned NumConstructorArgs : 14;
  // Contains an optional array size expression, any number of optional
  // placement arguments, and any number of optional constructor arguments,
  // in that order.
  Stmt **SubExprs;
  // Points to the allocation function used.
  FunctionDecl *OperatorNew;
  // Points to the deallocation function used in case of error. May be null.
  FunctionDecl *OperatorDelete;
  // Points to the constructor used. Cannot be null if AllocType is a record;
  // it would still point at the default constructor (even an implicit one).
  // Must be null for all other types.
  CXXConstructorDecl *Constructor;

  SourceLocation StartLoc;
  SourceLocation EndLoc;

public:
  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
             Expr **placementArgs, unsigned numPlaceArgs, bool ParenTypeId,
             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
             Expr **constructorArgs, unsigned numConsArgs,
             FunctionDecl *operatorDelete, QualType ty,
             SourceLocation startLoc, SourceLocation endLoc);
  
  virtual void DoDestroy(ASTContext &C);

  QualType getAllocatedType() const {
    assert(getType()->isPointerType());
    return getType()->getAs<PointerType>()->getPointeeType();
  }

  FunctionDecl *getOperatorNew() const { return OperatorNew; }
  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
  CXXConstructorDecl *getConstructor() const { return Constructor; }

  bool isArray() const { return Array; }
  Expr *getArraySize() {
    return Array ? cast<Expr>(SubExprs[0]) : 0;
  }
  const Expr *getArraySize() const {
    return Array ? cast<Expr>(SubExprs[0]) : 0;
  }

  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
  Expr *getPlacementArg(unsigned i) {
    assert(i < NumPlacementArgs && "Index out of range");
    return cast<Expr>(SubExprs[Array + i]);
  }
  const Expr *getPlacementArg(unsigned i) const {
    assert(i < NumPlacementArgs && "Index out of range");
    return cast<Expr>(SubExprs[Array + i]);
  }

  bool isGlobalNew() const { return GlobalNew; }
  bool isParenTypeId() const { return ParenTypeId; }
  bool hasInitializer() const { return Initializer; }

  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
  Expr *getConstructorArg(unsigned i) {
    assert(i < NumConstructorArgs && "Index out of range");
    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
  }
  const Expr *getConstructorArg(unsigned i) const {
    assert(i < NumConstructorArgs && "Index out of range");
    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
  }

  typedef ExprIterator arg_iterator;
  typedef ConstExprIterator const_arg_iterator;

  arg_iterator placement_arg_begin() {
    return SubExprs + Array;
  }
  arg_iterator placement_arg_end() {
    return SubExprs + Array + getNumPlacementArgs();
  }
  const_arg_iterator placement_arg_begin() const {
    return SubExprs + Array;
  }
  const_arg_iterator placement_arg_end() const {
    return SubExprs + Array + getNumPlacementArgs();
  }

  arg_iterator constructor_arg_begin() {
    return SubExprs + Array + getNumPlacementArgs();
  }
  arg_iterator constructor_arg_end() {
    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
  }
  const_arg_iterator constructor_arg_begin() const {
    return SubExprs + Array + getNumPlacementArgs();
  }
  const_arg_iterator constructor_arg_end() const {
    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
  }

  virtual SourceRange getSourceRange() const {
    return SourceRange(StartLoc, EndLoc);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXNewExprClass;
  }
  static bool classof(const CXXNewExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
/// calls, e.g. "delete[] pArray".
class CXXDeleteExpr : public Expr {
  // Is this a forced global delete, i.e. "::delete"?
  bool GlobalDelete : 1;
  // Is this the array form of delete, i.e. "delete[]"?
  bool ArrayForm : 1;
  // Points to the operator delete overload that is used. Could be a member.
  FunctionDecl *OperatorDelete;
  // The pointer expression to be deleted.
  Stmt *Argument;
  // Location of the expression.
  SourceLocation Loc;
public:
  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
    : Expr(CXXDeleteExprClass, ty, false, false), GlobalDelete(globalDelete),
      ArrayForm(arrayForm), OperatorDelete(operatorDelete), Argument(arg),
      Loc(loc) { }

  bool isGlobalDelete() const { return GlobalDelete; }
  bool isArrayForm() const { return ArrayForm; }

  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }

  Expr *getArgument() { return cast<Expr>(Argument); }
  const Expr *getArgument() const { return cast<Expr>(Argument); }

  virtual SourceRange getSourceRange() const {
    return SourceRange(Loc, Argument->getLocEnd());
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDeleteExprClass;
  }
  static bool classof(const CXXDeleteExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// \brief Structure used to store the type being destroyed by a 
/// pseudo-destructor expression.
class PseudoDestructorTypeStorage {
  /// \brief Either the type source information or the name of the type, if 
  /// it couldn't be resolved due to type-dependence.
  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
  
  /// \brief The starting source location of the pseudo-destructor type.
  SourceLocation Location;
  
public:
  PseudoDestructorTypeStorage() { }
  
  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
    : Type(II), Location(Loc) { }
  
  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
  
  TypeSourceInfo *getTypeSourceInfo() const { 
    return Type.dyn_cast<TypeSourceInfo *>(); 
  }
  
  IdentifierInfo *getIdentifier() const {
    return Type.dyn_cast<IdentifierInfo *>();
  }
  
  SourceLocation getLocation() const { return Location; }
};
  
/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
///
/// A pseudo-destructor is an expression that looks like a member access to a
/// destructor of a scalar type, except that scalar types don't have 
/// destructors. For example:
///
/// \code
/// typedef int T;
/// void f(int *p) {
///   p->T::~T();
/// }
/// \endcode
///
/// Pseudo-destructors typically occur when instantiating templates such as:
/// 
/// \code
/// template<typename T>
/// void destroy(T* ptr) {
///   ptr->T::~T();
/// }
/// \endcode
///
/// for scalar types. A pseudo-destructor expression has no run-time semantics
/// beyond evaluating the base expression.
class CXXPseudoDestructorExpr : public Expr {
  /// \brief The base expression (that is being destroyed).
  Stmt *Base;

  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
  /// period ('.').
  bool IsArrow : 1;

  /// \brief The location of the '.' or '->' operator.
  SourceLocation OperatorLoc;

  /// \brief The nested-name-specifier that follows the operator, if present.
  NestedNameSpecifier *Qualifier;

  /// \brief The source range that covers the nested-name-specifier, if
  /// present.
  SourceRange QualifierRange;

  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
  /// expression.
  TypeSourceInfo *ScopeType;
  
  /// \brief The location of the '::' in a qualified pseudo-destructor 
  /// expression.
  SourceLocation ColonColonLoc;
  
  /// \brief The location of the '~'.
  SourceLocation TildeLoc;
  
  /// \brief The type being destroyed, or its name if we were unable to 
  /// resolve the name.
  PseudoDestructorTypeStorage DestroyedType;

public:
  CXXPseudoDestructorExpr(ASTContext &Context,
                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
                          NestedNameSpecifier *Qualifier,
                          SourceRange QualifierRange,
                          TypeSourceInfo *ScopeType,
                          SourceLocation ColonColonLoc,
                          SourceLocation TildeLoc,
                          PseudoDestructorTypeStorage DestroyedType)
    : Expr(CXXPseudoDestructorExprClass,
           Context.getPointerType(Context.getFunctionType(Context.VoidTy, 0, 0,
                                                          false, 0, false, 
                                                          false, 0, 0,
                                                      FunctionType::ExtInfo())),
           /*isTypeDependent=*/(Base->isTypeDependent() ||
            (DestroyedType.getTypeSourceInfo() &&
              DestroyedType.getTypeSourceInfo()->getType()->isDependentType())),
           /*isValueDependent=*/Base->isValueDependent()),
      Base(static_cast<Stmt *>(Base)), IsArrow(isArrow),
      OperatorLoc(OperatorLoc), Qualifier(Qualifier),
      QualifierRange(QualifierRange), 
      ScopeType(ScopeType), ColonColonLoc(ColonColonLoc), TildeLoc(TildeLoc),
      DestroyedType(DestroyedType) { }

  void setBase(Expr *E) { Base = E; }
  Expr *getBase() const { return cast<Expr>(Base); }

  /// \brief Determines whether this member expression actually had
  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
  /// x->Base::foo.
  bool hasQualifier() const { return Qualifier != 0; }

  /// \brief If the member name was qualified, retrieves the source range of
  /// the nested-name-specifier that precedes the member name. Otherwise,
  /// returns an empty source range.
  SourceRange getQualifierRange() const { return QualifierRange; }

  /// \brief If the member name was qualified, retrieves the
  /// nested-name-specifier that precedes the member name. Otherwise, returns
  /// NULL.
  NestedNameSpecifier *getQualifier() const { return Qualifier; }

  /// \brief Determine whether this pseudo-destructor expression was written
  /// using an '->' (otherwise, it used a '.').
  bool isArrow() const { return IsArrow; }
  void setArrow(bool A) { IsArrow = A; }

  /// \brief Retrieve the location of the '.' or '->' operator.
  SourceLocation getOperatorLoc() const { return OperatorLoc; }

  /// \brief Retrieve the scope type in a qualified pseudo-destructor 
  /// expression.
  ///
  /// Pseudo-destructor expressions can have extra qualification within them
  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
  /// Here, if the object type of the expression is (or may be) a scalar type,
  /// \p T may also be a scalar type and, therefore, cannot be part of a 
  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
  /// destructor expression.
  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
  
  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
  /// expression.
  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
  
  /// \brief Retrieve the location of the '~'.
  SourceLocation getTildeLoc() const { return TildeLoc; }
  
  /// \brief Retrieve the source location information for the type
  /// being destroyed.
  ///
  /// This type-source information is available for non-dependent 
  /// pseudo-destructor expressions and some dependent pseudo-destructor
  /// expressions. Returns NULL if we only have the identifier for a
  /// dependent pseudo-destructor expression.
  TypeSourceInfo *getDestroyedTypeInfo() const { 
    return DestroyedType.getTypeSourceInfo(); 
  }
  
  /// \brief In a dependent pseudo-destructor expression for which we do not
  /// have full type information on the destroyed type, provides the name
  /// of the destroyed type.
  IdentifierInfo *getDestroyedTypeIdentifier() const {
    return DestroyedType.getIdentifier();
  }
  
  /// \brief Retrieve the type being destroyed.
  QualType getDestroyedType() const;
  
  /// \brief Retrieve the starting location of the type being destroyed.
  SourceLocation getDestroyedTypeLoc() const { 
    return DestroyedType.getLocation(); 
  }

  virtual SourceRange getSourceRange() const;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXPseudoDestructorExprClass;
  }
  static bool classof(const CXXPseudoDestructorExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
/// implementation of TR1/C++0x type trait templates.
/// Example:
/// __is_pod(int) == true
/// __is_enum(std::string) == false
class UnaryTypeTraitExpr : public Expr {
  /// UTT - The trait.
  UnaryTypeTrait UTT;

  /// Loc - The location of the type trait keyword.
  SourceLocation Loc;

  /// RParen - The location of the closing paren.
  SourceLocation RParen;

  /// QueriedType - The type we're testing.
  QualType QueriedType;

public:
  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt, QualType queried,
                     SourceLocation rparen, QualType ty)
    : Expr(UnaryTypeTraitExprClass, ty, false, queried->isDependentType()),
      UTT(utt), Loc(loc), RParen(rparen), QueriedType(queried) { }

  virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}

  UnaryTypeTrait getTrait() const { return UTT; }

  QualType getQueriedType() const { return QueriedType; }

  bool EvaluateTrait(ASTContext&) const;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == UnaryTypeTraitExprClass;
  }
  static bool classof(const UnaryTypeTraitExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// \brief A reference to an overloaded function set, either an
/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
class OverloadExpr : public Expr {
  /// The results.  These are undesugared, which is to say, they may
  /// include UsingShadowDecls.  Access is relative to the naming
  /// class.
  UnresolvedSet<4> Results;

  /// The common name of these declarations.
  DeclarationName Name;

  /// The scope specifier, if any.
  NestedNameSpecifier *Qualifier;
  
  /// The source range of the scope specifier.
  SourceRange QualifierRange;

  /// The location of the name.
  SourceLocation NameLoc;

  /// True if the name was a template-id.
  bool HasExplicitTemplateArgs;

protected:
  OverloadExpr(StmtClass K, QualType T, bool Dependent,
               NestedNameSpecifier *Qualifier, SourceRange QRange,
               DeclarationName Name, SourceLocation NameLoc,
               bool HasTemplateArgs)
    : Expr(K, T, Dependent, Dependent),
      Name(Name), Qualifier(Qualifier), QualifierRange(QRange),
      NameLoc(NameLoc), HasExplicitTemplateArgs(HasTemplateArgs)
  {}

public:
  /// Computes whether an unresolved lookup on the given declarations
  /// and optional template arguments is type- and value-dependent.
  static bool ComputeDependence(UnresolvedSetIterator Begin,
                                UnresolvedSetIterator End,
                                const TemplateArgumentListInfo *Args);

  /// Finds the overloaded expression in the given expression of
  /// OverloadTy.
  ///
  /// \return the expression (which must be there) and true if it is
  /// within an address-of operator.
  static llvm::PointerIntPair<OverloadExpr*,1> find(Expr *E) {
    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));

    bool op = false;
    E = E->IgnoreParens();
    if (isa<UnaryOperator>(E))
      op = true, E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
    return llvm::PointerIntPair<OverloadExpr*,1>(cast<OverloadExpr>(E), op);
  }

  void addDecls(UnresolvedSetIterator Begin, UnresolvedSetIterator End) {
    Results.append(Begin, End);
  }

  typedef UnresolvedSetImpl::iterator decls_iterator;
  decls_iterator decls_begin() const { return Results.begin(); }
  decls_iterator decls_end() const { return Results.end(); }

  /// Gets the decls as an unresolved set.
  const UnresolvedSetImpl &getDecls() { return Results; }

  /// Gets the number of declarations in the unresolved set.
  unsigned getNumDecls() const { return Results.size(); }

  /// Gets the name looked up.
  DeclarationName getName() const { return Name; }
  void setName(DeclarationName N) { Name = N; }

  /// Gets the location of the name.
  SourceLocation getNameLoc() const { return NameLoc; }
  void setNameLoc(SourceLocation Loc) { NameLoc = Loc; }

  /// Fetches the nested-name qualifier, if one was given.
  NestedNameSpecifier *getQualifier() const { return Qualifier; }

  /// Fetches the range of the nested-name qualifier.
  SourceRange getQualifierRange() const { return QualifierRange; }

  /// \brief Determines whether this expression had an explicit
  /// template argument list, e.g. f<int>.
  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }

  ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below

  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
  }

  ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
    if (hasExplicitTemplateArgs())
      return &getExplicitTemplateArgs();
    return 0;
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == UnresolvedLookupExprClass ||
           T->getStmtClass() == UnresolvedMemberExprClass;
  }
  static bool classof(const OverloadExpr *) { return true; }
};

/// \brief A reference to a name which we were able to look up during
/// parsing but could not resolve to a specific declaration.  This
/// arises in several ways:
///   * we might be waiting for argument-dependent lookup
///   * the name might resolve to an overloaded function
/// and eventually:
///   * the lookup might have included a function template
/// These never include UnresolvedUsingValueDecls, which are always
/// class members and therefore appear only in
/// UnresolvedMemberLookupExprs.
class UnresolvedLookupExpr : public OverloadExpr {
  /// True if these lookup results should be extended by
  /// argument-dependent lookup if this is the operand of a function
  /// call.
  bool RequiresADL;

  /// True if these lookup results are overloaded.  This is pretty
  /// trivially rederivable if we urgently need to kill this field.
  bool Overloaded;

  /// The naming class (C++ [class.access.base]p5) of the lookup, if
  /// any.  This can generally be recalculated from the context chain,
  /// but that can be fairly expensive for unqualified lookups.  If we
  /// want to improve memory use here, this could go in a union
  /// against the qualified-lookup bits.
  CXXRecordDecl *NamingClass;

  UnresolvedLookupExpr(QualType T, bool Dependent, CXXRecordDecl *NamingClass,
                       NestedNameSpecifier *Qualifier, SourceRange QRange,
                       DeclarationName Name, SourceLocation NameLoc,
                       bool RequiresADL, bool Overloaded, bool HasTemplateArgs)
    : OverloadExpr(UnresolvedLookupExprClass, T, Dependent, Qualifier, QRange,
                   Name, NameLoc, HasTemplateArgs),
      RequiresADL(RequiresADL), Overloaded(Overloaded), NamingClass(NamingClass)
  {}

public:
  static UnresolvedLookupExpr *Create(ASTContext &C,
                                      bool Dependent,
                                      CXXRecordDecl *NamingClass,
                                      NestedNameSpecifier *Qualifier,
                                      SourceRange QualifierRange,
                                      DeclarationName Name,
                                      SourceLocation NameLoc,
                                      bool ADL, bool Overloaded) {
    return new(C) UnresolvedLookupExpr(Dependent ? C.DependentTy : C.OverloadTy,
                                       Dependent, NamingClass,
                                       Qualifier, QualifierRange,
                                       Name, NameLoc, ADL, Overloaded, false);
  }

  static UnresolvedLookupExpr *Create(ASTContext &C,
                                      bool Dependent,
                                      CXXRecordDecl *NamingClass,
                                      NestedNameSpecifier *Qualifier,
                                      SourceRange QualifierRange,
                                      DeclarationName Name,
                                      SourceLocation NameLoc,
                                      bool ADL,
                                      const TemplateArgumentListInfo &Args);

  /// True if this declaration should be extended by
  /// argument-dependent lookup.
  bool requiresADL() const { return RequiresADL; }

  /// True if this lookup is overloaded.
  bool isOverloaded() const { return Overloaded; }

  /// Gets the 'naming class' (in the sense of C++0x
  /// [class.access.base]p5) of the lookup.  This is the scope
  /// that was looked in to find these results.
  CXXRecordDecl *getNamingClass() const { return NamingClass; }

  // Note that, inconsistently with the explicit-template-argument AST
  // nodes, users are *forbidden* from calling these methods on objects
  // without explicit template arguments.

  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
    assert(hasExplicitTemplateArgs());
    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
  }

  /// Gets a reference to the explicit template argument list.
  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
    assert(hasExplicitTemplateArgs());
    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
  }

  /// \brief Copies the template arguments (if present) into the given
  /// structure.
  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    getExplicitTemplateArgs().copyInto(List);
  }
  
  SourceLocation getLAngleLoc() const {
    return getExplicitTemplateArgs().LAngleLoc;
  }

  SourceLocation getRAngleLoc() const {
    return getExplicitTemplateArgs().RAngleLoc;
  }

  TemplateArgumentLoc const *getTemplateArgs() const {
    return getExplicitTemplateArgs().getTemplateArgs();
  }

  unsigned getNumTemplateArgs() const {
    return getExplicitTemplateArgs().NumTemplateArgs;
  }

  virtual SourceRange getSourceRange() const {
    SourceRange Range(getNameLoc());
    if (getQualifier()) Range.setBegin(getQualifierRange().getBegin());
    if (hasExplicitTemplateArgs()) Range.setEnd(getRAngleLoc());
    return Range;
  }

  virtual StmtIterator child_begin();
  virtual StmtIterator child_end();

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == UnresolvedLookupExprClass;
  }
  static bool classof(const UnresolvedLookupExpr *) { return true; }
};

/// \brief A qualified reference to a name whose declaration cannot
/// yet be resolved.
///
/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
/// it expresses a reference to a declaration such as
/// X<T>::value. The difference, however, is that an
/// DependentScopeDeclRefExpr node is used only within C++ templates when
/// the qualification (e.g., X<T>::) refers to a dependent type. In
/// this case, X<T>::value cannot resolve to a declaration because the
/// declaration will differ from on instantiation of X<T> to the
/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
/// qualifier (X<T>::) and the name of the entity being referenced
/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
/// declaration can be found.
class DependentScopeDeclRefExpr : public Expr {
  /// The name of the entity we will be referencing.
  DeclarationName Name;

  /// Location of the name of the declaration we're referencing.
  SourceLocation Loc;

  /// QualifierRange - The source range that covers the
  /// nested-name-specifier.
  SourceRange QualifierRange;

  /// \brief The nested-name-specifier that qualifies this unresolved
  /// declaration name.
  NestedNameSpecifier *Qualifier;

  /// \brief Whether the name includes explicit template arguments.
  bool HasExplicitTemplateArgs;

  DependentScopeDeclRefExpr(QualType T,
                            NestedNameSpecifier *Qualifier,
                            SourceRange QualifierRange,
                            DeclarationName Name,
                            SourceLocation NameLoc,
                            bool HasExplicitTemplateArgs)
    : Expr(DependentScopeDeclRefExprClass, T, true, true),
      Name(Name), Loc(NameLoc),
      QualifierRange(QualifierRange), Qualifier(Qualifier),
      HasExplicitTemplateArgs(HasExplicitTemplateArgs)
  {}

public:
  static DependentScopeDeclRefExpr *Create(ASTContext &C,
                                           NestedNameSpecifier *Qualifier,
                                           SourceRange QualifierRange,
                                           DeclarationName Name,
                                           SourceLocation NameLoc,
                              const TemplateArgumentListInfo *TemplateArgs = 0);

  /// \brief Retrieve the name that this expression refers to.
  DeclarationName getDeclName() const { return Name; }

  /// \brief Retrieve the location of the name within the expression.
  SourceLocation getLocation() const { return Loc; }

  /// \brief Retrieve the source range of the nested-name-specifier.
  SourceRange getQualifierRange() const { return QualifierRange; }

  /// \brief Retrieve the nested-name-specifier that qualifies this
  /// declaration.
  NestedNameSpecifier *getQualifier() const { return Qualifier; }

  /// Determines whether this lookup had explicit template arguments.
  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }

  // Note that, inconsistently with the explicit-template-argument AST
  // nodes, users are *forbidden* from calling these methods on objects
  // without explicit template arguments.

  /// Gets a reference to the explicit template argument list.
  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
    assert(hasExplicitTemplateArgs());
    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
  }

  /// \brief Copies the template arguments (if present) into the given
  /// structure.
  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    getExplicitTemplateArgs().copyInto(List);
  }
  
  SourceLocation getLAngleLoc() const {
    return getExplicitTemplateArgs().LAngleLoc;
  }

  SourceLocation getRAngleLoc() const {
    return getExplicitTemplateArgs().RAngleLoc;
  }

  TemplateArgumentLoc const *getTemplateArgs() const {
    return getExplicitTemplateArgs().getTemplateArgs();
  }

  unsigned getNumTemplateArgs() const {
    return getExplicitTemplateArgs().NumTemplateArgs;
  }

  virtual SourceRange getSourceRange() const {
    SourceRange Range(QualifierRange.getBegin(), getLocation());
    if (hasExplicitTemplateArgs())
      Range.setEnd(getRAngleLoc());
    return Range;
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == DependentScopeDeclRefExprClass;
  }
  static bool classof(const DependentScopeDeclRefExpr *) { return true; }

  virtual StmtIterator child_begin();
  virtual StmtIterator child_end();
};

class CXXExprWithTemporaries : public Expr {
  Stmt *SubExpr;

  CXXTemporary **Temps;
  unsigned NumTemps;

  CXXExprWithTemporaries(Expr *SubExpr, CXXTemporary **Temps,
                         unsigned NumTemps);
  ~CXXExprWithTemporaries();

protected:
  virtual void DoDestroy(ASTContext &C);

public:
  static CXXExprWithTemporaries *Create(ASTContext &C, Expr *SubExpr,
                                        CXXTemporary **Temps, 
                                        unsigned NumTemps);

  unsigned getNumTemporaries() const { return NumTemps; }
  CXXTemporary *getTemporary(unsigned i) {
    assert(i < NumTemps && "Index out of range");
    return Temps[i];
  }
  const CXXTemporary *getTemporary(unsigned i) const {
    return const_cast<CXXExprWithTemporaries*>(this)->getTemporary(i);
  }

  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
  void setSubExpr(Expr *E) { SubExpr = E; }

  virtual SourceRange getSourceRange() const { 
    return SubExpr->getSourceRange();
  }

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXExprWithTemporariesClass;
  }
  static bool classof(const CXXExprWithTemporaries *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// \brief Describes an explicit type conversion that uses functional
/// notion but could not be resolved because one or more arguments are
/// type-dependent.
///
/// The explicit type conversions expressed by
/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
/// where \c T is some type and \c a1, a2, ..., aN are values, and
/// either \C T is a dependent type or one or more of the \c a's is
/// type-dependent. For example, this would occur in a template such
/// as:
///
/// \code
///   template<typename T, typename A1>
///   inline T make_a(const A1& a1) {
///     return T(a1);
///   }
/// \endcode
///
/// When the returned expression is instantiated, it may resolve to a
/// constructor call, conversion function call, or some kind of type
/// conversion.
class CXXUnresolvedConstructExpr : public Expr {
  /// \brief The starting location of the type
  SourceLocation TyBeginLoc;

  /// \brief The type being constructed.
  QualType Type;

  /// \brief The location of the left parentheses ('(').
  SourceLocation LParenLoc;

  /// \brief The location of the right parentheses (')').
  SourceLocation RParenLoc;

  /// \brief The number of arguments used to construct the type.
  unsigned NumArgs;

  CXXUnresolvedConstructExpr(SourceLocation TyBegin,
                             QualType T,
                             SourceLocation LParenLoc,
                             Expr **Args,
                             unsigned NumArgs,
                             SourceLocation RParenLoc);

public:
  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
                                            SourceLocation TyBegin,
                                            QualType T,
                                            SourceLocation LParenLoc,
                                            Expr **Args,
                                            unsigned NumArgs,
                                            SourceLocation RParenLoc);

  /// \brief Retrieve the source location where the type begins.
  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }

  /// \brief Retrieve the type that is being constructed, as specified
  /// in the source code.
  QualType getTypeAsWritten() const { return Type; }
  void setTypeAsWritten(QualType T) { Type = T; }

  /// \brief Retrieve the location of the left parentheses ('(') that
  /// precedes the argument list.
  SourceLocation getLParenLoc() const { return LParenLoc; }
  void setLParenLoc(SourceLocation L) { LParenLoc = L; }

  /// \brief Retrieve the location of the right parentheses (')') that
  /// follows the argument list.
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  /// \brief Retrieve the number of arguments.
  unsigned arg_size() const { return NumArgs; }

  typedef Expr** arg_iterator;
  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
  arg_iterator arg_end() { return arg_begin() + NumArgs; }

  typedef const Expr* const * const_arg_iterator;
  const_arg_iterator arg_begin() const {
    return reinterpret_cast<const Expr* const *>(this + 1);
  }
  const_arg_iterator arg_end() const {
    return arg_begin() + NumArgs;
  }

  Expr *getArg(unsigned I) {
    assert(I < NumArgs && "Argument index out-of-range");
    return *(arg_begin() + I);
  }

  const Expr *getArg(unsigned I) const {
    assert(I < NumArgs && "Argument index out-of-range");
    return *(arg_begin() + I);
  }

  virtual SourceRange getSourceRange() const {
    return SourceRange(TyBeginLoc, RParenLoc);
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
  }
  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// \brief Represents a C++ member access expression where the actual
/// member referenced could not be resolved because the base
/// expression or the member name was dependent.
///
/// Like UnresolvedMemberExprs, these can be either implicit or
/// explicit accesses.  It is only possible to get one of these with
/// an implicit access if a qualifier is provided.
class CXXDependentScopeMemberExpr : public Expr {
  /// \brief The expression for the base pointer or class reference,
  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
  Stmt *Base;

  /// \brief The type of the base expression.  Never null, even for
  /// implicit accesses.
  QualType BaseType;

  /// \brief Whether this member expression used the '->' operator or
  /// the '.' operator.
  bool IsArrow : 1;

  /// \brief Whether this member expression has explicitly-specified template
  /// arguments.
  bool HasExplicitTemplateArgs : 1;

  /// \brief The location of the '->' or '.' operator.
  SourceLocation OperatorLoc;

  /// \brief The nested-name-specifier that precedes the member name, if any.
  NestedNameSpecifier *Qualifier;

  /// \brief The source range covering the nested name specifier.
  SourceRange QualifierRange;

  /// \brief In a qualified member access expression such as t->Base::f, this
  /// member stores the resolves of name lookup in the context of the member
  /// access expression, to be used at instantiation time.
  ///
  /// FIXME: This member, along with the Qualifier and QualifierRange, could
  /// be stuck into a structure that is optionally allocated at the end of
  /// the CXXDependentScopeMemberExpr, to save space in the common case.
  NamedDecl *FirstQualifierFoundInScope;

  /// \brief The member to which this member expression refers, which
  /// can be name, overloaded operator, or destructor.
  /// FIXME: could also be a template-id
  DeclarationName Member;

  /// \brief The location of the member name.
  SourceLocation MemberLoc;

  /// \brief Retrieve the explicit template argument list that followed the
  /// member template name, if any.
  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
    assert(HasExplicitTemplateArgs);
    return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
  }

  /// \brief Retrieve the explicit template argument list that followed the
  /// member template name, if any.
  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
    return const_cast<CXXDependentScopeMemberExpr *>(this)
             ->getExplicitTemplateArgumentList();
  }

  CXXDependentScopeMemberExpr(ASTContext &C,
                          Expr *Base, QualType BaseType, bool IsArrow,
                          SourceLocation OperatorLoc,
                          NestedNameSpecifier *Qualifier,
                          SourceRange QualifierRange,
                          NamedDecl *FirstQualifierFoundInScope,
                          DeclarationName Member,
                          SourceLocation MemberLoc,
                          const TemplateArgumentListInfo *TemplateArgs);

public:
  CXXDependentScopeMemberExpr(ASTContext &C,
                          Expr *Base, QualType BaseType,
                          bool IsArrow,
                          SourceLocation OperatorLoc,
                          NestedNameSpecifier *Qualifier,
                          SourceRange QualifierRange,
                          NamedDecl *FirstQualifierFoundInScope,
                          DeclarationName Member,
                          SourceLocation MemberLoc)
  : Expr(CXXDependentScopeMemberExprClass, C.DependentTy, true, true),
    Base(Base), BaseType(BaseType), IsArrow(IsArrow),
    HasExplicitTemplateArgs(false), OperatorLoc(OperatorLoc),
    Qualifier(Qualifier), QualifierRange(QualifierRange),
    FirstQualifierFoundInScope(FirstQualifierFoundInScope),
    Member(Member), MemberLoc(MemberLoc) { }

  static CXXDependentScopeMemberExpr *
  Create(ASTContext &C,
         Expr *Base, QualType BaseType, bool IsArrow,
         SourceLocation OperatorLoc,
         NestedNameSpecifier *Qualifier,
         SourceRange QualifierRange,
         NamedDecl *FirstQualifierFoundInScope,
         DeclarationName Member,
         SourceLocation MemberLoc,
         const TemplateArgumentListInfo *TemplateArgs);

  /// \brief True if this is an implicit access, i.e. one in which the
  /// member being accessed was not written in the source.  The source
  /// location of the operator is invalid in this case.
  bool isImplicitAccess() const { return Base == 0; }

  /// \brief Retrieve the base object of this member expressions,
  /// e.g., the \c x in \c x.m.
  Expr *getBase() const {
    assert(!isImplicitAccess());
    return cast<Expr>(Base);
  }
  void setBase(Expr *E) { Base = E; }

  QualType getBaseType() const { return BaseType; }

  /// \brief Determine whether this member expression used the '->'
  /// operator; otherwise, it used the '.' operator.
  bool isArrow() const { return IsArrow; }
  void setArrow(bool A) { IsArrow = A; }

  /// \brief Retrieve the location of the '->' or '.' operator.
  SourceLocation getOperatorLoc() const { return OperatorLoc; }
  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }

  /// \brief Retrieve the nested-name-specifier that qualifies the member
  /// name.
  NestedNameSpecifier *getQualifier() const { return Qualifier; }

  /// \brief Retrieve the source range covering the nested-name-specifier
  /// that qualifies the member name.
  SourceRange getQualifierRange() const { return QualifierRange; }

  /// \brief Retrieve the first part of the nested-name-specifier that was
  /// found in the scope of the member access expression when the member access
  /// was initially parsed.
  ///
  /// This function only returns a useful result when member access expression
  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
  /// returned by this function describes what was found by unqualified name
  /// lookup for the identifier "Base" within the scope of the member access
  /// expression itself. At template instantiation time, this information is
  /// combined with the results of name lookup into the type of the object
  /// expression itself (the class type of x).
  NamedDecl *getFirstQualifierFoundInScope() const {
    return FirstQualifierFoundInScope;
  }

  /// \brief Retrieve the name of the member that this expression
  /// refers to.
  DeclarationName getMember() const { return Member; }
  void setMember(DeclarationName N) { Member = N; }

  // \brief Retrieve the location of the name of the member that this
  // expression refers to.
  SourceLocation getMemberLoc() const { return MemberLoc; }
  void setMemberLoc(SourceLocation L) { MemberLoc = L; }

  /// \brief Determines whether this member expression actually had a C++
  /// template argument list explicitly specified, e.g., x.f<int>.
  bool hasExplicitTemplateArgs() const {
    return HasExplicitTemplateArgs;
  }

  /// \brief Copies the template arguments (if present) into the given
  /// structure.
  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    assert(HasExplicitTemplateArgs);
    getExplicitTemplateArgumentList()->copyInto(List);
  }

  /// \brief Retrieve the location of the left angle bracket following the
  /// member name ('<'), if any.
  SourceLocation getLAngleLoc() const {
    assert(HasExplicitTemplateArgs);
    return getExplicitTemplateArgumentList()->LAngleLoc;
  }

  /// \brief Retrieve the template arguments provided as part of this
  /// template-id.
  const TemplateArgumentLoc *getTemplateArgs() const {
    assert(HasExplicitTemplateArgs);
    return getExplicitTemplateArgumentList()->getTemplateArgs();
  }

  /// \brief Retrieve the number of template arguments provided as part of this
  /// template-id.
  unsigned getNumTemplateArgs() const {
    assert(HasExplicitTemplateArgs);
    return getExplicitTemplateArgumentList()->NumTemplateArgs;
  }

  /// \brief Retrieve the location of the right angle bracket following the
  /// template arguments ('>').
  SourceLocation getRAngleLoc() const {
    assert(HasExplicitTemplateArgs);
    return getExplicitTemplateArgumentList()->RAngleLoc;
  }

  virtual SourceRange getSourceRange() const {
    SourceRange Range;
    if (!isImplicitAccess())
      Range.setBegin(Base->getSourceRange().getBegin());
    else if (getQualifier())
      Range.setBegin(getQualifierRange().getBegin());
    else
      Range.setBegin(MemberLoc);

    if (hasExplicitTemplateArgs())
      Range.setEnd(getRAngleLoc());
    else
      Range.setEnd(MemberLoc);
    return Range;
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
  }
  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// \brief Represents a C++ member access expression for which lookup
/// produced a set of overloaded functions.
///
/// The member access may be explicit or implicit:
///    struct A {
///      int a, b;
///      int explicitAccess() { return this->a + this->A::b; }
///      int implicitAccess() { return a + A::b; }
///    };
///
/// In the final AST, an explicit access always becomes a MemberExpr.
/// An implicit access may become either a MemberExpr or a
/// DeclRefExpr, depending on whether the member is static.
class UnresolvedMemberExpr : public OverloadExpr {
  /// \brief Whether this member expression used the '->' operator or
  /// the '.' operator.
  bool IsArrow : 1;

  /// \brief Whether the lookup results contain an unresolved using
  /// declaration.
  bool HasUnresolvedUsing : 1;

  /// \brief The expression for the base pointer or class reference,
  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
  /// member expression
  Stmt *Base;

  /// \brief The type of the base expression;  never null.
  QualType BaseType;

  /// \brief The location of the '->' or '.' operator.
  SourceLocation OperatorLoc;

  UnresolvedMemberExpr(QualType T, bool Dependent,
                       bool HasUnresolvedUsing,
                       Expr *Base, QualType BaseType, bool IsArrow,
                       SourceLocation OperatorLoc,
                       NestedNameSpecifier *Qualifier,
                       SourceRange QualifierRange,
                       DeclarationName Member,
                       SourceLocation MemberLoc,
                       const TemplateArgumentListInfo *TemplateArgs);

public:
  static UnresolvedMemberExpr *
  Create(ASTContext &C, bool Dependent, bool HasUnresolvedUsing,
         Expr *Base, QualType BaseType, bool IsArrow,
         SourceLocation OperatorLoc,
         NestedNameSpecifier *Qualifier,
         SourceRange QualifierRange,
         DeclarationName Member,
         SourceLocation MemberLoc,
         const TemplateArgumentListInfo *TemplateArgs);

  /// \brief True if this is an implicit access, i.e. one in which the
  /// member being accessed was not written in the source.  The source
  /// location of the operator is invalid in this case.
  bool isImplicitAccess() const { return Base == 0; }

  /// \brief Retrieve the base object of this member expressions,
  /// e.g., the \c x in \c x.m.
  Expr *getBase() {
    assert(!isImplicitAccess());
    return cast<Expr>(Base);
  }
  const Expr *getBase() const {
    assert(!isImplicitAccess());
    return cast<Expr>(Base);
  }
  void setBase(Expr *E) { Base = E; }

  QualType getBaseType() const { return BaseType; }

  /// \brief Determine whether this member expression used the '->'
  /// operator; otherwise, it used the '.' operator.
  bool isArrow() const { return IsArrow; }
  void setArrow(bool A) { IsArrow = A; }

  /// \brief Retrieve the location of the '->' or '.' operator.
  SourceLocation getOperatorLoc() const { return OperatorLoc; }
  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }

  /// \brief Retrieves the naming class of this lookup.
  CXXRecordDecl *getNamingClass() const;

  /// \brief Retrieve the name of the member that this expression
  /// refers to.
  DeclarationName getMemberName() const { return getName(); }
  void setMemberName(DeclarationName N) { setName(N); }

  // \brief Retrieve the location of the name of the member that this
  // expression refers to.
  SourceLocation getMemberLoc() const { return getNameLoc(); }
  void setMemberLoc(SourceLocation L) { setNameLoc(L); }

  /// \brief Retrieve the explicit template argument list that followed the
  /// member template name.
  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
    assert(hasExplicitTemplateArgs());
    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
  }

  /// \brief Retrieve the explicit template argument list that followed the
  /// member template name, if any.
  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
    assert(hasExplicitTemplateArgs());
    return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
  }

  /// \brief Copies the template arguments into the given structure.
  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    getExplicitTemplateArgs().copyInto(List);
  }

  /// \brief Retrieve the location of the left angle bracket following
  /// the member name ('<').
  SourceLocation getLAngleLoc() const {
    return getExplicitTemplateArgs().LAngleLoc;
  }

  /// \brief Retrieve the template arguments provided as part of this
  /// template-id.
  const TemplateArgumentLoc *getTemplateArgs() const {
    return getExplicitTemplateArgs().getTemplateArgs();
  }

  /// \brief Retrieve the number of template arguments provided as
  /// part of this template-id.
  unsigned getNumTemplateArgs() const {
    return getExplicitTemplateArgs().NumTemplateArgs;
  }

  /// \brief Retrieve the location of the right angle bracket
  /// following the template arguments ('>').
  SourceLocation getRAngleLoc() const {
    return getExplicitTemplateArgs().RAngleLoc;
  }

  virtual SourceRange getSourceRange() const {
    SourceRange Range;
    if (!isImplicitAccess())
      Range.setBegin(Base->getSourceRange().getBegin());
    else if (getQualifier())
      Range.setBegin(getQualifierRange().getBegin());
    else
      Range.setBegin(getMemberLoc());

    if (hasExplicitTemplateArgs())
      Range.setEnd(getRAngleLoc());
    else
      Range.setEnd(getMemberLoc());
    return Range;
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == UnresolvedMemberExprClass;
  }
  static bool classof(const UnresolvedMemberExpr *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
  if (isa<UnresolvedLookupExpr>(this))
    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
  else
    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
}

}  // end namespace clang

#endif