aboutsummaryrefslogtreecommitdiff
path: root/include/clang/AST/ExprCXX.h
blob: 86cbfb2cd0b4c429d4af6475c49003f333fc867a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Defines the clang::Expr interface and subclasses for C++ expressions.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_AST_EXPRCXX_H
#define LLVM_CLANG_AST_EXPRCXX_H

#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/LambdaCapture.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/Basic/ExpressionTraits.h"
#include "clang/Basic/TypeTraits.h"
#include "llvm/Support/Compiler.h"

namespace clang {

class CXXTemporary;
class MSPropertyDecl;
class TemplateArgumentListInfo;
class UuidAttr;

//===--------------------------------------------------------------------===//
// C++ Expressions.
//===--------------------------------------------------------------------===//

/// \brief A call to an overloaded operator written using operator
/// syntax.
///
/// Represents a call to an overloaded operator written using operator
/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
/// normal call, this AST node provides better information about the
/// syntactic representation of the call.
///
/// In a C++ template, this expression node kind will be used whenever
/// any of the arguments are type-dependent. In this case, the
/// function itself will be a (possibly empty) set of functions and
/// function templates that were found by name lookup at template
/// definition time.
class CXXOperatorCallExpr : public CallExpr {
  /// \brief The overloaded operator.
  OverloadedOperatorKind Operator;
  SourceRange Range;

  // Record the FP_CONTRACT state that applies to this operator call. Only
  // meaningful for floating point types. For other types this value can be
  // set to false.
  unsigned FPContractable : 1;

  SourceRange getSourceRangeImpl() const LLVM_READONLY;
public:
  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
                      ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
                      SourceLocation operatorloc, bool fpContractable)
    : CallExpr(C, CXXOperatorCallExprClass, fn, args, t, VK, operatorloc),
      Operator(Op), FPContractable(fpContractable) {
    Range = getSourceRangeImpl();
  }
  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
    CallExpr(C, CXXOperatorCallExprClass, Empty) { }


  /// \brief Returns the kind of overloaded operator that this
  /// expression refers to.
  OverloadedOperatorKind getOperator() const { return Operator; }

  /// \brief Returns the location of the operator symbol in the expression.
  ///
  /// When \c getOperator()==OO_Call, this is the location of the right
  /// parentheses; when \c getOperator()==OO_Subscript, this is the location
  /// of the right bracket.
  SourceLocation getOperatorLoc() const { return getRParenLoc(); }

  SourceLocation getExprLoc() const LLVM_READONLY {
    return (Operator < OO_Plus || Operator >= OO_Arrow ||
            Operator == OO_PlusPlus || Operator == OO_MinusMinus)
               ? getLocStart()
               : getOperatorLoc();
  }

  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
  SourceRange getSourceRange() const { return Range; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXOperatorCallExprClass;
  }

  // Set the FP contractability status of this operator. Only meaningful for
  // operations on floating point types.
  void setFPContractable(bool FPC) { FPContractable = FPC; }

  // Get the FP contractability status of this operator. Only meaningful for
  // operations on floating point types.
  bool isFPContractable() const { return FPContractable; }

  friend class ASTStmtReader;
  friend class ASTStmtWriter;
};

/// Represents a call to a member function that
/// may be written either with member call syntax (e.g., "obj.func()"
/// or "objptr->func()") or with normal function-call syntax
/// ("func()") within a member function that ends up calling a member
/// function. The callee in either case is a MemberExpr that contains
/// both the object argument and the member function, while the
/// arguments are the arguments within the parentheses (not including
/// the object argument).
class CXXMemberCallExpr : public CallExpr {
public:
  CXXMemberCallExpr(ASTContext &C, Expr *fn, ArrayRef<Expr*> args,
                    QualType t, ExprValueKind VK, SourceLocation RP)
    : CallExpr(C, CXXMemberCallExprClass, fn, args, t, VK, RP) {}

  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
    : CallExpr(C, CXXMemberCallExprClass, Empty) { }

  /// \brief Retrieves the implicit object argument for the member call.
  ///
  /// For example, in "x.f(5)", this returns the sub-expression "x".
  Expr *getImplicitObjectArgument() const;

  /// \brief Retrieves the declaration of the called method.
  CXXMethodDecl *getMethodDecl() const;

  /// \brief Retrieves the CXXRecordDecl for the underlying type of
  /// the implicit object argument.
  ///
  /// Note that this is may not be the same declaration as that of the class
  /// context of the CXXMethodDecl which this function is calling.
  /// FIXME: Returns 0 for member pointer call exprs.
  CXXRecordDecl *getRecordDecl() const;

  SourceLocation getExprLoc() const LLVM_READONLY {
    SourceLocation CLoc = getCallee()->getExprLoc();
    if (CLoc.isValid())
      return CLoc;

    return getLocStart();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXMemberCallExprClass;
  }
};

/// \brief Represents a call to a CUDA kernel function.
class CUDAKernelCallExpr : public CallExpr {
private:
  enum { CONFIG, END_PREARG };

public:
  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
                     ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
                     SourceLocation RP)
      : CallExpr(C, CUDAKernelCallExprClass, fn, Config, args, t, VK, RP) {}

  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }

  const CallExpr *getConfig() const {
    return cast_or_null<CallExpr>(getPreArg(CONFIG));
  }
  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }

  /// \brief Sets the kernel configuration expression.
  ///
  /// Note that this method cannot be called if config has already been set to a
  /// non-null value.
  void setConfig(CallExpr *E) {
    assert(!getConfig() &&
           "Cannot call setConfig if config is not null");
    setPreArg(CONFIG, E);
    setInstantiationDependent(isInstantiationDependent() ||
                              E->isInstantiationDependent());
    setContainsUnexpandedParameterPack(containsUnexpandedParameterPack() ||
                                       E->containsUnexpandedParameterPack());
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CUDAKernelCallExprClass;
  }
};

/// \brief Abstract class common to all of the C++ "named"/"keyword" casts.
///
/// This abstract class is inherited by all of the classes
/// representing "named" casts: CXXStaticCastExpr for \c static_cast,
/// CXXDynamicCastExpr for \c dynamic_cast, CXXReinterpretCastExpr for
/// reinterpret_cast, and CXXConstCastExpr for \c const_cast.
class CXXNamedCastExpr : public ExplicitCastExpr {
private:
  SourceLocation Loc; // the location of the casting op
  SourceLocation RParenLoc; // the location of the right parenthesis
  SourceRange AngleBrackets; // range for '<' '>'

protected:
  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
                   CastKind kind, Expr *op, unsigned PathSize,
                   TypeSourceInfo *writtenTy, SourceLocation l,
                   SourceLocation RParenLoc,
                   SourceRange AngleBrackets)
    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
      RParenLoc(RParenLoc), AngleBrackets(AngleBrackets) {}

  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
    : ExplicitCastExpr(SC, Shell, PathSize) { }

  friend class ASTStmtReader;

public:
  const char *getCastName() const;

  /// \brief Retrieve the location of the cast operator keyword, e.g.,
  /// \c static_cast.
  SourceLocation getOperatorLoc() const { return Loc; }

  /// \brief Retrieve the location of the closing parenthesis.
  SourceLocation getRParenLoc() const { return RParenLoc; }

  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
  SourceRange getAngleBrackets() const LLVM_READONLY { return AngleBrackets; }

  static bool classof(const Stmt *T) {
    switch (T->getStmtClass()) {
    case CXXStaticCastExprClass:
    case CXXDynamicCastExprClass:
    case CXXReinterpretCastExprClass:
    case CXXConstCastExprClass:
      return true;
    default:
      return false;
    }
  }
};

/// \brief A C++ \c static_cast expression (C++ [expr.static.cast]).
///
/// This expression node represents a C++ static cast, e.g.,
/// \c static_cast<int>(1.0).
class CXXStaticCastExpr final
    : public CXXNamedCastExpr,
      private llvm::TrailingObjects<CXXStaticCastExpr, CXXBaseSpecifier *> {
  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
                    unsigned pathSize, TypeSourceInfo *writtenTy,
                    SourceLocation l, SourceLocation RParenLoc,
                    SourceRange AngleBrackets)
    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
                       writtenTy, l, RParenLoc, AngleBrackets) {}

  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }

public:
  static CXXStaticCastExpr *Create(const ASTContext &Context, QualType T,
                                   ExprValueKind VK, CastKind K, Expr *Op,
                                   const CXXCastPath *Path,
                                   TypeSourceInfo *Written, SourceLocation L,
                                   SourceLocation RParenLoc,
                                   SourceRange AngleBrackets);
  static CXXStaticCastExpr *CreateEmpty(const ASTContext &Context,
                                        unsigned PathSize);

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXStaticCastExprClass;
  }

  friend TrailingObjects;
  friend class CastExpr;
};

/// \brief A C++ @c dynamic_cast expression (C++ [expr.dynamic.cast]).
///
/// This expression node represents a dynamic cast, e.g.,
/// \c dynamic_cast<Derived*>(BasePtr). Such a cast may perform a run-time
/// check to determine how to perform the type conversion.
class CXXDynamicCastExpr final
    : public CXXNamedCastExpr,
      private llvm::TrailingObjects<CXXDynamicCastExpr, CXXBaseSpecifier *> {
  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
                     SourceLocation l, SourceLocation RParenLoc,
                     SourceRange AngleBrackets)
    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
                       writtenTy, l, RParenLoc, AngleBrackets) {}

  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }

public:
  static CXXDynamicCastExpr *Create(const ASTContext &Context, QualType T,
                                    ExprValueKind VK, CastKind Kind, Expr *Op,
                                    const CXXCastPath *Path,
                                    TypeSourceInfo *Written, SourceLocation L,
                                    SourceLocation RParenLoc,
                                    SourceRange AngleBrackets);

  static CXXDynamicCastExpr *CreateEmpty(const ASTContext &Context,
                                         unsigned pathSize);

  bool isAlwaysNull() const;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDynamicCastExprClass;
  }

  friend TrailingObjects;
  friend class CastExpr;
};

/// \brief A C++ @c reinterpret_cast expression (C++ [expr.reinterpret.cast]).
///
/// This expression node represents a reinterpret cast, e.g.,
/// @c reinterpret_cast<int>(VoidPtr).
///
/// A reinterpret_cast provides a differently-typed view of a value but
/// (in Clang, as in most C++ implementations) performs no actual work at
/// run time.
class CXXReinterpretCastExpr final
    : public CXXNamedCastExpr,
      private llvm::TrailingObjects<CXXReinterpretCastExpr,
                                    CXXBaseSpecifier *> {
  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
                         Expr *op, unsigned pathSize,
                         TypeSourceInfo *writtenTy, SourceLocation l,
                         SourceLocation RParenLoc,
                         SourceRange AngleBrackets)
    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
                       pathSize, writtenTy, l, RParenLoc, AngleBrackets) {}

  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }

public:
  static CXXReinterpretCastExpr *Create(const ASTContext &Context, QualType T,
                                        ExprValueKind VK, CastKind Kind,
                                        Expr *Op, const CXXCastPath *Path,
                                 TypeSourceInfo *WrittenTy, SourceLocation L,
                                        SourceLocation RParenLoc,
                                        SourceRange AngleBrackets);
  static CXXReinterpretCastExpr *CreateEmpty(const ASTContext &Context,
                                             unsigned pathSize);

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXReinterpretCastExprClass;
  }

  friend TrailingObjects;
  friend class CastExpr;
};

/// \brief A C++ \c const_cast expression (C++ [expr.const.cast]).
///
/// This expression node represents a const cast, e.g.,
/// \c const_cast<char*>(PtrToConstChar).
///
/// A const_cast can remove type qualifiers but does not change the underlying
/// value.
class CXXConstCastExpr final
    : public CXXNamedCastExpr,
      private llvm::TrailingObjects<CXXConstCastExpr, CXXBaseSpecifier *> {
  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
                   TypeSourceInfo *writtenTy, SourceLocation l,
                   SourceLocation RParenLoc, SourceRange AngleBrackets)
    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
                       0, writtenTy, l, RParenLoc, AngleBrackets) {}

  explicit CXXConstCastExpr(EmptyShell Empty)
    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }

public:
  static CXXConstCastExpr *Create(const ASTContext &Context, QualType T,
                                  ExprValueKind VK, Expr *Op,
                                  TypeSourceInfo *WrittenTy, SourceLocation L,
                                  SourceLocation RParenLoc,
                                  SourceRange AngleBrackets);
  static CXXConstCastExpr *CreateEmpty(const ASTContext &Context);

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXConstCastExprClass;
  }

  friend TrailingObjects;
  friend class CastExpr;
};

/// \brief A call to a literal operator (C++11 [over.literal])
/// written as a user-defined literal (C++11 [lit.ext]).
///
/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
/// is semantically equivalent to a normal call, this AST node provides better
/// information about the syntactic representation of the literal.
///
/// Since literal operators are never found by ADL and can only be declared at
/// namespace scope, a user-defined literal is never dependent.
class UserDefinedLiteral : public CallExpr {
  /// \brief The location of a ud-suffix within the literal.
  SourceLocation UDSuffixLoc;

public:
  UserDefinedLiteral(const ASTContext &C, Expr *Fn, ArrayRef<Expr*> Args,
                     QualType T, ExprValueKind VK, SourceLocation LitEndLoc,
                     SourceLocation SuffixLoc)
    : CallExpr(C, UserDefinedLiteralClass, Fn, Args, T, VK, LitEndLoc),
      UDSuffixLoc(SuffixLoc) {}
  explicit UserDefinedLiteral(const ASTContext &C, EmptyShell Empty)
    : CallExpr(C, UserDefinedLiteralClass, Empty) {}

  /// The kind of literal operator which is invoked.
  enum LiteralOperatorKind {
    LOK_Raw,      ///< Raw form: operator "" X (const char *)
    LOK_Template, ///< Raw form: operator "" X<cs...> ()
    LOK_Integer,  ///< operator "" X (unsigned long long)
    LOK_Floating, ///< operator "" X (long double)
    LOK_String,   ///< operator "" X (const CharT *, size_t)
    LOK_Character ///< operator "" X (CharT)
  };

  /// \brief Returns the kind of literal operator invocation
  /// which this expression represents.
  LiteralOperatorKind getLiteralOperatorKind() const;

  /// \brief If this is not a raw user-defined literal, get the
  /// underlying cooked literal (representing the literal with the suffix
  /// removed).
  Expr *getCookedLiteral();
  const Expr *getCookedLiteral() const {
    return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
  }

  SourceLocation getLocStart() const {
    if (getLiteralOperatorKind() == LOK_Template)
      return getRParenLoc();
    return getArg(0)->getLocStart();
  }
  SourceLocation getLocEnd() const { return getRParenLoc(); }


  /// \brief Returns the location of a ud-suffix in the expression.
  ///
  /// For a string literal, there may be multiple identical suffixes. This
  /// returns the first.
  SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }

  /// \brief Returns the ud-suffix specified for this literal.
  const IdentifierInfo *getUDSuffix() const;

  static bool classof(const Stmt *S) {
    return S->getStmtClass() == UserDefinedLiteralClass;
  }

  friend class ASTStmtReader;
  friend class ASTStmtWriter;
};

/// \brief A boolean literal, per ([C++ lex.bool] Boolean literals).
///
class CXXBoolLiteralExpr : public Expr {
  bool Value;
  SourceLocation Loc;
public:
  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
         false, false),
    Value(val), Loc(l) {}

  explicit CXXBoolLiteralExpr(EmptyShell Empty)
    : Expr(CXXBoolLiteralExprClass, Empty) { }

  bool getValue() const { return Value; }
  void setValue(bool V) { Value = V; }

  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }

  SourceLocation getLocation() const { return Loc; }
  void setLocation(SourceLocation L) { Loc = L; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXBoolLiteralExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
};

/// \brief The null pointer literal (C++11 [lex.nullptr])
///
/// Introduced in C++11, the only literal of type \c nullptr_t is \c nullptr.
class CXXNullPtrLiteralExpr : public Expr {
  SourceLocation Loc;
public:
  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
         false, false),
    Loc(l) {}

  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
    : Expr(CXXNullPtrLiteralExprClass, Empty) { }

  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }

  SourceLocation getLocation() const { return Loc; }
  void setLocation(SourceLocation L) { Loc = L; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
  }

  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
};

/// \brief Implicit construction of a std::initializer_list<T> object from an
/// array temporary within list-initialization (C++11 [dcl.init.list]p5).
class CXXStdInitializerListExpr : public Expr {
  Stmt *SubExpr;

  CXXStdInitializerListExpr(EmptyShell Empty)
    : Expr(CXXStdInitializerListExprClass, Empty), SubExpr(nullptr) {}

public:
  CXXStdInitializerListExpr(QualType Ty, Expr *SubExpr)
    : Expr(CXXStdInitializerListExprClass, Ty, VK_RValue, OK_Ordinary,
           Ty->isDependentType(), SubExpr->isValueDependent(),
           SubExpr->isInstantiationDependent(),
           SubExpr->containsUnexpandedParameterPack()),
      SubExpr(SubExpr) {}

  Expr *getSubExpr() { return static_cast<Expr*>(SubExpr); }
  const Expr *getSubExpr() const { return static_cast<const Expr*>(SubExpr); }

  SourceLocation getLocStart() const LLVM_READONLY {
    return SubExpr->getLocStart();
  }
  SourceLocation getLocEnd() const LLVM_READONLY {
    return SubExpr->getLocEnd();
  }
  SourceRange getSourceRange() const LLVM_READONLY {
    return SubExpr->getSourceRange();
  }

  static bool classof(const Stmt *S) {
    return S->getStmtClass() == CXXStdInitializerListExprClass;
  }

  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }

  friend class ASTReader;
  friend class ASTStmtReader;
};

/// A C++ \c typeid expression (C++ [expr.typeid]), which gets
/// the \c type_info that corresponds to the supplied type, or the (possibly
/// dynamic) type of the supplied expression.
///
/// This represents code like \c typeid(int) or \c typeid(*objPtr)
class CXXTypeidExpr : public Expr {
private:
  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
  SourceRange Range;

public:
  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
           false,
           // typeid is value-dependent if the type or expression are dependent
           Operand->getType()->isDependentType(),
           Operand->getType()->isInstantiationDependentType(),
           Operand->getType()->containsUnexpandedParameterPack()),
      Operand(Operand), Range(R) { }

  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
           false,
        // typeid is value-dependent if the type or expression are dependent
           Operand->isTypeDependent() || Operand->isValueDependent(),
           Operand->isInstantiationDependent(),
           Operand->containsUnexpandedParameterPack()),
      Operand(Operand), Range(R) { }

  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
    : Expr(CXXTypeidExprClass, Empty) {
    if (isExpr)
      Operand = (Expr*)nullptr;
    else
      Operand = (TypeSourceInfo*)nullptr;
  }

  /// Determine whether this typeid has a type operand which is potentially
  /// evaluated, per C++11 [expr.typeid]p3.
  bool isPotentiallyEvaluated() const;

  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }

  /// \brief Retrieves the type operand of this typeid() expression after
  /// various required adjustments (removing reference types, cv-qualifiers).
  QualType getTypeOperand(ASTContext &Context) const;

  /// \brief Retrieve source information for the type operand.
  TypeSourceInfo *getTypeOperandSourceInfo() const {
    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
    return Operand.get<TypeSourceInfo *>();
  }

  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
    Operand = TSI;
  }

  Expr *getExprOperand() const {
    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
    return static_cast<Expr*>(Operand.get<Stmt *>());
  }

  void setExprOperand(Expr *E) {
    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
    Operand = E;
  }

  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
  void setSourceRange(SourceRange R) { Range = R; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXTypeidExprClass;
  }

  // Iterators
  child_range children() {
    if (isTypeOperand())
      return child_range(child_iterator(), child_iterator());
    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
    return child_range(begin, begin + 1);
  }
};

/// \brief A member reference to an MSPropertyDecl. 
///
/// This expression always has pseudo-object type, and therefore it is
/// typically not encountered in a fully-typechecked expression except
/// within the syntactic form of a PseudoObjectExpr.
class MSPropertyRefExpr : public Expr {
  Expr *BaseExpr;
  MSPropertyDecl *TheDecl;
  SourceLocation MemberLoc;
  bool IsArrow;
  NestedNameSpecifierLoc QualifierLoc;

public:
  MSPropertyRefExpr(Expr *baseExpr, MSPropertyDecl *decl, bool isArrow,
                    QualType ty, ExprValueKind VK,
                    NestedNameSpecifierLoc qualifierLoc,
                    SourceLocation nameLoc)
  : Expr(MSPropertyRefExprClass, ty, VK, OK_Ordinary,
         /*type-dependent*/ false, baseExpr->isValueDependent(),
         baseExpr->isInstantiationDependent(),
         baseExpr->containsUnexpandedParameterPack()),
    BaseExpr(baseExpr), TheDecl(decl),
    MemberLoc(nameLoc), IsArrow(isArrow),
    QualifierLoc(qualifierLoc) {}

  MSPropertyRefExpr(EmptyShell Empty) : Expr(MSPropertyRefExprClass, Empty) {}

  SourceRange getSourceRange() const LLVM_READONLY {
    return SourceRange(getLocStart(), getLocEnd());
  }
  bool isImplicitAccess() const {
    return getBaseExpr() && getBaseExpr()->isImplicitCXXThis();
  }
  SourceLocation getLocStart() const {
    if (!isImplicitAccess())
      return BaseExpr->getLocStart();
    else if (QualifierLoc)
      return QualifierLoc.getBeginLoc();
    else
        return MemberLoc;
  }
  SourceLocation getLocEnd() const { return getMemberLoc(); }

  child_range children() {
    return child_range((Stmt**)&BaseExpr, (Stmt**)&BaseExpr + 1);
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == MSPropertyRefExprClass;
  }

  Expr *getBaseExpr() const { return BaseExpr; }
  MSPropertyDecl *getPropertyDecl() const { return TheDecl; }
  bool isArrow() const { return IsArrow; }
  SourceLocation getMemberLoc() const { return MemberLoc; }
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }

  friend class ASTStmtReader;
};

/// MS property subscript expression.
/// MSVC supports 'property' attribute and allows to apply it to the
/// declaration of an empty array in a class or structure definition.
/// For example:
/// \code
/// __declspec(property(get=GetX, put=PutX)) int x[];
/// \endcode
/// The above statement indicates that x[] can be used with one or more array
/// indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), and
/// p->x[a][b] = i will be turned into p->PutX(a, b, i).
/// This is a syntactic pseudo-object expression.
class MSPropertySubscriptExpr : public Expr {
  friend class ASTStmtReader;
  enum { BASE_EXPR, IDX_EXPR, NUM_SUBEXPRS = 2 };
  Stmt *SubExprs[NUM_SUBEXPRS];
  SourceLocation RBracketLoc;

  void setBase(Expr *Base) { SubExprs[BASE_EXPR] = Base; }
  void setIdx(Expr *Idx) { SubExprs[IDX_EXPR] = Idx; }

public:
  MSPropertySubscriptExpr(Expr *Base, Expr *Idx, QualType Ty, ExprValueKind VK,
                          ExprObjectKind OK, SourceLocation RBracketLoc)
      : Expr(MSPropertySubscriptExprClass, Ty, VK, OK, Idx->isTypeDependent(),
             Idx->isValueDependent(), Idx->isInstantiationDependent(),
             Idx->containsUnexpandedParameterPack()),
        RBracketLoc(RBracketLoc) {
    SubExprs[BASE_EXPR] = Base;
    SubExprs[IDX_EXPR] = Idx;
  }

  /// \brief Create an empty array subscript expression.
  explicit MSPropertySubscriptExpr(EmptyShell Shell)
      : Expr(MSPropertySubscriptExprClass, Shell) {}

  Expr *getBase() { return cast<Expr>(SubExprs[BASE_EXPR]); }
  const Expr *getBase() const { return cast<Expr>(SubExprs[BASE_EXPR]); }

  Expr *getIdx() { return cast<Expr>(SubExprs[IDX_EXPR]); }
  const Expr *getIdx() const { return cast<Expr>(SubExprs[IDX_EXPR]); }

  SourceLocation getLocStart() const LLVM_READONLY {
    return getBase()->getLocStart();
  }
  SourceLocation getLocEnd() const LLVM_READONLY { return RBracketLoc; }

  SourceLocation getRBracketLoc() const { return RBracketLoc; }
  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }

  SourceLocation getExprLoc() const LLVM_READONLY {
    return getBase()->getExprLoc();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == MSPropertySubscriptExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(&SubExprs[0], &SubExprs[0] + NUM_SUBEXPRS);
  }
};

/// A Microsoft C++ @c __uuidof expression, which gets
/// the _GUID that corresponds to the supplied type or expression.
///
/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
class CXXUuidofExpr : public Expr {
private:
  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
  StringRef UuidStr;
  SourceRange Range;

public:
  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, StringRef UuidStr,
                SourceRange R)
      : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary, false,
             Operand->getType()->isDependentType(),
             Operand->getType()->isInstantiationDependentType(),
             Operand->getType()->containsUnexpandedParameterPack()),
        Operand(Operand), UuidStr(UuidStr), Range(R) {}

  CXXUuidofExpr(QualType Ty, Expr *Operand, StringRef UuidStr, SourceRange R)
      : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary, false,
             Operand->isTypeDependent(), Operand->isInstantiationDependent(),
             Operand->containsUnexpandedParameterPack()),
        Operand(Operand), UuidStr(UuidStr), Range(R) {}

  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
    : Expr(CXXUuidofExprClass, Empty) {
    if (isExpr)
      Operand = (Expr*)nullptr;
    else
      Operand = (TypeSourceInfo*)nullptr;
  }

  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }

  /// \brief Retrieves the type operand of this __uuidof() expression after
  /// various required adjustments (removing reference types, cv-qualifiers).
  QualType getTypeOperand(ASTContext &Context) const;

  /// \brief Retrieve source information for the type operand.
  TypeSourceInfo *getTypeOperandSourceInfo() const {
    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
    return Operand.get<TypeSourceInfo *>();
  }

  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
    Operand = TSI;
  }

  Expr *getExprOperand() const {
    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
    return static_cast<Expr*>(Operand.get<Stmt *>());
  }

  void setExprOperand(Expr *E) {
    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
    Operand = E;
  }

  void setUuidStr(StringRef US) { UuidStr = US; }
  StringRef getUuidStr() const { return UuidStr; }

  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
  void setSourceRange(SourceRange R) { Range = R; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXUuidofExprClass;
  }

  // Iterators
  child_range children() {
    if (isTypeOperand())
      return child_range(child_iterator(), child_iterator());
    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
    return child_range(begin, begin + 1);
  }
};

/// \brief Represents the \c this expression in C++.
///
/// This is a pointer to the object on which the current member function is
/// executing (C++ [expr.prim]p3). Example:
///
/// \code
/// class Foo {
/// public:
///   void bar();
///   void test() { this->bar(); }
/// };
/// \endcode
class CXXThisExpr : public Expr {
  SourceLocation Loc;
  bool Implicit : 1;

public:
  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
           // 'this' is type-dependent if the class type of the enclosing
           // member function is dependent (C++ [temp.dep.expr]p2)
           Type->isDependentType(), Type->isDependentType(),
           Type->isInstantiationDependentType(),
           /*ContainsUnexpandedParameterPack=*/false),
      Loc(L), Implicit(isImplicit) { }

  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}

  SourceLocation getLocation() const { return Loc; }
  void setLocation(SourceLocation L) { Loc = L; }

  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }

  bool isImplicit() const { return Implicit; }
  void setImplicit(bool I) { Implicit = I; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXThisExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
};

/// \brief A C++ throw-expression (C++ [except.throw]).
///
/// This handles 'throw' (for re-throwing the current exception) and
/// 'throw' assignment-expression.  When assignment-expression isn't
/// present, Op will be null.
class CXXThrowExpr : public Expr {
  Stmt *Op;
  SourceLocation ThrowLoc;
  /// \brief Whether the thrown variable (if any) is in scope.
  unsigned IsThrownVariableInScope : 1;

  friend class ASTStmtReader;

public:
  // \p Ty is the void type which is used as the result type of the
  // expression.  The \p l is the location of the throw keyword.  \p expr
  // can by null, if the optional expression to throw isn't present.
  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
               bool IsThrownVariableInScope) :
    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
         expr && expr->isInstantiationDependent(),
         expr && expr->containsUnexpandedParameterPack()),
    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}

  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }

  SourceLocation getThrowLoc() const { return ThrowLoc; }

  /// \brief Determines whether the variable thrown by this expression (if any!)
  /// is within the innermost try block.
  ///
  /// This information is required to determine whether the NRVO can apply to
  /// this variable.
  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }

  SourceLocation getLocStart() const LLVM_READONLY { return ThrowLoc; }
  SourceLocation getLocEnd() const LLVM_READONLY {
    if (!getSubExpr())
      return ThrowLoc;
    return getSubExpr()->getLocEnd();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXThrowExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(&Op, Op ? &Op+1 : &Op);
  }
};

/// \brief A default argument (C++ [dcl.fct.default]).
///
/// This wraps up a function call argument that was created from the
/// corresponding parameter's default argument, when the call did not
/// explicitly supply arguments for all of the parameters.
class CXXDefaultArgExpr final : public Expr {
  /// \brief The parameter whose default is being used.
  ParmVarDecl *Param;

  /// \brief The location where the default argument expression was used.
  SourceLocation Loc;

  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
    : Expr(SC,
           param->hasUnparsedDefaultArg()
             ? param->getType().getNonReferenceType()
             : param->getDefaultArg()->getType(),
           param->getDefaultArg()->getValueKind(),
           param->getDefaultArg()->getObjectKind(), false, false, false, false),
      Param(param), Loc(Loc) { }

public:
  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}

  // \p Param is the parameter whose default argument is used by this
  // expression.
  static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
                                   ParmVarDecl *Param) {
    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
  }

  // Retrieve the parameter that the argument was created from.
  const ParmVarDecl *getParam() const { return Param; }
  ParmVarDecl *getParam() { return Param; }

  // Retrieve the actual argument to the function call.
  const Expr *getExpr() const {
    return getParam()->getDefaultArg();
  }
  Expr *getExpr() {
    return getParam()->getDefaultArg();
  }

  /// \brief Retrieve the location where this default argument was actually
  /// used.
  SourceLocation getUsedLocation() const { return Loc; }

  /// Default argument expressions have no representation in the
  /// source, so they have an empty source range.
  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }

  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDefaultArgExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  friend class ASTStmtReader;
  friend class ASTStmtWriter;
};

/// \brief A use of a default initializer in a constructor or in aggregate
/// initialization.
///
/// This wraps a use of a C++ default initializer (technically,
/// a brace-or-equal-initializer for a non-static data member) when it
/// is implicitly used in a mem-initializer-list in a constructor
/// (C++11 [class.base.init]p8) or in aggregate initialization
/// (C++1y [dcl.init.aggr]p7).
class CXXDefaultInitExpr : public Expr {
  /// \brief The field whose default is being used.
  FieldDecl *Field;

  /// \brief The location where the default initializer expression was used.
  SourceLocation Loc;

  CXXDefaultInitExpr(const ASTContext &C, SourceLocation Loc, FieldDecl *Field,
                     QualType T);

  CXXDefaultInitExpr(EmptyShell Empty) : Expr(CXXDefaultInitExprClass, Empty) {}

public:
  /// \p Field is the non-static data member whose default initializer is used
  /// by this expression.
  static CXXDefaultInitExpr *Create(const ASTContext &C, SourceLocation Loc,
                                    FieldDecl *Field) {
    return new (C) CXXDefaultInitExpr(C, Loc, Field, Field->getType());
  }

  /// \brief Get the field whose initializer will be used.
  FieldDecl *getField() { return Field; }
  const FieldDecl *getField() const { return Field; }

  /// \brief Get the initialization expression that will be used.
  const Expr *getExpr() const {
    assert(Field->getInClassInitializer() && "initializer hasn't been parsed");
    return Field->getInClassInitializer();
  }
  Expr *getExpr() {
    assert(Field->getInClassInitializer() && "initializer hasn't been parsed");
    return Field->getInClassInitializer();
  }

  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDefaultInitExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  friend class ASTReader;
  friend class ASTStmtReader;
};

/// \brief Represents a C++ temporary.
class CXXTemporary {
  /// \brief The destructor that needs to be called.
  const CXXDestructorDecl *Destructor;

  explicit CXXTemporary(const CXXDestructorDecl *destructor)
    : Destructor(destructor) { }

public:
  static CXXTemporary *Create(const ASTContext &C,
                              const CXXDestructorDecl *Destructor);

  const CXXDestructorDecl *getDestructor() const { return Destructor; }
  void setDestructor(const CXXDestructorDecl *Dtor) {
    Destructor = Dtor;
  }
};

/// \brief Represents binding an expression to a temporary.
///
/// This ensures the destructor is called for the temporary. It should only be
/// needed for non-POD, non-trivially destructable class types. For example:
///
/// \code
///   struct S {
///     S() { }  // User defined constructor makes S non-POD.
///     ~S() { } // User defined destructor makes it non-trivial.
///   };
///   void test() {
///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
///   }
/// \endcode
class CXXBindTemporaryExpr : public Expr {
  CXXTemporary *Temp;

  Stmt *SubExpr;

  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
          SubExpr->isValueDependent(),
          SubExpr->isInstantiationDependent(),
          SubExpr->containsUnexpandedParameterPack()),
     Temp(temp), SubExpr(SubExpr) { }

public:
  CXXBindTemporaryExpr(EmptyShell Empty)
    : Expr(CXXBindTemporaryExprClass, Empty), Temp(nullptr), SubExpr(nullptr) {}

  static CXXBindTemporaryExpr *Create(const ASTContext &C, CXXTemporary *Temp,
                                      Expr* SubExpr);

  CXXTemporary *getTemporary() { return Temp; }
  const CXXTemporary *getTemporary() const { return Temp; }
  void setTemporary(CXXTemporary *T) { Temp = T; }

  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
  void setSubExpr(Expr *E) { SubExpr = E; }

  SourceLocation getLocStart() const LLVM_READONLY {
    return SubExpr->getLocStart();
  }
  SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXBindTemporaryExprClass;
  }

  // Iterators
  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
};

/// \brief Represents a call to a C++ constructor.
class CXXConstructExpr : public Expr {
public:
  enum ConstructionKind {
    CK_Complete,
    CK_NonVirtualBase,
    CK_VirtualBase,
    CK_Delegating
  };

private:
  CXXConstructorDecl *Constructor;

  SourceLocation Loc;
  SourceRange ParenOrBraceRange;
  unsigned NumArgs : 16;
  unsigned Elidable : 1;
  unsigned HadMultipleCandidates : 1;
  unsigned ListInitialization : 1;
  unsigned StdInitListInitialization : 1;
  unsigned ZeroInitialization : 1;
  unsigned ConstructKind : 2;
  Stmt **Args;

  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }

protected:
  CXXConstructExpr(const ASTContext &C, StmtClass SC, QualType T,
                   SourceLocation Loc,
                   CXXConstructorDecl *Ctor,
                   bool Elidable,
                   ArrayRef<Expr *> Args,
                   bool HadMultipleCandidates,
                   bool ListInitialization,
                   bool StdInitListInitialization,
                   bool ZeroInitialization,
                   ConstructionKind ConstructKind,
                   SourceRange ParenOrBraceRange);

  /// \brief Construct an empty C++ construction expression.
  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
    : Expr(SC, Empty), Constructor(nullptr), NumArgs(0), Elidable(false),
      HadMultipleCandidates(false), ListInitialization(false),
      ZeroInitialization(false), ConstructKind(0), Args(nullptr)
  { }

public:
  /// \brief Construct an empty C++ construction expression.
  explicit CXXConstructExpr(EmptyShell Empty)
    : CXXConstructExpr(CXXConstructExprClass, Empty) {}

  static CXXConstructExpr *Create(const ASTContext &C, QualType T,
                                  SourceLocation Loc,
                                  CXXConstructorDecl *Ctor,
                                  bool Elidable,
                                  ArrayRef<Expr *> Args,
                                  bool HadMultipleCandidates,
                                  bool ListInitialization,
                                  bool StdInitListInitialization,
                                  bool ZeroInitialization,
                                  ConstructionKind ConstructKind,
                                  SourceRange ParenOrBraceRange);

  /// \brief Get the constructor that this expression will (ultimately) call.
  CXXConstructorDecl *getConstructor() const { return Constructor; }

  SourceLocation getLocation() const { return Loc; }
  void setLocation(SourceLocation Loc) { this->Loc = Loc; }

  /// \brief Whether this construction is elidable.
  bool isElidable() const { return Elidable; }
  void setElidable(bool E) { Elidable = E; }

  /// \brief Whether the referred constructor was resolved from
  /// an overloaded set having size greater than 1.
  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }

  /// \brief Whether this constructor call was written as list-initialization.
  bool isListInitialization() const { return ListInitialization; }
  void setListInitialization(bool V) { ListInitialization = V; }

  /// \brief Whether this constructor call was written as list-initialization,
  /// but was interpreted as forming a std::initializer_list<T> from the list
  /// and passing that as a single constructor argument.
  /// See C++11 [over.match.list]p1 bullet 1.
  bool isStdInitListInitialization() const { return StdInitListInitialization; }
  void setStdInitListInitialization(bool V) { StdInitListInitialization = V; }

  /// \brief Whether this construction first requires
  /// zero-initialization before the initializer is called.
  bool requiresZeroInitialization() const { return ZeroInitialization; }
  void setRequiresZeroInitialization(bool ZeroInit) {
    ZeroInitialization = ZeroInit;
  }

  /// \brief Determine whether this constructor is actually constructing
  /// a base class (rather than a complete object).
  ConstructionKind getConstructionKind() const {
    return (ConstructionKind)ConstructKind;
  }
  void setConstructionKind(ConstructionKind CK) {
    ConstructKind = CK;
  }

  typedef ExprIterator arg_iterator;
  typedef ConstExprIterator const_arg_iterator;
  typedef llvm::iterator_range<arg_iterator> arg_range;
  typedef llvm::iterator_range<const_arg_iterator> arg_const_range;

  arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
  arg_const_range arguments() const {
    return arg_const_range(arg_begin(), arg_end());
  }

  arg_iterator arg_begin() { return Args; }
  arg_iterator arg_end() { return Args + NumArgs; }
  const_arg_iterator arg_begin() const { return Args; }
  const_arg_iterator arg_end() const { return Args + NumArgs; }

  Expr **getArgs() { return reinterpret_cast<Expr **>(Args); }
  const Expr *const *getArgs() const {
    return const_cast<CXXConstructExpr *>(this)->getArgs();
  }
  unsigned getNumArgs() const { return NumArgs; }

  /// \brief Return the specified argument.
  Expr *getArg(unsigned Arg) {
    assert(Arg < NumArgs && "Arg access out of range!");
    return cast<Expr>(Args[Arg]);
  }
  const Expr *getArg(unsigned Arg) const {
    assert(Arg < NumArgs && "Arg access out of range!");
    return cast<Expr>(Args[Arg]);
  }

  /// \brief Set the specified argument.
  void setArg(unsigned Arg, Expr *ArgExpr) {
    assert(Arg < NumArgs && "Arg access out of range!");
    Args[Arg] = ArgExpr;
  }

  SourceLocation getLocStart() const LLVM_READONLY;
  SourceLocation getLocEnd() const LLVM_READONLY;
  SourceRange getParenOrBraceRange() const { return ParenOrBraceRange; }
  void setParenOrBraceRange(SourceRange Range) { ParenOrBraceRange = Range; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXConstructExprClass ||
      T->getStmtClass() == CXXTemporaryObjectExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(&Args[0], &Args[0]+NumArgs);
  }

  friend class ASTStmtReader;
};

/// \brief Represents a call to an inherited base class constructor from an
/// inheriting constructor. This call implicitly forwards the arguments from
/// the enclosing context (an inheriting constructor) to the specified inherited
/// base class constructor.
class CXXInheritedCtorInitExpr : public Expr {
private:
  CXXConstructorDecl *Constructor;

  /// The location of the using declaration.
  SourceLocation Loc;

  /// Whether this is the construction of a virtual base.
  unsigned ConstructsVirtualBase : 1;

  /// Whether the constructor is inherited from a virtual base class of the
  /// class that we construct.
  unsigned InheritedFromVirtualBase : 1;

public:
  /// \brief Construct a C++ inheriting construction expression.
  CXXInheritedCtorInitExpr(SourceLocation Loc, QualType T,
                           CXXConstructorDecl *Ctor, bool ConstructsVirtualBase,
                           bool InheritedFromVirtualBase)
      : Expr(CXXInheritedCtorInitExprClass, T, VK_RValue, OK_Ordinary, false,
             false, false, false),
        Constructor(Ctor), Loc(Loc),
        ConstructsVirtualBase(ConstructsVirtualBase),
        InheritedFromVirtualBase(InheritedFromVirtualBase) {
    assert(!T->isDependentType());
  }

  /// \brief Construct an empty C++ inheriting construction expression.
  explicit CXXInheritedCtorInitExpr(EmptyShell Empty)
      : Expr(CXXInheritedCtorInitExprClass, Empty), Constructor(nullptr),
        ConstructsVirtualBase(false), InheritedFromVirtualBase(false) {}

  /// \brief Get the constructor that this expression will call.
  CXXConstructorDecl *getConstructor() const { return Constructor; }

  /// \brief Determine whether this constructor is actually constructing
  /// a base class (rather than a complete object).
  bool constructsVBase() const { return ConstructsVirtualBase; }
  CXXConstructExpr::ConstructionKind getConstructionKind() const {
    return ConstructsVirtualBase ? CXXConstructExpr::CK_VirtualBase
                                 : CXXConstructExpr::CK_NonVirtualBase;
  }

  /// \brief Determine whether the inherited constructor is inherited from a
  /// virtual base of the object we construct. If so, we are not responsible
  /// for calling the inherited constructor (the complete object constructor
  /// does that), and so we don't need to pass any arguments.
  bool inheritedFromVBase() const { return InheritedFromVirtualBase; }

  SourceLocation getLocation() const LLVM_READONLY { return Loc; }
  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXInheritedCtorInitExprClass;
  }
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  friend class ASTStmtReader;
};

/// \brief Represents an explicit C++ type conversion that uses "functional"
/// notation (C++ [expr.type.conv]).
///
/// Example:
/// \code
///   x = int(0.5);
/// \endcode
class CXXFunctionalCastExpr final
    : public ExplicitCastExpr,
      private llvm::TrailingObjects<CXXFunctionalCastExpr, CXXBaseSpecifier *> {
  SourceLocation LParenLoc;
  SourceLocation RParenLoc;

  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
                        TypeSourceInfo *writtenTy,
                        CastKind kind, Expr *castExpr, unsigned pathSize,
                        SourceLocation lParenLoc, SourceLocation rParenLoc)
    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
                       castExpr, pathSize, writtenTy),
      LParenLoc(lParenLoc), RParenLoc(rParenLoc) {}

  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }

public:
  static CXXFunctionalCastExpr *Create(const ASTContext &Context, QualType T,
                                       ExprValueKind VK,
                                       TypeSourceInfo *Written,
                                       CastKind Kind, Expr *Op,
                                       const CXXCastPath *Path,
                                       SourceLocation LPLoc,
                                       SourceLocation RPLoc);
  static CXXFunctionalCastExpr *CreateEmpty(const ASTContext &Context,
                                            unsigned PathSize);

  SourceLocation getLParenLoc() const { return LParenLoc; }
  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  SourceLocation getLocStart() const LLVM_READONLY;
  SourceLocation getLocEnd() const LLVM_READONLY;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXFunctionalCastExprClass;
  }

  friend TrailingObjects;
  friend class CastExpr;
};

/// @brief Represents a C++ functional cast expression that builds a
/// temporary object.
///
/// This expression type represents a C++ "functional" cast
/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
/// constructor to build a temporary object. With N == 1 arguments the
/// functional cast expression will be represented by CXXFunctionalCastExpr.
/// Example:
/// \code
/// struct X { X(int, float); }
///
/// X create_X() {
///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
/// };
/// \endcode
class CXXTemporaryObjectExpr : public CXXConstructExpr {
  TypeSourceInfo *Type;

public:
  CXXTemporaryObjectExpr(const ASTContext &C,
                         CXXConstructorDecl *Cons,
                         TypeSourceInfo *Type,
                         ArrayRef<Expr *> Args,
                         SourceRange ParenOrBraceRange,
                         bool HadMultipleCandidates,
                         bool ListInitialization,
                         bool StdInitListInitialization,
                         bool ZeroInitialization);
  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }

  TypeSourceInfo *getTypeSourceInfo() const { return Type; }

  SourceLocation getLocStart() const LLVM_READONLY;
  SourceLocation getLocEnd() const LLVM_READONLY;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXTemporaryObjectExprClass;
  }

  friend class ASTStmtReader;
};

/// \brief A C++ lambda expression, which produces a function object
/// (of unspecified type) that can be invoked later.
///
/// Example:
/// \code
/// void low_pass_filter(std::vector<double> &values, double cutoff) {
///   values.erase(std::remove_if(values.begin(), values.end(),
///                               [=](double value) { return value > cutoff; });
/// }
/// \endcode
///
/// C++11 lambda expressions can capture local variables, either by copying
/// the values of those local variables at the time the function
/// object is constructed (not when it is called!) or by holding a
/// reference to the local variable. These captures can occur either
/// implicitly or can be written explicitly between the square
/// brackets ([...]) that start the lambda expression.
///
/// C++1y introduces a new form of "capture" called an init-capture that
/// includes an initializing expression (rather than capturing a variable),
/// and which can never occur implicitly.
class LambdaExpr final
    : public Expr,
      private llvm::TrailingObjects<LambdaExpr, Stmt *, unsigned, VarDecl *> {
  /// \brief The source range that covers the lambda introducer ([...]).
  SourceRange IntroducerRange;

  /// \brief The source location of this lambda's capture-default ('=' or '&').
  SourceLocation CaptureDefaultLoc;

  /// \brief The number of captures.
  unsigned NumCaptures : 16;
  
  /// \brief The default capture kind, which is a value of type
  /// LambdaCaptureDefault.
  unsigned CaptureDefault : 2;

  /// \brief Whether this lambda had an explicit parameter list vs. an
  /// implicit (and empty) parameter list.
  unsigned ExplicitParams : 1;

  /// \brief Whether this lambda had the result type explicitly specified.
  unsigned ExplicitResultType : 1;
  
  /// \brief Whether there are any array index variables stored at the end of
  /// this lambda expression.
  unsigned HasArrayIndexVars : 1;
  
  /// \brief The location of the closing brace ('}') that completes
  /// the lambda.
  /// 
  /// The location of the brace is also available by looking up the
  /// function call operator in the lambda class. However, it is
  /// stored here to improve the performance of getSourceRange(), and
  /// to avoid having to deserialize the function call operator from a
  /// module file just to determine the source range.
  SourceLocation ClosingBrace;

  size_t numTrailingObjects(OverloadToken<Stmt *>) const {
    return NumCaptures + 1;
  }

  size_t numTrailingObjects(OverloadToken<unsigned>) const {
    return HasArrayIndexVars ? NumCaptures + 1 : 0;
  }

  /// \brief Construct a lambda expression.
  LambdaExpr(QualType T, SourceRange IntroducerRange,
             LambdaCaptureDefault CaptureDefault,
             SourceLocation CaptureDefaultLoc, ArrayRef<LambdaCapture> Captures,
             bool ExplicitParams, bool ExplicitResultType,
             ArrayRef<Expr *> CaptureInits, ArrayRef<VarDecl *> ArrayIndexVars,
             ArrayRef<unsigned> ArrayIndexStarts, SourceLocation ClosingBrace,
             bool ContainsUnexpandedParameterPack);

  /// \brief Construct an empty lambda expression.
  LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
    : Expr(LambdaExprClass, Empty),
      NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
      ExplicitResultType(false), HasArrayIndexVars(true) { 
    getStoredStmts()[NumCaptures] = nullptr;
  }

  Stmt **getStoredStmts() { return getTrailingObjects<Stmt *>(); }

  Stmt *const *getStoredStmts() const { return getTrailingObjects<Stmt *>(); }

  /// \brief Retrieve the mapping from captures to the first array index
  /// variable.
  unsigned *getArrayIndexStarts() { return getTrailingObjects<unsigned>(); }

  const unsigned *getArrayIndexStarts() const {
    return getTrailingObjects<unsigned>();
  }

  /// \brief Retrieve the complete set of array-index variables.
  VarDecl **getArrayIndexVars() { return getTrailingObjects<VarDecl *>(); }

  VarDecl *const *getArrayIndexVars() const {
    return getTrailingObjects<VarDecl *>();
  }

public:
  /// \brief Construct a new lambda expression.
  static LambdaExpr *
  Create(const ASTContext &C, CXXRecordDecl *Class, SourceRange IntroducerRange,
         LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc,
         ArrayRef<LambdaCapture> Captures, bool ExplicitParams,
         bool ExplicitResultType, ArrayRef<Expr *> CaptureInits,
         ArrayRef<VarDecl *> ArrayIndexVars,
         ArrayRef<unsigned> ArrayIndexStarts, SourceLocation ClosingBrace,
         bool ContainsUnexpandedParameterPack);

  /// \brief Construct a new lambda expression that will be deserialized from
  /// an external source.
  static LambdaExpr *CreateDeserialized(const ASTContext &C,
                                        unsigned NumCaptures,
                                        unsigned NumArrayIndexVars);

  /// \brief Determine the default capture kind for this lambda.
  LambdaCaptureDefault getCaptureDefault() const {
    return static_cast<LambdaCaptureDefault>(CaptureDefault);
  }

  /// \brief Retrieve the location of this lambda's capture-default, if any.
  SourceLocation getCaptureDefaultLoc() const {
    return CaptureDefaultLoc;
  }

  /// \brief Determine whether one of this lambda's captures is an init-capture.
  bool isInitCapture(const LambdaCapture *Capture) const;

  /// \brief An iterator that walks over the captures of the lambda,
  /// both implicit and explicit.
  typedef const LambdaCapture *capture_iterator;

  /// \brief An iterator over a range of lambda captures.
  typedef llvm::iterator_range<capture_iterator> capture_range;

  /// \brief Retrieve this lambda's captures.
  capture_range captures() const;
  
  /// \brief Retrieve an iterator pointing to the first lambda capture.
  capture_iterator capture_begin() const;

  /// \brief Retrieve an iterator pointing past the end of the
  /// sequence of lambda captures.
  capture_iterator capture_end() const;

  /// \brief Determine the number of captures in this lambda.
  unsigned capture_size() const { return NumCaptures; }

  /// \brief Retrieve this lambda's explicit captures.
  capture_range explicit_captures() const;
  
  /// \brief Retrieve an iterator pointing to the first explicit
  /// lambda capture.
  capture_iterator explicit_capture_begin() const;

  /// \brief Retrieve an iterator pointing past the end of the sequence of
  /// explicit lambda captures.
  capture_iterator explicit_capture_end() const;

  /// \brief Retrieve this lambda's implicit captures.
  capture_range implicit_captures() const;

  /// \brief Retrieve an iterator pointing to the first implicit
  /// lambda capture.
  capture_iterator implicit_capture_begin() const;

  /// \brief Retrieve an iterator pointing past the end of the sequence of
  /// implicit lambda captures.
  capture_iterator implicit_capture_end() const;

  /// \brief Iterator that walks over the capture initialization
  /// arguments.
  typedef Expr **capture_init_iterator;

  /// \brief Const iterator that walks over the capture initialization
  /// arguments.
  typedef Expr *const *const_capture_init_iterator;

  /// \brief Retrieve the initialization expressions for this lambda's captures.
  llvm::iterator_range<capture_init_iterator> capture_inits() {
    return llvm::make_range(capture_init_begin(), capture_init_end());
  }

  /// \brief Retrieve the initialization expressions for this lambda's captures.
  llvm::iterator_range<const_capture_init_iterator> capture_inits() const {
    return llvm::make_range(capture_init_begin(), capture_init_end());
  }

  /// \brief Retrieve the first initialization argument for this
  /// lambda expression (which initializes the first capture field).
  capture_init_iterator capture_init_begin() {
    return reinterpret_cast<Expr **>(getStoredStmts());
  }

  /// \brief Retrieve the first initialization argument for this
  /// lambda expression (which initializes the first capture field).
  const_capture_init_iterator capture_init_begin() const {
    return reinterpret_cast<Expr *const *>(getStoredStmts());
  }

  /// \brief Retrieve the iterator pointing one past the last
  /// initialization argument for this lambda expression.
  capture_init_iterator capture_init_end() {
    return capture_init_begin() + NumCaptures;
  }

  /// \brief Retrieve the iterator pointing one past the last
  /// initialization argument for this lambda expression.
  const_capture_init_iterator capture_init_end() const {
    return capture_init_begin() + NumCaptures;
  }

  /// \brief Retrieve the set of index variables used in the capture
  /// initializer of an array captured by copy.
  ///
  /// \param Iter The iterator that points at the capture initializer for
  /// which we are extracting the corresponding index variables.
  ArrayRef<VarDecl *>
  getCaptureInitIndexVars(const_capture_init_iterator Iter) const;

  /// \brief Retrieve the source range covering the lambda introducer,
  /// which contains the explicit capture list surrounded by square
  /// brackets ([...]).
  SourceRange getIntroducerRange() const { return IntroducerRange; }

  /// \brief Retrieve the class that corresponds to the lambda.
  /// 
  /// This is the "closure type" (C++1y [expr.prim.lambda]), and stores the
  /// captures in its fields and provides the various operations permitted
  /// on a lambda (copying, calling).
  CXXRecordDecl *getLambdaClass() const;

  /// \brief Retrieve the function call operator associated with this
  /// lambda expression. 
  CXXMethodDecl *getCallOperator() const;

  /// \brief If this is a generic lambda expression, retrieve the template 
  /// parameter list associated with it, or else return null. 
  TemplateParameterList *getTemplateParameterList() const;

  /// \brief Whether this is a generic lambda.
  bool isGenericLambda() const { return getTemplateParameterList(); }

  /// \brief Retrieve the body of the lambda.
  CompoundStmt *getBody() const;

  /// \brief Determine whether the lambda is mutable, meaning that any
  /// captures values can be modified.
  bool isMutable() const;

  /// \brief Determine whether this lambda has an explicit parameter
  /// list vs. an implicit (empty) parameter list.
  bool hasExplicitParameters() const { return ExplicitParams; }

  /// \brief Whether this lambda had its result type explicitly specified.
  bool hasExplicitResultType() const { return ExplicitResultType; }
    
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == LambdaExprClass;
  }

  SourceLocation getLocStart() const LLVM_READONLY {
    return IntroducerRange.getBegin();
  }
  SourceLocation getLocEnd() const LLVM_READONLY { return ClosingBrace; }

  child_range children() {
    // Includes initialization exprs plus body stmt
    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
  }

  friend TrailingObjects;
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
};

/// An expression "T()" which creates a value-initialized rvalue of type
/// T, which is a non-class type.  See (C++98 [5.2.3p2]).
class CXXScalarValueInitExpr : public Expr {
  SourceLocation RParenLoc;
  TypeSourceInfo *TypeInfo;

  friend class ASTStmtReader;

public:
  /// \brief Create an explicitly-written scalar-value initialization
  /// expression.
  CXXScalarValueInitExpr(QualType Type, TypeSourceInfo *TypeInfo,
                         SourceLocation rParenLoc)
      : Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
             false, false, Type->isInstantiationDependentType(),
             Type->containsUnexpandedParameterPack()),
        RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}

  explicit CXXScalarValueInitExpr(EmptyShell Shell)
    : Expr(CXXScalarValueInitExprClass, Shell) { }

  TypeSourceInfo *getTypeSourceInfo() const {
    return TypeInfo;
  }

  SourceLocation getRParenLoc() const { return RParenLoc; }

  SourceLocation getLocStart() const LLVM_READONLY;
  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXScalarValueInitExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
};

/// \brief Represents a new-expression for memory allocation and constructor
/// calls, e.g: "new CXXNewExpr(foo)".
class CXXNewExpr : public Expr {
  /// Contains an optional array size expression, an optional initialization
  /// expression, and any number of optional placement arguments, in that order.
  Stmt **SubExprs;
  /// \brief Points to the allocation function used.
  FunctionDecl *OperatorNew;
  /// \brief Points to the deallocation function used in case of error. May be
  /// null.
  FunctionDecl *OperatorDelete;

  /// \brief The allocated type-source information, as written in the source.
  TypeSourceInfo *AllocatedTypeInfo;

  /// \brief If the allocated type was expressed as a parenthesized type-id,
  /// the source range covering the parenthesized type-id.
  SourceRange TypeIdParens;

  /// \brief Range of the entire new expression.
  SourceRange Range;

  /// \brief Source-range of a paren-delimited initializer.
  SourceRange DirectInitRange;

  /// Was the usage ::new, i.e. is the global new to be used?
  unsigned GlobalNew : 1;
  /// Do we allocate an array? If so, the first SubExpr is the size expression.
  unsigned Array : 1;
  /// If this is an array allocation, does the usual deallocation
  /// function for the allocated type want to know the allocated size?
  unsigned UsualArrayDeleteWantsSize : 1;
  /// The number of placement new arguments.
  unsigned NumPlacementArgs : 13;
  /// What kind of initializer do we have? Could be none, parens, or braces.
  /// In storage, we distinguish between "none, and no initializer expr", and
  /// "none, but an implicit initializer expr".
  unsigned StoredInitializationStyle : 2;

  friend class ASTStmtReader;
  friend class ASTStmtWriter;
public:
  enum InitializationStyle {
    NoInit,   ///< New-expression has no initializer as written.
    CallInit, ///< New-expression has a C++98 paren-delimited initializer.
    ListInit  ///< New-expression has a C++11 list-initializer.
  };

  CXXNewExpr(const ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
             ArrayRef<Expr*> placementArgs,
             SourceRange typeIdParens, Expr *arraySize,
             InitializationStyle initializationStyle, Expr *initializer,
             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
             SourceRange Range, SourceRange directInitRange);
  explicit CXXNewExpr(EmptyShell Shell)
    : Expr(CXXNewExprClass, Shell), SubExprs(nullptr) { }

  void AllocateArgsArray(const ASTContext &C, bool isArray,
                         unsigned numPlaceArgs, bool hasInitializer);

  QualType getAllocatedType() const {
    assert(getType()->isPointerType());
    return getType()->getAs<PointerType>()->getPointeeType();
  }

  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
    return AllocatedTypeInfo;
  }

  /// \brief True if the allocation result needs to be null-checked.
  ///
  /// C++11 [expr.new]p13:
  ///   If the allocation function returns null, initialization shall
  ///   not be done, the deallocation function shall not be called,
  ///   and the value of the new-expression shall be null.
  ///
  /// C++ DR1748:
  ///   If the allocation function is a reserved placement allocation
  ///   function that returns null, the behavior is undefined.
  ///
  /// An allocation function is not allowed to return null unless it
  /// has a non-throwing exception-specification.  The '03 rule is
  /// identical except that the definition of a non-throwing
  /// exception specification is just "is it throw()?".
  bool shouldNullCheckAllocation(const ASTContext &Ctx) const;

  FunctionDecl *getOperatorNew() const { return OperatorNew; }
  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }

  bool isArray() const { return Array; }
  Expr *getArraySize() {
    return Array ? cast<Expr>(SubExprs[0]) : nullptr;
  }
  const Expr *getArraySize() const {
    return Array ? cast<Expr>(SubExprs[0]) : nullptr;
  }

  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
  Expr **getPlacementArgs() {
    return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
  }

  Expr *getPlacementArg(unsigned i) {
    assert(i < NumPlacementArgs && "Index out of range");
    return getPlacementArgs()[i];
  }
  const Expr *getPlacementArg(unsigned i) const {
    assert(i < NumPlacementArgs && "Index out of range");
    return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
  }

  bool isParenTypeId() const { return TypeIdParens.isValid(); }
  SourceRange getTypeIdParens() const { return TypeIdParens; }

  bool isGlobalNew() const { return GlobalNew; }

  /// \brief Whether this new-expression has any initializer at all.
  bool hasInitializer() const { return StoredInitializationStyle > 0; }

  /// \brief The kind of initializer this new-expression has.
  InitializationStyle getInitializationStyle() const {
    if (StoredInitializationStyle == 0)
      return NoInit;
    return static_cast<InitializationStyle>(StoredInitializationStyle-1);
  }

  /// \brief The initializer of this new-expression.
  Expr *getInitializer() {
    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : nullptr;
  }
  const Expr *getInitializer() const {
    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : nullptr;
  }

  /// \brief Returns the CXXConstructExpr from this new-expression, or null.
  const CXXConstructExpr* getConstructExpr() const {
    return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
  }

  /// Answers whether the usual array deallocation function for the
  /// allocated type expects the size of the allocation as a
  /// parameter.
  bool doesUsualArrayDeleteWantSize() const {
    return UsualArrayDeleteWantsSize;
  }

  typedef ExprIterator arg_iterator;
  typedef ConstExprIterator const_arg_iterator;

  llvm::iterator_range<arg_iterator> placement_arguments() {
    return llvm::make_range(placement_arg_begin(), placement_arg_end());
  }

  llvm::iterator_range<const_arg_iterator> placement_arguments() const {
    return llvm::make_range(placement_arg_begin(), placement_arg_end());
  }

  arg_iterator placement_arg_begin() {
    return SubExprs + Array + hasInitializer();
  }
  arg_iterator placement_arg_end() {
    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
  }
  const_arg_iterator placement_arg_begin() const {
    return SubExprs + Array + hasInitializer();
  }
  const_arg_iterator placement_arg_end() const {
    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
  }

  typedef Stmt **raw_arg_iterator;
  raw_arg_iterator raw_arg_begin() { return SubExprs; }
  raw_arg_iterator raw_arg_end() {
    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
  }
  const_arg_iterator raw_arg_begin() const { return SubExprs; }
  const_arg_iterator raw_arg_end() const {
    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
  }

  SourceLocation getStartLoc() const { return Range.getBegin(); }
  SourceLocation getEndLoc() const { return Range.getEnd(); }

  SourceRange getDirectInitRange() const { return DirectInitRange; }

  SourceRange getSourceRange() const LLVM_READONLY {
    return Range;
  }
  SourceLocation getLocStart() const LLVM_READONLY { return getStartLoc(); }
  SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXNewExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(raw_arg_begin(), raw_arg_end());
  }
};

/// \brief Represents a \c delete expression for memory deallocation and
/// destructor calls, e.g. "delete[] pArray".
class CXXDeleteExpr : public Expr {
  /// Points to the operator delete overload that is used. Could be a member.
  FunctionDecl *OperatorDelete;
  /// The pointer expression to be deleted.
  Stmt *Argument;
  /// Location of the expression.
  SourceLocation Loc;
  /// Is this a forced global delete, i.e. "::delete"?
  bool GlobalDelete : 1;
  /// Is this the array form of delete, i.e. "delete[]"?
  bool ArrayForm : 1;
  /// ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
  /// to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
  /// will be true).
  bool ArrayFormAsWritten : 1;
  /// Does the usual deallocation function for the element type require
  /// a size_t argument?
  bool UsualArrayDeleteWantsSize : 1;
public:
  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
           arg->isInstantiationDependent(),
           arg->containsUnexpandedParameterPack()),
      OperatorDelete(operatorDelete), Argument(arg), Loc(loc),
      GlobalDelete(globalDelete),
      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) { }
  explicit CXXDeleteExpr(EmptyShell Shell)
    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(nullptr),
      Argument(nullptr) {}

  bool isGlobalDelete() const { return GlobalDelete; }
  bool isArrayForm() const { return ArrayForm; }
  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }

  /// Answers whether the usual array deallocation function for the
  /// allocated type expects the size of the allocation as a
  /// parameter.  This can be true even if the actual deallocation
  /// function that we're using doesn't want a size.
  bool doesUsualArrayDeleteWantSize() const {
    return UsualArrayDeleteWantsSize;
  }

  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }

  Expr *getArgument() { return cast<Expr>(Argument); }
  const Expr *getArgument() const { return cast<Expr>(Argument); }

  /// \brief Retrieve the type being destroyed. 
  ///
  /// If the type being destroyed is a dependent type which may or may not
  /// be a pointer, return an invalid type.
  QualType getDestroyedType() const;

  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
  SourceLocation getLocEnd() const LLVM_READONLY {return Argument->getLocEnd();}

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDeleteExprClass;
  }

  // Iterators
  child_range children() { return child_range(&Argument, &Argument+1); }

  friend class ASTStmtReader;
};

/// \brief Stores the type being destroyed by a pseudo-destructor expression.
class PseudoDestructorTypeStorage {
  /// \brief Either the type source information or the name of the type, if
  /// it couldn't be resolved due to type-dependence.
  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;

  /// \brief The starting source location of the pseudo-destructor type.
  SourceLocation Location;

public:
  PseudoDestructorTypeStorage() { }

  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
    : Type(II), Location(Loc) { }

  PseudoDestructorTypeStorage(TypeSourceInfo *Info);

  TypeSourceInfo *getTypeSourceInfo() const {
    return Type.dyn_cast<TypeSourceInfo *>();
  }

  IdentifierInfo *getIdentifier() const {
    return Type.dyn_cast<IdentifierInfo *>();
  }

  SourceLocation getLocation() const { return Location; }
};

/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
///
/// A pseudo-destructor is an expression that looks like a member access to a
/// destructor of a scalar type, except that scalar types don't have
/// destructors. For example:
///
/// \code
/// typedef int T;
/// void f(int *p) {
///   p->T::~T();
/// }
/// \endcode
///
/// Pseudo-destructors typically occur when instantiating templates such as:
///
/// \code
/// template<typename T>
/// void destroy(T* ptr) {
///   ptr->T::~T();
/// }
/// \endcode
///
/// for scalar types. A pseudo-destructor expression has no run-time semantics
/// beyond evaluating the base expression.
class CXXPseudoDestructorExpr : public Expr {
  /// \brief The base expression (that is being destroyed).
  Stmt *Base;

  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
  /// period ('.').
  bool IsArrow : 1;

  /// \brief The location of the '.' or '->' operator.
  SourceLocation OperatorLoc;

  /// \brief The nested-name-specifier that follows the operator, if present.
  NestedNameSpecifierLoc QualifierLoc;

  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
  /// expression.
  TypeSourceInfo *ScopeType;

  /// \brief The location of the '::' in a qualified pseudo-destructor
  /// expression.
  SourceLocation ColonColonLoc;

  /// \brief The location of the '~'.
  SourceLocation TildeLoc;

  /// \brief The type being destroyed, or its name if we were unable to
  /// resolve the name.
  PseudoDestructorTypeStorage DestroyedType;

  friend class ASTStmtReader;

public:
  CXXPseudoDestructorExpr(const ASTContext &Context,
                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
                          NestedNameSpecifierLoc QualifierLoc,
                          TypeSourceInfo *ScopeType,
                          SourceLocation ColonColonLoc,
                          SourceLocation TildeLoc,
                          PseudoDestructorTypeStorage DestroyedType);

  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
    : Expr(CXXPseudoDestructorExprClass, Shell),
      Base(nullptr), IsArrow(false), QualifierLoc(), ScopeType(nullptr) { }

  Expr *getBase() const { return cast<Expr>(Base); }

  /// \brief Determines whether this member expression actually had
  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
  /// x->Base::foo.
  bool hasQualifier() const { return QualifierLoc.hasQualifier(); }

  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
  /// with source-location information.
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }

  /// \brief If the member name was qualified, retrieves the
  /// nested-name-specifier that precedes the member name. Otherwise, returns
  /// null.
  NestedNameSpecifier *getQualifier() const {
    return QualifierLoc.getNestedNameSpecifier();
  }

  /// \brief Determine whether this pseudo-destructor expression was written
  /// using an '->' (otherwise, it used a '.').
  bool isArrow() const { return IsArrow; }

  /// \brief Retrieve the location of the '.' or '->' operator.
  SourceLocation getOperatorLoc() const { return OperatorLoc; }

  /// \brief Retrieve the scope type in a qualified pseudo-destructor
  /// expression.
  ///
  /// Pseudo-destructor expressions can have extra qualification within them
  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
  /// Here, if the object type of the expression is (or may be) a scalar type,
  /// \p T may also be a scalar type and, therefore, cannot be part of a
  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
  /// destructor expression.
  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }

  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
  /// expression.
  SourceLocation getColonColonLoc() const { return ColonColonLoc; }

  /// \brief Retrieve the location of the '~'.
  SourceLocation getTildeLoc() const { return TildeLoc; }

  /// \brief Retrieve the source location information for the type
  /// being destroyed.
  ///
  /// This type-source information is available for non-dependent
  /// pseudo-destructor expressions and some dependent pseudo-destructor
  /// expressions. Returns null if we only have the identifier for a
  /// dependent pseudo-destructor expression.
  TypeSourceInfo *getDestroyedTypeInfo() const {
    return DestroyedType.getTypeSourceInfo();
  }

  /// \brief In a dependent pseudo-destructor expression for which we do not
  /// have full type information on the destroyed type, provides the name
  /// of the destroyed type.
  IdentifierInfo *getDestroyedTypeIdentifier() const {
    return DestroyedType.getIdentifier();
  }

  /// \brief Retrieve the type being destroyed.
  QualType getDestroyedType() const;

  /// \brief Retrieve the starting location of the type being destroyed.
  SourceLocation getDestroyedTypeLoc() const {
    return DestroyedType.getLocation();
  }

  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
  /// expression.
  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
  }

  /// \brief Set the destroyed type.
  void setDestroyedType(TypeSourceInfo *Info) {
    DestroyedType = PseudoDestructorTypeStorage(Info);
  }

  SourceLocation getLocStart() const LLVM_READONLY {return Base->getLocStart();}
  SourceLocation getLocEnd() const LLVM_READONLY;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXPseudoDestructorExprClass;
  }

  // Iterators
  child_range children() { return child_range(&Base, &Base + 1); }
};

/// \brief A type trait used in the implementation of various C++11 and
/// Library TR1 trait templates.
///
/// \code
///   __is_pod(int) == true
///   __is_enum(std::string) == false
///   __is_trivially_constructible(vector<int>, int*, int*)
/// \endcode
class TypeTraitExpr final
    : public Expr,
      private llvm::TrailingObjects<TypeTraitExpr, TypeSourceInfo *> {
  /// \brief The location of the type trait keyword.
  SourceLocation Loc;
  
  /// \brief  The location of the closing parenthesis.
  SourceLocation RParenLoc;
  
  // Note: The TypeSourceInfos for the arguments are allocated after the
  // TypeTraitExpr.
  
  TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
                ArrayRef<TypeSourceInfo *> Args,
                SourceLocation RParenLoc,
                bool Value);

  TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) { }

  size_t numTrailingObjects(OverloadToken<TypeSourceInfo *>) const {
    return getNumArgs();
  }

public:
  /// \brief Create a new type trait expression.
  static TypeTraitExpr *Create(const ASTContext &C, QualType T,
                               SourceLocation Loc, TypeTrait Kind,
                               ArrayRef<TypeSourceInfo *> Args,
                               SourceLocation RParenLoc,
                               bool Value);

  static TypeTraitExpr *CreateDeserialized(const ASTContext &C,
                                           unsigned NumArgs);
  
  /// \brief Determine which type trait this expression uses.
  TypeTrait getTrait() const {
    return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
  }

  bool getValue() const { 
    assert(!isValueDependent()); 
    return TypeTraitExprBits.Value; 
  }
  
  /// \brief Determine the number of arguments to this type trait.
  unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
  
  /// \brief Retrieve the Ith argument.
  TypeSourceInfo *getArg(unsigned I) const {
    assert(I < getNumArgs() && "Argument out-of-range");
    return getArgs()[I];
  }
  
  /// \brief Retrieve the argument types.
  ArrayRef<TypeSourceInfo *> getArgs() const {
    return llvm::makeArrayRef(getTrailingObjects<TypeSourceInfo *>(),
                              getNumArgs());
  }

  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == TypeTraitExprClass;
  }
  
  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  friend TrailingObjects;
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
};

/// \brief An Embarcadero array type trait, as used in the implementation of
/// __array_rank and __array_extent.
///
/// Example:
/// \code
///   __array_rank(int[10][20]) == 2
///   __array_extent(int, 1)    == 20
/// \endcode
class ArrayTypeTraitExpr : public Expr {
  virtual void anchor();

  /// \brief The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
  unsigned ATT : 2;

  /// \brief The value of the type trait. Unspecified if dependent.
  uint64_t Value;

  /// \brief The array dimension being queried, or -1 if not used.
  Expr *Dimension;

  /// \brief The location of the type trait keyword.
  SourceLocation Loc;

  /// \brief The location of the closing paren.
  SourceLocation RParen;

  /// \brief The type being queried.
  TypeSourceInfo *QueriedType;

public:
  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
                     TypeSourceInfo *queried, uint64_t value,
                     Expr *dimension, SourceLocation rparen, QualType ty)
    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
           false, queried->getType()->isDependentType(),
           (queried->getType()->isInstantiationDependentType() ||
            (dimension && dimension->isInstantiationDependent())),
           queried->getType()->containsUnexpandedParameterPack()),
      ATT(att), Value(value), Dimension(dimension),
      Loc(loc), RParen(rparen), QueriedType(queried) { }


  explicit ArrayTypeTraitExpr(EmptyShell Empty)
    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
      QueriedType() { }

  virtual ~ArrayTypeTraitExpr() { }

  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }

  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }

  QualType getQueriedType() const { return QueriedType->getType(); }

  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }

  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }

  Expr *getDimensionExpression() const { return Dimension; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ArrayTypeTraitExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  friend class ASTStmtReader;
};

/// \brief An expression trait intrinsic.
///
/// Example:
/// \code
///   __is_lvalue_expr(std::cout) == true
///   __is_lvalue_expr(1) == false
/// \endcode
class ExpressionTraitExpr : public Expr {
  /// \brief The trait. A ExpressionTrait enum in MSVC compatible unsigned.
  unsigned ET : 31;
  /// \brief The value of the type trait. Unspecified if dependent.
  unsigned Value : 1;

  /// \brief The location of the type trait keyword.
  SourceLocation Loc;

  /// \brief The location of the closing paren.
  SourceLocation RParen;

  /// \brief The expression being queried.
  Expr* QueriedExpression;
public:
  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
                     Expr *queried, bool value,
                     SourceLocation rparen, QualType resultType)
    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
           false, // Not type-dependent
           // Value-dependent if the argument is type-dependent.
           queried->isTypeDependent(),
           queried->isInstantiationDependent(),
           queried->containsUnexpandedParameterPack()),
      ET(et), Value(value), Loc(loc), RParen(rparen),
      QueriedExpression(queried) { }

  explicit ExpressionTraitExpr(EmptyShell Empty)
    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
      QueriedExpression() { }

  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }

  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }

  Expr *getQueriedExpression() const { return QueriedExpression; }

  bool getValue() const { return Value; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ExpressionTraitExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  friend class ASTStmtReader;
};


/// \brief A reference to an overloaded function set, either an
/// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
class OverloadExpr : public Expr {
  /// \brief The common name of these declarations.
  DeclarationNameInfo NameInfo;

  /// \brief The nested-name-specifier that qualifies the name, if any.
  NestedNameSpecifierLoc QualifierLoc;

  /// The results.  These are undesugared, which is to say, they may
  /// include UsingShadowDecls.  Access is relative to the naming
  /// class.
  // FIXME: Allocate this data after the OverloadExpr subclass.
  DeclAccessPair *Results;
  unsigned NumResults;

protected:
  /// \brief Whether the name includes info for explicit template
  /// keyword and arguments.
  bool HasTemplateKWAndArgsInfo;

  /// \brief Return the optional template keyword and arguments info.
  ASTTemplateKWAndArgsInfo *
  getTrailingASTTemplateKWAndArgsInfo(); // defined far below.

  /// \brief Return the optional template keyword and arguments info.
  const ASTTemplateKWAndArgsInfo *getTrailingASTTemplateKWAndArgsInfo() const {
    return const_cast<OverloadExpr *>(this)
        ->getTrailingASTTemplateKWAndArgsInfo();
  }

  /// Return the optional template arguments.
  TemplateArgumentLoc *getTrailingTemplateArgumentLoc(); // defined far below

  OverloadExpr(StmtClass K, const ASTContext &C,
               NestedNameSpecifierLoc QualifierLoc,
               SourceLocation TemplateKWLoc,
               const DeclarationNameInfo &NameInfo,
               const TemplateArgumentListInfo *TemplateArgs,
               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
               bool KnownDependent,
               bool KnownInstantiationDependent,
               bool KnownContainsUnexpandedParameterPack);

  OverloadExpr(StmtClass K, EmptyShell Empty)
    : Expr(K, Empty), QualifierLoc(), Results(nullptr), NumResults(0),
      HasTemplateKWAndArgsInfo(false) { }

  void initializeResults(const ASTContext &C,
                         UnresolvedSetIterator Begin,
                         UnresolvedSetIterator End);

public:
  struct FindResult {
    OverloadExpr *Expression;
    bool IsAddressOfOperand;
    bool HasFormOfMemberPointer;
  };

  /// \brief Finds the overloaded expression in the given expression \p E of
  /// OverloadTy.
  ///
  /// \return the expression (which must be there) and true if it has
  /// the particular form of a member pointer expression
  static FindResult find(Expr *E) {
    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));

    FindResult Result;

    E = E->IgnoreParens();
    if (isa<UnaryOperator>(E)) {
      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
      E = cast<UnaryOperator>(E)->getSubExpr();
      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());

      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
      Result.IsAddressOfOperand = true;
      Result.Expression = Ovl;
    } else {
      Result.HasFormOfMemberPointer = false;
      Result.IsAddressOfOperand = false;
      Result.Expression = cast<OverloadExpr>(E);
    }

    return Result;
  }

  /// \brief Gets the naming class of this lookup, if any.
  CXXRecordDecl *getNamingClass() const;

  typedef UnresolvedSetImpl::iterator decls_iterator;
  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
  decls_iterator decls_end() const {
    return UnresolvedSetIterator(Results + NumResults);
  }
  llvm::iterator_range<decls_iterator> decls() const {
    return llvm::make_range(decls_begin(), decls_end());
  }

  /// \brief Gets the number of declarations in the unresolved set.
  unsigned getNumDecls() const { return NumResults; }

  /// \brief Gets the full name info.
  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }

  /// \brief Gets the name looked up.
  DeclarationName getName() const { return NameInfo.getName(); }

  /// \brief Gets the location of the name.
  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }

  /// \brief Fetches the nested-name qualifier, if one was given.
  NestedNameSpecifier *getQualifier() const {
    return QualifierLoc.getNestedNameSpecifier();
  }

  /// \brief Fetches the nested-name qualifier with source-location
  /// information, if one was given.
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }

  /// \brief Retrieve the location of the template keyword preceding
  /// this name, if any.
  SourceLocation getTemplateKeywordLoc() const {
    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
    return getTrailingASTTemplateKWAndArgsInfo()->TemplateKWLoc;
  }

  /// \brief Retrieve the location of the left angle bracket starting the
  /// explicit template argument list following the name, if any.
  SourceLocation getLAngleLoc() const {
    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
    return getTrailingASTTemplateKWAndArgsInfo()->LAngleLoc;
  }

  /// \brief Retrieve the location of the right angle bracket ending the
  /// explicit template argument list following the name, if any.
  SourceLocation getRAngleLoc() const {
    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
    return getTrailingASTTemplateKWAndArgsInfo()->RAngleLoc;
  }

  /// \brief Determines whether the name was preceded by the template keyword.
  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }

  /// \brief Determines whether this expression had explicit template arguments.
  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }

  TemplateArgumentLoc const *getTemplateArgs() const {
    if (!hasExplicitTemplateArgs())
      return nullptr;
    return const_cast<OverloadExpr *>(this)->getTrailingTemplateArgumentLoc();
  }

  unsigned getNumTemplateArgs() const {
    if (!hasExplicitTemplateArgs())
      return 0;

    return getTrailingASTTemplateKWAndArgsInfo()->NumTemplateArgs;
  }

  ArrayRef<TemplateArgumentLoc> template_arguments() const {
    return {getTemplateArgs(), getNumTemplateArgs()};
  }

  /// \brief Copies the template arguments into the given structure.
  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    if (hasExplicitTemplateArgs())
      getTrailingASTTemplateKWAndArgsInfo()->copyInto(getTemplateArgs(), List);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == UnresolvedLookupExprClass ||
           T->getStmtClass() == UnresolvedMemberExprClass;
  }

  friend class ASTStmtReader;
  friend class ASTStmtWriter;
};

/// \brief A reference to a name which we were able to look up during
/// parsing but could not resolve to a specific declaration.
///
/// This arises in several ways:
///   * we might be waiting for argument-dependent lookup;
///   * the name might resolve to an overloaded function;
/// and eventually:
///   * the lookup might have included a function template.
///
/// These never include UnresolvedUsingValueDecls, which are always class
/// members and therefore appear only in UnresolvedMemberLookupExprs.
class UnresolvedLookupExpr final
    : public OverloadExpr,
      private llvm::TrailingObjects<
          UnresolvedLookupExpr, ASTTemplateKWAndArgsInfo, TemplateArgumentLoc> {
  /// True if these lookup results should be extended by
  /// argument-dependent lookup if this is the operand of a function
  /// call.
  bool RequiresADL;

  /// True if these lookup results are overloaded.  This is pretty
  /// trivially rederivable if we urgently need to kill this field.
  bool Overloaded;

  /// The naming class (C++ [class.access.base]p5) of the lookup, if
  /// any.  This can generally be recalculated from the context chain,
  /// but that can be fairly expensive for unqualified lookups.  If we
  /// want to improve memory use here, this could go in a union
  /// against the qualified-lookup bits.
  CXXRecordDecl *NamingClass;

  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
    return HasTemplateKWAndArgsInfo ? 1 : 0;
  }

  UnresolvedLookupExpr(const ASTContext &C,
                       CXXRecordDecl *NamingClass,
                       NestedNameSpecifierLoc QualifierLoc,
                       SourceLocation TemplateKWLoc,
                       const DeclarationNameInfo &NameInfo,
                       bool RequiresADL, bool Overloaded,
                       const TemplateArgumentListInfo *TemplateArgs,
                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
                   NameInfo, TemplateArgs, Begin, End, false, false, false),
      RequiresADL(RequiresADL),
      Overloaded(Overloaded), NamingClass(NamingClass)
  {}

  UnresolvedLookupExpr(EmptyShell Empty)
    : OverloadExpr(UnresolvedLookupExprClass, Empty),
      RequiresADL(false), Overloaded(false), NamingClass(nullptr)
  {}

  friend TrailingObjects;
  friend class OverloadExpr;
  friend class ASTStmtReader;

public:
  static UnresolvedLookupExpr *Create(const ASTContext &C,
                                      CXXRecordDecl *NamingClass,
                                      NestedNameSpecifierLoc QualifierLoc,
                                      const DeclarationNameInfo &NameInfo,
                                      bool ADL, bool Overloaded,
                                      UnresolvedSetIterator Begin,
                                      UnresolvedSetIterator End) {
    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
                                       SourceLocation(), NameInfo,
                                       ADL, Overloaded, nullptr, Begin, End);
  }

  static UnresolvedLookupExpr *Create(const ASTContext &C,
                                      CXXRecordDecl *NamingClass,
                                      NestedNameSpecifierLoc QualifierLoc,
                                      SourceLocation TemplateKWLoc,
                                      const DeclarationNameInfo &NameInfo,
                                      bool ADL,
                                      const TemplateArgumentListInfo *Args,
                                      UnresolvedSetIterator Begin,
                                      UnresolvedSetIterator End);

  static UnresolvedLookupExpr *CreateEmpty(const ASTContext &C,
                                           bool HasTemplateKWAndArgsInfo,
                                           unsigned NumTemplateArgs);

  /// True if this declaration should be extended by
  /// argument-dependent lookup.
  bool requiresADL() const { return RequiresADL; }

  /// True if this lookup is overloaded.
  bool isOverloaded() const { return Overloaded; }

  /// Gets the 'naming class' (in the sense of C++0x
  /// [class.access.base]p5) of the lookup.  This is the scope
  /// that was looked in to find these results.
  CXXRecordDecl *getNamingClass() const { return NamingClass; }

  SourceLocation getLocStart() const LLVM_READONLY {
    if (NestedNameSpecifierLoc l = getQualifierLoc())
      return l.getBeginLoc();
    return getNameInfo().getLocStart();
  }
  SourceLocation getLocEnd() const LLVM_READONLY {
    if (hasExplicitTemplateArgs())
      return getRAngleLoc();
    return getNameInfo().getLocEnd();
  }

  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == UnresolvedLookupExprClass;
  }
};

/// \brief A qualified reference to a name whose declaration cannot
/// yet be resolved.
///
/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
/// it expresses a reference to a declaration such as
/// X<T>::value. The difference, however, is that an
/// DependentScopeDeclRefExpr node is used only within C++ templates when
/// the qualification (e.g., X<T>::) refers to a dependent type. In
/// this case, X<T>::value cannot resolve to a declaration because the
/// declaration will differ from one instantiation of X<T> to the
/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
/// qualifier (X<T>::) and the name of the entity being referenced
/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
/// declaration can be found.
class DependentScopeDeclRefExpr final
    : public Expr,
      private llvm::TrailingObjects<DependentScopeDeclRefExpr,
                                    ASTTemplateKWAndArgsInfo,
                                    TemplateArgumentLoc> {
  /// \brief The nested-name-specifier that qualifies this unresolved
  /// declaration name.
  NestedNameSpecifierLoc QualifierLoc;

  /// \brief The name of the entity we will be referencing.
  DeclarationNameInfo NameInfo;

  /// \brief Whether the name includes info for explicit template
  /// keyword and arguments.
  bool HasTemplateKWAndArgsInfo;

  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
    return HasTemplateKWAndArgsInfo ? 1 : 0;
  }

  DependentScopeDeclRefExpr(QualType T,
                            NestedNameSpecifierLoc QualifierLoc,
                            SourceLocation TemplateKWLoc,
                            const DeclarationNameInfo &NameInfo,
                            const TemplateArgumentListInfo *Args);

public:
  static DependentScopeDeclRefExpr *Create(const ASTContext &C,
                                           NestedNameSpecifierLoc QualifierLoc,
                                           SourceLocation TemplateKWLoc,
                                           const DeclarationNameInfo &NameInfo,
                              const TemplateArgumentListInfo *TemplateArgs);

  static DependentScopeDeclRefExpr *CreateEmpty(const ASTContext &C,
                                                bool HasTemplateKWAndArgsInfo,
                                                unsigned NumTemplateArgs);

  /// \brief Retrieve the name that this expression refers to.
  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }

  /// \brief Retrieve the name that this expression refers to.
  DeclarationName getDeclName() const { return NameInfo.getName(); }

  /// \brief Retrieve the location of the name within the expression.
  ///
  /// For example, in "X<T>::value" this is the location of "value".
  SourceLocation getLocation() const { return NameInfo.getLoc(); }

  /// \brief Retrieve the nested-name-specifier that qualifies the
  /// name, with source location information.
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }

  /// \brief Retrieve the nested-name-specifier that qualifies this
  /// declaration.
  NestedNameSpecifier *getQualifier() const {
    return QualifierLoc.getNestedNameSpecifier();
  }

  /// \brief Retrieve the location of the template keyword preceding
  /// this name, if any.
  SourceLocation getTemplateKeywordLoc() const {
    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
  }

  /// \brief Retrieve the location of the left angle bracket starting the
  /// explicit template argument list following the name, if any.
  SourceLocation getLAngleLoc() const {
    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
  }

  /// \brief Retrieve the location of the right angle bracket ending the
  /// explicit template argument list following the name, if any.
  SourceLocation getRAngleLoc() const {
    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
  }

  /// Determines whether the name was preceded by the template keyword.
  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }

  /// Determines whether this lookup had explicit template arguments.
  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }

  /// \brief Copies the template arguments (if present) into the given
  /// structure.
  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    if (hasExplicitTemplateArgs())
      getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
          getTrailingObjects<TemplateArgumentLoc>(), List);
  }

  TemplateArgumentLoc const *getTemplateArgs() const {
    if (!hasExplicitTemplateArgs())
      return nullptr;

    return getTrailingObjects<TemplateArgumentLoc>();
  }

  unsigned getNumTemplateArgs() const {
    if (!hasExplicitTemplateArgs())
      return 0;

    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
  }

  ArrayRef<TemplateArgumentLoc> template_arguments() const {
    return {getTemplateArgs(), getNumTemplateArgs()};
  }

  /// Note: getLocStart() is the start of the whole DependentScopeDeclRefExpr,
  /// and differs from getLocation().getStart().
  SourceLocation getLocStart() const LLVM_READONLY {
    return QualifierLoc.getBeginLoc();
  }
  SourceLocation getLocEnd() const LLVM_READONLY {
    if (hasExplicitTemplateArgs())
      return getRAngleLoc();
    return getLocation();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == DependentScopeDeclRefExprClass;
  }

  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }

  friend TrailingObjects;
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
};

/// Represents an expression -- generally a full-expression -- that
/// introduces cleanups to be run at the end of the sub-expression's
/// evaluation.  The most common source of expression-introduced
/// cleanups is temporary objects in C++, but several other kinds of
/// expressions can create cleanups, including basically every
/// call in ARC that returns an Objective-C pointer.
///
/// This expression also tracks whether the sub-expression contains a
/// potentially-evaluated block literal.  The lifetime of a block
/// literal is the extent of the enclosing scope.
class ExprWithCleanups final
    : public Expr,
      private llvm::TrailingObjects<ExprWithCleanups, BlockDecl *> {
public:
  /// The type of objects that are kept in the cleanup.
  /// It's useful to remember the set of blocks;  we could also
  /// remember the set of temporaries, but there's currently
  /// no need.
  typedef BlockDecl *CleanupObject;

private:
  Stmt *SubExpr;

  ExprWithCleanups(EmptyShell, unsigned NumObjects);
  ExprWithCleanups(Expr *SubExpr, bool CleanupsHaveSideEffects,
                   ArrayRef<CleanupObject> Objects);

  friend TrailingObjects;
  friend class ASTStmtReader;

public:
  static ExprWithCleanups *Create(const ASTContext &C, EmptyShell empty,
                                  unsigned numObjects);

  static ExprWithCleanups *Create(const ASTContext &C, Expr *subexpr,
                                  bool CleanupsHaveSideEffects,
                                  ArrayRef<CleanupObject> objects);

  ArrayRef<CleanupObject> getObjects() const {
    return llvm::makeArrayRef(getTrailingObjects<CleanupObject>(),
                              getNumObjects());
  }

  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }

  CleanupObject getObject(unsigned i) const {
    assert(i < getNumObjects() && "Index out of range");
    return getObjects()[i];
  }

  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
  bool cleanupsHaveSideEffects() const {
    return ExprWithCleanupsBits.CleanupsHaveSideEffects;
  }

  /// As with any mutator of the AST, be very careful
  /// when modifying an existing AST to preserve its invariants.
  void setSubExpr(Expr *E) { SubExpr = E; }

  SourceLocation getLocStart() const LLVM_READONLY {
    return SubExpr->getLocStart();
  }
  SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}

  // Implement isa/cast/dyncast/etc.
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ExprWithCleanupsClass;
  }

  // Iterators
  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
};

/// \brief Describes an explicit type conversion that uses functional
/// notion but could not be resolved because one or more arguments are
/// type-dependent.
///
/// The explicit type conversions expressed by
/// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
/// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
/// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
/// type-dependent. For example, this would occur in a template such
/// as:
///
/// \code
///   template<typename T, typename A1>
///   inline T make_a(const A1& a1) {
///     return T(a1);
///   }
/// \endcode
///
/// When the returned expression is instantiated, it may resolve to a
/// constructor call, conversion function call, or some kind of type
/// conversion.
class CXXUnresolvedConstructExpr final
    : public Expr,
      private llvm::TrailingObjects<CXXUnresolvedConstructExpr, Expr *> {
  /// \brief The type being constructed.
  TypeSourceInfo *Type;

  /// \brief The location of the left parentheses ('(').
  SourceLocation LParenLoc;

  /// \brief The location of the right parentheses (')').
  SourceLocation RParenLoc;

  /// \brief The number of arguments used to construct the type.
  unsigned NumArgs;

  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
                             SourceLocation LParenLoc,
                             ArrayRef<Expr*> Args,
                             SourceLocation RParenLoc);

  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }

  friend TrailingObjects;
  friend class ASTStmtReader;

public:
  static CXXUnresolvedConstructExpr *Create(const ASTContext &C,
                                            TypeSourceInfo *Type,
                                            SourceLocation LParenLoc,
                                            ArrayRef<Expr*> Args,
                                            SourceLocation RParenLoc);

  static CXXUnresolvedConstructExpr *CreateEmpty(const ASTContext &C,
                                                 unsigned NumArgs);

  /// \brief Retrieve the type that is being constructed, as specified
  /// in the source code.
  QualType getTypeAsWritten() const { return Type->getType(); }

  /// \brief Retrieve the type source information for the type being
  /// constructed.
  TypeSourceInfo *getTypeSourceInfo() const { return Type; }

  /// \brief Retrieve the location of the left parentheses ('(') that
  /// precedes the argument list.
  SourceLocation getLParenLoc() const { return LParenLoc; }
  void setLParenLoc(SourceLocation L) { LParenLoc = L; }

  /// \brief Retrieve the location of the right parentheses (')') that
  /// follows the argument list.
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  /// \brief Retrieve the number of arguments.
  unsigned arg_size() const { return NumArgs; }

  typedef Expr** arg_iterator;
  arg_iterator arg_begin() { return getTrailingObjects<Expr *>(); }
  arg_iterator arg_end() { return arg_begin() + NumArgs; }

  typedef const Expr* const * const_arg_iterator;
  const_arg_iterator arg_begin() const { return getTrailingObjects<Expr *>(); }
  const_arg_iterator arg_end() const {
    return arg_begin() + NumArgs;
  }

  Expr *getArg(unsigned I) {
    assert(I < NumArgs && "Argument index out-of-range");
    return *(arg_begin() + I);
  }

  const Expr *getArg(unsigned I) const {
    assert(I < NumArgs && "Argument index out-of-range");
    return *(arg_begin() + I);
  }

  void setArg(unsigned I, Expr *E) {
    assert(I < NumArgs && "Argument index out-of-range");
    *(arg_begin() + I) = E;
  }

  SourceLocation getLocStart() const LLVM_READONLY;
  SourceLocation getLocEnd() const LLVM_READONLY {
    if (!RParenLoc.isValid() && NumArgs > 0)
      return getArg(NumArgs - 1)->getLocEnd();
    return RParenLoc;
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
  }

  // Iterators
  child_range children() {
    Stmt **begin = reinterpret_cast<Stmt **>(arg_begin());
    return child_range(begin, begin + NumArgs);
  }
};

/// \brief Represents a C++ member access expression where the actual
/// member referenced could not be resolved because the base
/// expression or the member name was dependent.
///
/// Like UnresolvedMemberExprs, these can be either implicit or
/// explicit accesses.  It is only possible to get one of these with
/// an implicit access if a qualifier is provided.
class CXXDependentScopeMemberExpr final
    : public Expr,
      private llvm::TrailingObjects<CXXDependentScopeMemberExpr,
                                    ASTTemplateKWAndArgsInfo,
                                    TemplateArgumentLoc> {
  /// \brief The expression for the base pointer or class reference,
  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
  Stmt *Base;

  /// \brief The type of the base expression.  Never null, even for
  /// implicit accesses.
  QualType BaseType;

  /// \brief Whether this member expression used the '->' operator or
  /// the '.' operator.
  bool IsArrow : 1;

  /// \brief Whether this member expression has info for explicit template
  /// keyword and arguments.
  bool HasTemplateKWAndArgsInfo : 1;

  /// \brief The location of the '->' or '.' operator.
  SourceLocation OperatorLoc;

  /// \brief The nested-name-specifier that precedes the member name, if any.
  NestedNameSpecifierLoc QualifierLoc;

  /// \brief In a qualified member access expression such as t->Base::f, this
  /// member stores the resolves of name lookup in the context of the member
  /// access expression, to be used at instantiation time.
  ///
  /// FIXME: This member, along with the QualifierLoc, could
  /// be stuck into a structure that is optionally allocated at the end of
  /// the CXXDependentScopeMemberExpr, to save space in the common case.
  NamedDecl *FirstQualifierFoundInScope;

  /// \brief The member to which this member expression refers, which
  /// can be name, overloaded operator, or destructor.
  ///
  /// FIXME: could also be a template-id
  DeclarationNameInfo MemberNameInfo;

  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
    return HasTemplateKWAndArgsInfo ? 1 : 0;
  }

  CXXDependentScopeMemberExpr(const ASTContext &C, Expr *Base,
                              QualType BaseType, bool IsArrow,
                              SourceLocation OperatorLoc,
                              NestedNameSpecifierLoc QualifierLoc,
                              SourceLocation TemplateKWLoc,
                              NamedDecl *FirstQualifierFoundInScope,
                              DeclarationNameInfo MemberNameInfo,
                              const TemplateArgumentListInfo *TemplateArgs);

public:
  CXXDependentScopeMemberExpr(const ASTContext &C, Expr *Base,
                              QualType BaseType, bool IsArrow,
                              SourceLocation OperatorLoc,
                              NestedNameSpecifierLoc QualifierLoc,
                              NamedDecl *FirstQualifierFoundInScope,
                              DeclarationNameInfo MemberNameInfo);

  static CXXDependentScopeMemberExpr *
  Create(const ASTContext &C, Expr *Base, QualType BaseType, bool IsArrow,
         SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc,
         SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope,
         DeclarationNameInfo MemberNameInfo,
         const TemplateArgumentListInfo *TemplateArgs);

  static CXXDependentScopeMemberExpr *
  CreateEmpty(const ASTContext &C, bool HasTemplateKWAndArgsInfo,
              unsigned NumTemplateArgs);

  /// \brief True if this is an implicit access, i.e. one in which the
  /// member being accessed was not written in the source.  The source
  /// location of the operator is invalid in this case.
  bool isImplicitAccess() const;

  /// \brief Retrieve the base object of this member expressions,
  /// e.g., the \c x in \c x.m.
  Expr *getBase() const {
    assert(!isImplicitAccess());
    return cast<Expr>(Base);
  }

  QualType getBaseType() const { return BaseType; }

  /// \brief Determine whether this member expression used the '->'
  /// operator; otherwise, it used the '.' operator.
  bool isArrow() const { return IsArrow; }

  /// \brief Retrieve the location of the '->' or '.' operator.
  SourceLocation getOperatorLoc() const { return OperatorLoc; }

  /// \brief Retrieve the nested-name-specifier that qualifies the member
  /// name.
  NestedNameSpecifier *getQualifier() const {
    return QualifierLoc.getNestedNameSpecifier();
  }

  /// \brief Retrieve the nested-name-specifier that qualifies the member
  /// name, with source location information.
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }


  /// \brief Retrieve the first part of the nested-name-specifier that was
  /// found in the scope of the member access expression when the member access
  /// was initially parsed.
  ///
  /// This function only returns a useful result when member access expression
  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
  /// returned by this function describes what was found by unqualified name
  /// lookup for the identifier "Base" within the scope of the member access
  /// expression itself. At template instantiation time, this information is
  /// combined with the results of name lookup into the type of the object
  /// expression itself (the class type of x).
  NamedDecl *getFirstQualifierFoundInScope() const {
    return FirstQualifierFoundInScope;
  }

  /// \brief Retrieve the name of the member that this expression
  /// refers to.
  const DeclarationNameInfo &getMemberNameInfo() const {
    return MemberNameInfo;
  }

  /// \brief Retrieve the name of the member that this expression
  /// refers to.
  DeclarationName getMember() const { return MemberNameInfo.getName(); }

  // \brief Retrieve the location of the name of the member that this
  // expression refers to.
  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }

  /// \brief Retrieve the location of the template keyword preceding the
  /// member name, if any.
  SourceLocation getTemplateKeywordLoc() const {
    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
  }

  /// \brief Retrieve the location of the left angle bracket starting the
  /// explicit template argument list following the member name, if any.
  SourceLocation getLAngleLoc() const {
    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
  }

  /// \brief Retrieve the location of the right angle bracket ending the
  /// explicit template argument list following the member name, if any.
  SourceLocation getRAngleLoc() const {
    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
  }

  /// Determines whether the member name was preceded by the template keyword.
  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }

  /// \brief Determines whether this member expression actually had a C++
  /// template argument list explicitly specified, e.g., x.f<int>.
  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }

  /// \brief Copies the template arguments (if present) into the given
  /// structure.
  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    if (hasExplicitTemplateArgs())
      getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
          getTrailingObjects<TemplateArgumentLoc>(), List);
  }

  /// \brief Retrieve the template arguments provided as part of this
  /// template-id.
  const TemplateArgumentLoc *getTemplateArgs() const {
    if (!hasExplicitTemplateArgs())
      return nullptr;

    return getTrailingObjects<TemplateArgumentLoc>();
  }

  /// \brief Retrieve the number of template arguments provided as part of this
  /// template-id.
  unsigned getNumTemplateArgs() const {
    if (!hasExplicitTemplateArgs())
      return 0;

    return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
  }

  ArrayRef<TemplateArgumentLoc> template_arguments() const {
    return {getTemplateArgs(), getNumTemplateArgs()};
  }

  SourceLocation getLocStart() const LLVM_READONLY {
    if (!isImplicitAccess())
      return Base->getLocStart();
    if (getQualifier())
      return getQualifierLoc().getBeginLoc();
    return MemberNameInfo.getBeginLoc();
  }

  SourceLocation getLocEnd() const LLVM_READONLY {
    if (hasExplicitTemplateArgs())
      return getRAngleLoc();
    return MemberNameInfo.getEndLoc();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
  }

  // Iterators
  child_range children() {
    if (isImplicitAccess())
      return child_range(child_iterator(), child_iterator());
    return child_range(&Base, &Base + 1);
  }

  friend TrailingObjects;
  friend class ASTStmtReader;
  friend class ASTStmtWriter;
};

/// \brief Represents a C++ member access expression for which lookup
/// produced a set of overloaded functions.
///
/// The member access may be explicit or implicit:
/// \code
///    struct A {
///      int a, b;
///      int explicitAccess() { return this->a + this->A::b; }
///      int implicitAccess() { return a + A::b; }
///    };
/// \endcode
///
/// In the final AST, an explicit access always becomes a MemberExpr.
/// An implicit access may become either a MemberExpr or a
/// DeclRefExpr, depending on whether the member is static.
class UnresolvedMemberExpr final
    : public OverloadExpr,
      private llvm::TrailingObjects<
          UnresolvedMemberExpr, ASTTemplateKWAndArgsInfo, TemplateArgumentLoc> {
  /// \brief Whether this member expression used the '->' operator or
  /// the '.' operator.
  bool IsArrow : 1;

  /// \brief Whether the lookup results contain an unresolved using
  /// declaration.
  bool HasUnresolvedUsing : 1;

  /// \brief The expression for the base pointer or class reference,
  /// e.g., the \c x in x.f.
  ///
  /// This can be null if this is an 'unbased' member expression.
  Stmt *Base;

  /// \brief The type of the base expression; never null.
  QualType BaseType;

  /// \brief The location of the '->' or '.' operator.
  SourceLocation OperatorLoc;

  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
    return HasTemplateKWAndArgsInfo ? 1 : 0;
  }

  UnresolvedMemberExpr(const ASTContext &C, bool HasUnresolvedUsing,
                       Expr *Base, QualType BaseType, bool IsArrow,
                       SourceLocation OperatorLoc,
                       NestedNameSpecifierLoc QualifierLoc,
                       SourceLocation TemplateKWLoc,
                       const DeclarationNameInfo &MemberNameInfo,
                       const TemplateArgumentListInfo *TemplateArgs,
                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);

  UnresolvedMemberExpr(EmptyShell Empty)
    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
      HasUnresolvedUsing(false), Base(nullptr) { }

  friend TrailingObjects;
  friend class OverloadExpr;
  friend class ASTStmtReader;

public:
  static UnresolvedMemberExpr *
  Create(const ASTContext &C, bool HasUnresolvedUsing,
         Expr *Base, QualType BaseType, bool IsArrow,
         SourceLocation OperatorLoc,
         NestedNameSpecifierLoc QualifierLoc,
         SourceLocation TemplateKWLoc,
         const DeclarationNameInfo &MemberNameInfo,
         const TemplateArgumentListInfo *TemplateArgs,
         UnresolvedSetIterator Begin, UnresolvedSetIterator End);

  static UnresolvedMemberExpr *
  CreateEmpty(const ASTContext &C, bool HasTemplateKWAndArgsInfo,
              unsigned NumTemplateArgs);

  /// \brief True if this is an implicit access, i.e., one in which the
  /// member being accessed was not written in the source.
  ///
  /// The source location of the operator is invalid in this case.
  bool isImplicitAccess() const;

  /// \brief Retrieve the base object of this member expressions,
  /// e.g., the \c x in \c x.m.
  Expr *getBase() {
    assert(!isImplicitAccess());
    return cast<Expr>(Base);
  }
  const Expr *getBase() const {
    assert(!isImplicitAccess());
    return cast<Expr>(Base);
  }

  QualType getBaseType() const { return BaseType; }

  /// \brief Determine whether the lookup results contain an unresolved using
  /// declaration.
  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }

  /// \brief Determine whether this member expression used the '->'
  /// operator; otherwise, it used the '.' operator.
  bool isArrow() const { return IsArrow; }

  /// \brief Retrieve the location of the '->' or '.' operator.
  SourceLocation getOperatorLoc() const { return OperatorLoc; }

  /// \brief Retrieve the naming class of this lookup.
  CXXRecordDecl *getNamingClass() const;

  /// \brief Retrieve the full name info for the member that this expression
  /// refers to.
  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }

  /// \brief Retrieve the name of the member that this expression
  /// refers to.
  DeclarationName getMemberName() const { return getName(); }

  // \brief Retrieve the location of the name of the member that this
  // expression refers to.
  SourceLocation getMemberLoc() const { return getNameLoc(); }

  // \brief Return the preferred location (the member name) for the arrow when
  // diagnosing a problem with this expression.
  SourceLocation getExprLoc() const LLVM_READONLY { return getMemberLoc(); }

  SourceLocation getLocStart() const LLVM_READONLY {
    if (!isImplicitAccess())
      return Base->getLocStart();
    if (NestedNameSpecifierLoc l = getQualifierLoc())
      return l.getBeginLoc();
    return getMemberNameInfo().getLocStart();
  }
  SourceLocation getLocEnd() const LLVM_READONLY {
    if (hasExplicitTemplateArgs())
      return getRAngleLoc();
    return getMemberNameInfo().getLocEnd();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == UnresolvedMemberExprClass;
  }

  // Iterators
  child_range children() {
    if (isImplicitAccess())
      return child_range(child_iterator(), child_iterator());
    return child_range(&Base, &Base + 1);
  }
};

inline ASTTemplateKWAndArgsInfo *
OverloadExpr::getTrailingASTTemplateKWAndArgsInfo() {
  if (!HasTemplateKWAndArgsInfo)
    return nullptr;

  if (isa<UnresolvedLookupExpr>(this))
    return cast<UnresolvedLookupExpr>(this)
        ->getTrailingObjects<ASTTemplateKWAndArgsInfo>();
  else
    return cast<UnresolvedMemberExpr>(this)
        ->getTrailingObjects<ASTTemplateKWAndArgsInfo>();
}

inline TemplateArgumentLoc *OverloadExpr::getTrailingTemplateArgumentLoc() {
  if (isa<UnresolvedLookupExpr>(this))
    return cast<UnresolvedLookupExpr>(this)
        ->getTrailingObjects<TemplateArgumentLoc>();
  else
    return cast<UnresolvedMemberExpr>(this)
        ->getTrailingObjects<TemplateArgumentLoc>();
}

/// \brief Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
///
/// The noexcept expression tests whether a given expression might throw. Its
/// result is a boolean constant.
class CXXNoexceptExpr : public Expr {
  bool Value : 1;
  Stmt *Operand;
  SourceRange Range;

  friend class ASTStmtReader;

public:
  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
                  SourceLocation Keyword, SourceLocation RParen)
    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
           /*TypeDependent*/false,
           /*ValueDependent*/Val == CT_Dependent,
           Val == CT_Dependent || Operand->isInstantiationDependent(),
           Operand->containsUnexpandedParameterPack()),
      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
  { }

  CXXNoexceptExpr(EmptyShell Empty)
    : Expr(CXXNoexceptExprClass, Empty)
  { }

  Expr *getOperand() const { return static_cast<Expr*>(Operand); }

  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
  SourceRange getSourceRange() const LLVM_READONLY { return Range; }

  bool getValue() const { return Value; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXNoexceptExprClass;
  }

  // Iterators
  child_range children() { return child_range(&Operand, &Operand + 1); }
};

/// \brief Represents a C++11 pack expansion that produces a sequence of
/// expressions.
///
/// A pack expansion expression contains a pattern (which itself is an
/// expression) followed by an ellipsis. For example:
///
/// \code
/// template<typename F, typename ...Types>
/// void forward(F f, Types &&...args) {
///   f(static_cast<Types&&>(args)...);
/// }
/// \endcode
///
/// Here, the argument to the function object \c f is a pack expansion whose
/// pattern is \c static_cast<Types&&>(args). When the \c forward function
/// template is instantiated, the pack expansion will instantiate to zero or
/// or more function arguments to the function object \c f.
class PackExpansionExpr : public Expr {
  SourceLocation EllipsisLoc;

  /// \brief The number of expansions that will be produced by this pack
  /// expansion expression, if known.
  ///
  /// When zero, the number of expansions is not known. Otherwise, this value
  /// is the number of expansions + 1.
  unsigned NumExpansions;

  Stmt *Pattern;

  friend class ASTStmtReader;
  friend class ASTStmtWriter;

public:
  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
                    Optional<unsigned> NumExpansions)
    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
           Pattern->getObjectKind(), /*TypeDependent=*/true,
           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
           /*ContainsUnexpandedParameterPack=*/false),
      EllipsisLoc(EllipsisLoc),
      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
      Pattern(Pattern) { }

  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }

  /// \brief Retrieve the pattern of the pack expansion.
  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }

  /// \brief Retrieve the pattern of the pack expansion.
  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }

  /// \brief Retrieve the location of the ellipsis that describes this pack
  /// expansion.
  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }

  /// \brief Determine the number of expansions that will be produced when
  /// this pack expansion is instantiated, if already known.
  Optional<unsigned> getNumExpansions() const {
    if (NumExpansions)
      return NumExpansions - 1;

    return None;
  }

  SourceLocation getLocStart() const LLVM_READONLY {
    return Pattern->getLocStart();
  }
  SourceLocation getLocEnd() const LLVM_READONLY { return EllipsisLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == PackExpansionExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(&Pattern, &Pattern + 1);
  }
};


/// \brief Represents an expression that computes the length of a parameter
/// pack.
///
/// \code
/// template<typename ...Types>
/// struct count {
///   static const unsigned value = sizeof...(Types);
/// };
/// \endcode
class SizeOfPackExpr final
    : public Expr,
      private llvm::TrailingObjects<SizeOfPackExpr, TemplateArgument> {
  /// \brief The location of the \c sizeof keyword.
  SourceLocation OperatorLoc;

  /// \brief The location of the name of the parameter pack.
  SourceLocation PackLoc;

  /// \brief The location of the closing parenthesis.
  SourceLocation RParenLoc;

  /// \brief The length of the parameter pack, if known.
  ///
  /// When this expression is not value-dependent, this is the length of
  /// the pack. When the expression was parsed rather than instantiated
  /// (and thus is value-dependent), this is zero.
  ///
  /// After partial substitution into a sizeof...(X) expression (for instance,
  /// within an alias template or during function template argument deduction),
  /// we store a trailing array of partially-substituted TemplateArguments,
  /// and this is the length of that array.
  unsigned Length;

  /// \brief The parameter pack.
  NamedDecl *Pack;

  friend TrailingObjects;
  friend class ASTStmtReader;
  friend class ASTStmtWriter;

  /// \brief Create an expression that computes the length of
  /// the given parameter pack.
  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
                 SourceLocation PackLoc, SourceLocation RParenLoc,
                 Optional<unsigned> Length, ArrayRef<TemplateArgument> PartialArgs)
      : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
             /*TypeDependent=*/false, /*ValueDependent=*/!Length,
             /*InstantiationDependent=*/!Length,
             /*ContainsUnexpandedParameterPack=*/false),
        OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
        Length(Length ? *Length : PartialArgs.size()), Pack(Pack) {
    assert((!Length || PartialArgs.empty()) &&
           "have partial args for non-dependent sizeof... expression");
    TemplateArgument *Args = getTrailingObjects<TemplateArgument>();
    std::uninitialized_copy(PartialArgs.begin(), PartialArgs.end(), Args);
  }

  /// \brief Create an empty expression.
  SizeOfPackExpr(EmptyShell Empty, unsigned NumPartialArgs)
      : Expr(SizeOfPackExprClass, Empty), Length(NumPartialArgs), Pack() {}

public:
  static SizeOfPackExpr *Create(ASTContext &Context, SourceLocation OperatorLoc,
                                NamedDecl *Pack, SourceLocation PackLoc,
                                SourceLocation RParenLoc,
                                Optional<unsigned> Length = None,
                                ArrayRef<TemplateArgument> PartialArgs = None);
  static SizeOfPackExpr *CreateDeserialized(ASTContext &Context,
                                            unsigned NumPartialArgs);

  /// \brief Determine the location of the 'sizeof' keyword.
  SourceLocation getOperatorLoc() const { return OperatorLoc; }

  /// \brief Determine the location of the parameter pack.
  SourceLocation getPackLoc() const { return PackLoc; }

  /// \brief Determine the location of the right parenthesis.
  SourceLocation getRParenLoc() const { return RParenLoc; }

  /// \brief Retrieve the parameter pack.
  NamedDecl *getPack() const { return Pack; }

  /// \brief Retrieve the length of the parameter pack.
  ///
  /// This routine may only be invoked when the expression is not
  /// value-dependent.
  unsigned getPackLength() const {
    assert(!isValueDependent() &&
           "Cannot get the length of a value-dependent pack size expression");
    return Length;
  }

  /// \brief Determine whether this represents a partially-substituted sizeof...
  /// expression, such as is produced for:
  ///
  ///   template<typename ...Ts> using X = int[sizeof...(Ts)];
  ///   template<typename ...Us> void f(X<Us..., 1, 2, 3, Us...>);
  bool isPartiallySubstituted() const {
    return isValueDependent() && Length;
  }

  /// \brief Get
  ArrayRef<TemplateArgument> getPartialArguments() const {
    assert(isPartiallySubstituted());
    const TemplateArgument *Args = getTrailingObjects<TemplateArgument>();
    return llvm::makeArrayRef(Args, Args + Length);
  }

  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == SizeOfPackExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
};

/// \brief Represents a reference to a non-type template parameter
/// that has been substituted with a template argument.
class SubstNonTypeTemplateParmExpr : public Expr {
  /// \brief The replaced parameter.
  NonTypeTemplateParmDecl *Param;

  /// \brief The replacement expression.
  Stmt *Replacement;

  /// \brief The location of the non-type template parameter reference.
  SourceLocation NameLoc;

  friend class ASTReader;
  friend class ASTStmtReader;
  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }

public:
  SubstNonTypeTemplateParmExpr(QualType type,
                               ExprValueKind valueKind,
                               SourceLocation loc,
                               NonTypeTemplateParmDecl *param,
                               Expr *replacement)
    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
           replacement->isTypeDependent(), replacement->isValueDependent(),
           replacement->isInstantiationDependent(),
           replacement->containsUnexpandedParameterPack()),
      Param(param), Replacement(replacement), NameLoc(loc) {}

  SourceLocation getNameLoc() const { return NameLoc; }
  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }

  Expr *getReplacement() const { return cast<Expr>(Replacement); }

  NonTypeTemplateParmDecl *getParameter() const { return Param; }

  static bool classof(const Stmt *s) {
    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
  }

  // Iterators
  child_range children() { return child_range(&Replacement, &Replacement+1); }
};

/// \brief Represents a reference to a non-type template parameter pack that
/// has been substituted with a non-template argument pack.
///
/// When a pack expansion in the source code contains multiple parameter packs
/// and those parameter packs correspond to different levels of template
/// parameter lists, this node is used to represent a non-type template
/// parameter pack from an outer level, which has already had its argument pack
/// substituted but that still lives within a pack expansion that itself
/// could not be instantiated. When actually performing a substitution into
/// that pack expansion (e.g., when all template parameters have corresponding
/// arguments), this type will be replaced with the appropriate underlying
/// expression at the current pack substitution index.
class SubstNonTypeTemplateParmPackExpr : public Expr {
  /// \brief The non-type template parameter pack itself.
  NonTypeTemplateParmDecl *Param;

  /// \brief A pointer to the set of template arguments that this
  /// parameter pack is instantiated with.
  const TemplateArgument *Arguments;

  /// \brief The number of template arguments in \c Arguments.
  unsigned NumArguments;

  /// \brief The location of the non-type template parameter pack reference.
  SourceLocation NameLoc;

  friend class ASTReader;
  friend class ASTStmtReader;
  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }

public:
  SubstNonTypeTemplateParmPackExpr(QualType T,
                                   NonTypeTemplateParmDecl *Param,
                                   SourceLocation NameLoc,
                                   const TemplateArgument &ArgPack);

  /// \brief Retrieve the non-type template parameter pack being substituted.
  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }

  /// \brief Retrieve the location of the parameter pack name.
  SourceLocation getParameterPackLocation() const { return NameLoc; }

  /// \brief Retrieve the template argument pack containing the substituted
  /// template arguments.
  TemplateArgument getArgumentPack() const;

  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
  }

  // Iterators
  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
};

/// \brief Represents a reference to a function parameter pack that has been
/// substituted but not yet expanded.
///
/// When a pack expansion contains multiple parameter packs at different levels,
/// this node is used to represent a function parameter pack at an outer level
/// which we have already substituted to refer to expanded parameters, but where
/// the containing pack expansion cannot yet be expanded.
///
/// \code
/// template<typename...Ts> struct S {
///   template<typename...Us> auto f(Ts ...ts) -> decltype(g(Us(ts)...));
/// };
/// template struct S<int, int>;
/// \endcode
class FunctionParmPackExpr final
    : public Expr,
      private llvm::TrailingObjects<FunctionParmPackExpr, ParmVarDecl *> {
  /// \brief The function parameter pack which was referenced.
  ParmVarDecl *ParamPack;

  /// \brief The location of the function parameter pack reference.
  SourceLocation NameLoc;

  /// \brief The number of expansions of this pack.
  unsigned NumParameters;

  FunctionParmPackExpr(QualType T, ParmVarDecl *ParamPack,
                       SourceLocation NameLoc, unsigned NumParams,
                       ParmVarDecl *const *Params);

  friend TrailingObjects;
  friend class ASTReader;
  friend class ASTStmtReader;

public:
  static FunctionParmPackExpr *Create(const ASTContext &Context, QualType T,
                                      ParmVarDecl *ParamPack,
                                      SourceLocation NameLoc,
                                      ArrayRef<ParmVarDecl *> Params);
  static FunctionParmPackExpr *CreateEmpty(const ASTContext &Context,
                                           unsigned NumParams);

  /// \brief Get the parameter pack which this expression refers to.
  ParmVarDecl *getParameterPack() const { return ParamPack; }

  /// \brief Get the location of the parameter pack.
  SourceLocation getParameterPackLocation() const { return NameLoc; }

  /// \brief Iterators over the parameters which the parameter pack expanded
  /// into.
  typedef ParmVarDecl * const *iterator;
  iterator begin() const { return getTrailingObjects<ParmVarDecl *>(); }
  iterator end() const { return begin() + NumParameters; }

  /// \brief Get the number of parameters in this parameter pack.
  unsigned getNumExpansions() const { return NumParameters; }

  /// \brief Get an expansion of the parameter pack by index.
  ParmVarDecl *getExpansion(unsigned I) const { return begin()[I]; }

  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == FunctionParmPackExprClass;
  }

  child_range children() {
    return child_range(child_iterator(), child_iterator());
  }
};

/// \brief Represents a prvalue temporary that is written into memory so that
/// a reference can bind to it.
///
/// Prvalue expressions are materialized when they need to have an address
/// in memory for a reference to bind to. This happens when binding a
/// reference to the result of a conversion, e.g.,
///
/// \code
/// const int &r = 1.0;
/// \endcode
///
/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
/// then materialized via a \c MaterializeTemporaryExpr, and the reference
/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
/// (either an lvalue or an xvalue, depending on the kind of reference binding
/// to it), maintaining the invariant that references always bind to glvalues.
///
/// Reference binding and copy-elision can both extend the lifetime of a
/// temporary. When either happens, the expression will also track the
/// declaration which is responsible for the lifetime extension.
class MaterializeTemporaryExpr : public Expr {
private:
  struct ExtraState {
    /// \brief The temporary-generating expression whose value will be
    /// materialized.
    Stmt *Temporary;

    /// \brief The declaration which lifetime-extended this reference, if any.
    /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
    const ValueDecl *ExtendingDecl;

    unsigned ManglingNumber;
  };
  llvm::PointerUnion<Stmt *, ExtraState *> State;

  friend class ASTStmtReader;
  friend class ASTStmtWriter;

  void initializeExtraState(const ValueDecl *ExtendedBy,
                            unsigned ManglingNumber);

public:
  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
                           bool BoundToLvalueReference)
    : Expr(MaterializeTemporaryExprClass, T,
           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
           Temporary->isTypeDependent(), Temporary->isValueDependent(),
           Temporary->isInstantiationDependent(),
           Temporary->containsUnexpandedParameterPack()),
        State(Temporary) {}

  MaterializeTemporaryExpr(EmptyShell Empty)
    : Expr(MaterializeTemporaryExprClass, Empty) { }

  Stmt *getTemporary() const {
    return State.is<Stmt *>() ? State.get<Stmt *>()
                              : State.get<ExtraState *>()->Temporary;
  }

  /// \brief Retrieve the temporary-generating subexpression whose value will
  /// be materialized into a glvalue.
  Expr *GetTemporaryExpr() const { return static_cast<Expr *>(getTemporary()); }

  /// \brief Retrieve the storage duration for the materialized temporary.
  StorageDuration getStorageDuration() const {
    const ValueDecl *ExtendingDecl = getExtendingDecl();
    if (!ExtendingDecl)
      return SD_FullExpression;
    // FIXME: This is not necessarily correct for a temporary materialized
    // within a default initializer.
    if (isa<FieldDecl>(ExtendingDecl))
      return SD_Automatic;
    return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
  }

  /// \brief Get the declaration which triggered the lifetime-extension of this
  /// temporary, if any.
  const ValueDecl *getExtendingDecl() const {
    return State.is<Stmt *>() ? nullptr
                              : State.get<ExtraState *>()->ExtendingDecl;
  }

  void setExtendingDecl(const ValueDecl *ExtendedBy, unsigned ManglingNumber);

  unsigned getManglingNumber() const {
    return State.is<Stmt *>() ? 0 : State.get<ExtraState *>()->ManglingNumber;
  }

  /// \brief Determine whether this materialized temporary is bound to an
  /// lvalue reference; otherwise, it's bound to an rvalue reference.
  bool isBoundToLvalueReference() const {
    return getValueKind() == VK_LValue;
  }

  SourceLocation getLocStart() const LLVM_READONLY {
    return getTemporary()->getLocStart();
  }
  SourceLocation getLocEnd() const LLVM_READONLY {
    return getTemporary()->getLocEnd();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == MaterializeTemporaryExprClass;
  }

  // Iterators
  child_range children() {
    if (State.is<Stmt *>())
      return child_range(State.getAddrOfPtr1(), State.getAddrOfPtr1() + 1);

    auto ES = State.get<ExtraState *>();
    return child_range(&ES->Temporary, &ES->Temporary + 1);
  }
};

/// \brief Represents a folding of a pack over an operator.
///
/// This expression is always dependent and represents a pack expansion of the
/// forms:
///
///    ( expr op ... )
///    ( ... op expr )
///    ( expr op ... op expr )
class CXXFoldExpr : public Expr {
  SourceLocation LParenLoc;
  SourceLocation EllipsisLoc;
  SourceLocation RParenLoc;
  Stmt *SubExprs[2];
  BinaryOperatorKind Opcode;

  friend class ASTStmtReader;
  friend class ASTStmtWriter;
public:
  CXXFoldExpr(QualType T, SourceLocation LParenLoc, Expr *LHS,
              BinaryOperatorKind Opcode, SourceLocation EllipsisLoc, Expr *RHS,
              SourceLocation RParenLoc)
      : Expr(CXXFoldExprClass, T, VK_RValue, OK_Ordinary,
             /*Dependent*/ true, true, true,
             /*ContainsUnexpandedParameterPack*/ false),
        LParenLoc(LParenLoc), EllipsisLoc(EllipsisLoc), RParenLoc(RParenLoc),
        Opcode(Opcode) {
    SubExprs[0] = LHS;
    SubExprs[1] = RHS;
  }
  CXXFoldExpr(EmptyShell Empty) : Expr(CXXFoldExprClass, Empty) {}

  Expr *getLHS() const { return static_cast<Expr*>(SubExprs[0]); }
  Expr *getRHS() const { return static_cast<Expr*>(SubExprs[1]); }

  /// Does this produce a right-associated sequence of operators?
  bool isRightFold() const {
    return getLHS() && getLHS()->containsUnexpandedParameterPack();
  }
  /// Does this produce a left-associated sequence of operators?
  bool isLeftFold() const { return !isRightFold(); }
  /// Get the pattern, that is, the operand that contains an unexpanded pack.
  Expr *getPattern() const { return isLeftFold() ? getRHS() : getLHS(); }
  /// Get the operand that doesn't contain a pack, for a binary fold.
  Expr *getInit() const { return isLeftFold() ? getLHS() : getRHS(); }

  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
  BinaryOperatorKind getOperator() const { return Opcode; }

  SourceLocation getLocStart() const LLVM_READONLY {
    return LParenLoc;
  }
  SourceLocation getLocEnd() const LLVM_READONLY {
    return RParenLoc;
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CXXFoldExprClass;
  }

  // Iterators
  child_range children() { return child_range(SubExprs, SubExprs + 2); }
};

/// \brief Represents an expression that might suspend coroutine execution;
/// either a co_await or co_yield expression.
///
/// Evaluation of this expression first evaluates its 'ready' expression. If
/// that returns 'false':
///  -- execution of the coroutine is suspended
///  -- the 'suspend' expression is evaluated
///     -- if the 'suspend' expression returns 'false', the coroutine is
///        resumed
///     -- otherwise, control passes back to the resumer.
/// If the coroutine is not suspended, or when it is resumed, the 'resume'
/// expression is evaluated, and its result is the result of the overall
/// expression.
class CoroutineSuspendExpr : public Expr {
  SourceLocation KeywordLoc;

  enum SubExpr { Common, Ready, Suspend, Resume, Count };
  Stmt *SubExprs[SubExpr::Count];

  friend class ASTStmtReader;
public:
  CoroutineSuspendExpr(StmtClass SC, SourceLocation KeywordLoc, Expr *Common,
                       Expr *Ready, Expr *Suspend, Expr *Resume)
      : Expr(SC, Resume->getType(), Resume->getValueKind(),
             Resume->getObjectKind(), Resume->isTypeDependent(),
             Resume->isValueDependent(), Common->isInstantiationDependent(),
             Common->containsUnexpandedParameterPack()),
        KeywordLoc(KeywordLoc) {
    SubExprs[SubExpr::Common] = Common;
    SubExprs[SubExpr::Ready] = Ready;
    SubExprs[SubExpr::Suspend] = Suspend;
    SubExprs[SubExpr::Resume] = Resume;
  }
  CoroutineSuspendExpr(StmtClass SC, SourceLocation KeywordLoc, QualType Ty,
                       Expr *Common)
      : Expr(SC, Ty, VK_RValue, OK_Ordinary, true, true, true,
             Common->containsUnexpandedParameterPack()),
        KeywordLoc(KeywordLoc) {
    assert(Common->isTypeDependent() && Ty->isDependentType() &&
           "wrong constructor for non-dependent co_await/co_yield expression");
    SubExprs[SubExpr::Common] = Common;
    SubExprs[SubExpr::Ready] = nullptr;
    SubExprs[SubExpr::Suspend] = nullptr;
    SubExprs[SubExpr::Resume] = nullptr;
  }
  CoroutineSuspendExpr(StmtClass SC, EmptyShell Empty) : Expr(SC, Empty) {
    SubExprs[SubExpr::Common] = nullptr;
    SubExprs[SubExpr::Ready] = nullptr;
    SubExprs[SubExpr::Suspend] = nullptr;
    SubExprs[SubExpr::Resume] = nullptr;
  }

  SourceLocation getKeywordLoc() const { return KeywordLoc; }
  Expr *getCommonExpr() const {
    return static_cast<Expr*>(SubExprs[SubExpr::Common]);
  }

  Expr *getReadyExpr() const {
    return static_cast<Expr*>(SubExprs[SubExpr::Ready]);
  }
  Expr *getSuspendExpr() const {
    return static_cast<Expr*>(SubExprs[SubExpr::Suspend]);
  }
  Expr *getResumeExpr() const {
    return static_cast<Expr*>(SubExprs[SubExpr::Resume]);
  }

  SourceLocation getLocStart() const LLVM_READONLY {
    return KeywordLoc;
  }
  SourceLocation getLocEnd() const LLVM_READONLY {
    return getCommonExpr()->getLocEnd();
  }

  child_range children() {
    return child_range(SubExprs, SubExprs + SubExpr::Count);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CoawaitExprClass ||
           T->getStmtClass() == CoyieldExprClass;
  }
};

/// \brief Represents a 'co_await' expression.
class CoawaitExpr : public CoroutineSuspendExpr {
  friend class ASTStmtReader;
public:
  CoawaitExpr(SourceLocation CoawaitLoc, Expr *Operand, Expr *Ready,
              Expr *Suspend, Expr *Resume)
      : CoroutineSuspendExpr(CoawaitExprClass, CoawaitLoc, Operand, Ready,
                             Suspend, Resume) {}
  CoawaitExpr(SourceLocation CoawaitLoc, QualType Ty, Expr *Operand)
      : CoroutineSuspendExpr(CoawaitExprClass, CoawaitLoc, Ty, Operand) {}
  CoawaitExpr(EmptyShell Empty)
      : CoroutineSuspendExpr(CoawaitExprClass, Empty) {}

  Expr *getOperand() const {
    // FIXME: Dig out the actual operand or store it.
    return getCommonExpr();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CoawaitExprClass;
  }
};

/// \brief Represents a 'co_yield' expression.
class CoyieldExpr : public CoroutineSuspendExpr {
  friend class ASTStmtReader;
public:
  CoyieldExpr(SourceLocation CoyieldLoc, Expr *Operand, Expr *Ready,
              Expr *Suspend, Expr *Resume)
      : CoroutineSuspendExpr(CoyieldExprClass, CoyieldLoc, Operand, Ready,
                             Suspend, Resume) {}
  CoyieldExpr(SourceLocation CoyieldLoc, QualType Ty, Expr *Operand)
      : CoroutineSuspendExpr(CoyieldExprClass, CoyieldLoc, Ty, Operand) {}
  CoyieldExpr(EmptyShell Empty)
      : CoroutineSuspendExpr(CoyieldExprClass, Empty) {}

  Expr *getOperand() const {
    // FIXME: Dig out the actual operand or store it.
    return getCommonExpr();
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CoyieldExprClass;
  }
};

}  // end namespace clang

#endif