aboutsummaryrefslogtreecommitdiff
path: root/include/clang/AST/Stmt.h
blob: 466848976cb3928ea603f411cb16c87af6bc23d2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
//===--- Stmt.h - Classes for representing statements -----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines the Stmt interface and subclasses.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_AST_STMT_H
#define LLVM_CLANG_AST_STMT_H

#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/StmtIterator.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/FullExpr.h"
#include "llvm/ADT/SmallVector.h"
#include "clang/AST/ASTContext.h"
#include <string>
using llvm::dyn_cast_or_null;

namespace llvm {
  class FoldingSetNodeID;
}

namespace clang {
  class ASTContext;
  class Expr;
  class Decl;
  class ParmVarDecl;
  class QualType;
  class IdentifierInfo;
  class SourceManager;
  class StringLiteral;
  class SwitchStmt;

  //===----------------------------------------------------------------------===//
  // ExprIterator - Iterators for iterating over Stmt* arrays that contain
  //  only Expr*.  This is needed because AST nodes use Stmt* arrays to store
  //  references to children (to be compatible with StmtIterator).
  //===----------------------------------------------------------------------===//

  class Stmt;
  class Expr;

  class ExprIterator {
    Stmt** I;
  public:
    ExprIterator(Stmt** i) : I(i) {}
    ExprIterator() : I(0) {}
    ExprIterator& operator++() { ++I; return *this; }
    ExprIterator operator-(size_t i) { return I-i; }
    ExprIterator operator+(size_t i) { return I+i; }
    Expr* operator[](size_t idx);
    // FIXME: Verify that this will correctly return a signed distance.
    signed operator-(const ExprIterator& R) const { return I - R.I; }
    Expr* operator*() const;
    Expr* operator->() const;
    bool operator==(const ExprIterator& R) const { return I == R.I; }
    bool operator!=(const ExprIterator& R) const { return I != R.I; }
    bool operator>(const ExprIterator& R) const { return I > R.I; }
    bool operator>=(const ExprIterator& R) const { return I >= R.I; }
  };

  class ConstExprIterator {
    Stmt* const * I;
  public:
    ConstExprIterator(Stmt* const* i) : I(i) {}
    ConstExprIterator() : I(0) {}
    ConstExprIterator& operator++() { ++I; return *this; }
    ConstExprIterator operator+(size_t i) { return I+i; }
    ConstExprIterator operator-(size_t i) { return I-i; }
    const Expr * operator[](size_t idx) const;
    signed operator-(const ConstExprIterator& R) const { return I - R.I; }
    const Expr * operator*() const;
    const Expr * operator->() const;
    bool operator==(const ConstExprIterator& R) const { return I == R.I; }
    bool operator!=(const ConstExprIterator& R) const { return I != R.I; }
    bool operator>(const ConstExprIterator& R) const { return I > R.I; }
    bool operator>=(const ConstExprIterator& R) const { return I >= R.I; }
  };

//===----------------------------------------------------------------------===//
// AST classes for statements.
//===----------------------------------------------------------------------===//

/// Stmt - This represents one statement.
///
class Stmt {
public:
  enum StmtClass {
    NoStmtClass = 0,
#define STMT(CLASS, PARENT) CLASS##Class,
#define FIRST_STMT(CLASS) firstStmtConstant = CLASS##Class,
#define LAST_STMT(CLASS) lastStmtConstant = CLASS##Class,
#define FIRST_EXPR(CLASS) firstExprConstant = CLASS##Class,
#define LAST_EXPR(CLASS) lastExprConstant = CLASS##Class
#define ABSTRACT_EXPR(CLASS, PARENT)
#include "clang/AST/StmtNodes.def"
};
private:
  /// \brief The statement class.
  const unsigned sClass : 8;

  /// \brief The reference count for this statement.
  unsigned RefCount : 24;

  // Make vanilla 'new' and 'delete' illegal for Stmts.
protected:
  void* operator new(size_t bytes) throw() {
    assert(0 && "Stmts cannot be allocated with regular 'new'.");
    return 0;
  }
  void operator delete(void* data) throw() {
    assert(0 && "Stmts cannot be released with regular 'delete'.");
  }

public:
  // Only allow allocation of Stmts using the allocator in ASTContext
  // or by doing a placement new.
  void* operator new(size_t bytes, ASTContext& C,
                     unsigned alignment = 8) throw() {
    return ::operator new(bytes, C, alignment);
  }

  void* operator new(size_t bytes, ASTContext* C,
                     unsigned alignment = 8) throw() {
    return ::operator new(bytes, *C, alignment);
  }

  void* operator new(size_t bytes, void* mem) throw() {
    return mem;
  }

  void operator delete(void*, ASTContext&, unsigned) throw() { }
  void operator delete(void*, ASTContext*, unsigned) throw() { }
  void operator delete(void*, std::size_t) throw() { }
  void operator delete(void*, void*) throw() { }

public:
  /// \brief A placeholder type used to construct an empty shell of a
  /// type, that will be filled in later (e.g., by some
  /// de-serialization).
  struct EmptyShell { };

protected:
  /// DestroyChildren - Invoked by destructors of subclasses of Stmt to
  ///  recursively release child AST nodes.
  void DestroyChildren(ASTContext& Ctx);

  /// \brief Construct an empty statement.
  explicit Stmt(StmtClass SC, EmptyShell) : sClass(SC), RefCount(1) {
    if (Stmt::CollectingStats()) Stmt::addStmtClass(SC);
  }

  /// \brief Virtual method that performs the actual destruction of
  /// this statement.
  ///
  /// Subclasses should override this method (not Destroy()) to
  /// provide class-specific destruction.
  virtual void DoDestroy(ASTContext &Ctx);

public:
  Stmt(StmtClass SC) : sClass(SC), RefCount(1) {
    if (Stmt::CollectingStats()) Stmt::addStmtClass(SC);
  }
  virtual ~Stmt() {}

#ifndef NDEBUG
  /// \brief True if this statement's refcount is in a valid state.
  /// Should be used only in assertions.
  bool isRetained() const {
    return (RefCount >= 1);
  }
#endif

  /// \brief Destroy the current statement and its children.
  void Destroy(ASTContext &Ctx) {
    assert(RefCount >= 1);
    if (--RefCount == 0)
      DoDestroy(Ctx);
  }

  /// \brief Increases the reference count for this statement.
  ///
  /// Invoke the Retain() operation when this statement or expression
  /// is being shared by another owner.
  Stmt *Retain() {
    assert(RefCount >= 1);
    ++RefCount;
    return this;
  }

  StmtClass getStmtClass() const { 
    assert(RefCount >= 1 && "Referencing already-destroyed statement!");
    return (StmtClass)sClass; 
  }
  const char *getStmtClassName() const;

  /// SourceLocation tokens are not useful in isolation - they are low level
  /// value objects created/interpreted by SourceManager. We assume AST
  /// clients will have a pointer to the respective SourceManager.
  virtual SourceRange getSourceRange() const = 0;
  SourceLocation getLocStart() const { return getSourceRange().getBegin(); }
  SourceLocation getLocEnd() const { return getSourceRange().getEnd(); }

  // global temp stats (until we have a per-module visitor)
  static void addStmtClass(const StmtClass s);
  static bool CollectingStats(bool Enable = false);
  static void PrintStats();

  /// dump - This does a local dump of the specified AST fragment.  It dumps the
  /// specified node and a few nodes underneath it, but not the whole subtree.
  /// This is useful in a debugger.
  void dump() const;
  void dump(SourceManager &SM) const;

  /// dumpAll - This does a dump of the specified AST fragment and all subtrees.
  void dumpAll() const;
  void dumpAll(SourceManager &SM) const;

  /// dumpPretty/printPretty - These two methods do a "pretty print" of the AST
  /// back to its original source language syntax.
  void dumpPretty(ASTContext& Context) const;
  void printPretty(llvm::raw_ostream &OS, PrinterHelper *Helper,
                   const PrintingPolicy &Policy,
                   unsigned Indentation = 0) const {
    printPretty(OS, *(ASTContext*)0, Helper, Policy, Indentation);
  }
  void printPretty(llvm::raw_ostream &OS, ASTContext &Context,
                   PrinterHelper *Helper,
                   const PrintingPolicy &Policy,
                   unsigned Indentation = 0) const;

  /// viewAST - Visualize an AST rooted at this Stmt* using GraphViz.  Only
  ///   works on systems with GraphViz (Mac OS X) or dot+gv installed.
  void viewAST() const;

  // Implement isa<T> support.
  static bool classof(const Stmt *) { return true; }

  /// hasImplicitControlFlow - Some statements (e.g. short circuited operations)
  ///  contain implicit control-flow in the order their subexpressions
  ///  are evaluated.  This predicate returns true if this statement has
  ///  such implicit control-flow.  Such statements are also specially handled
  ///  within CFGs.
  bool hasImplicitControlFlow() const;

  /// Child Iterators: All subclasses must implement child_begin and child_end
  ///  to permit easy iteration over the substatements/subexpessions of an
  ///  AST node.  This permits easy iteration over all nodes in the AST.
  typedef StmtIterator       child_iterator;
  typedef ConstStmtIterator  const_child_iterator;

  virtual child_iterator child_begin() = 0;
  virtual child_iterator child_end()   = 0;

  const_child_iterator child_begin() const {
    return const_child_iterator(const_cast<Stmt*>(this)->child_begin());
  }

  const_child_iterator child_end() const {
    return const_child_iterator(const_cast<Stmt*>(this)->child_end());
  }

  /// \brief Produce a unique representation of the given statement.
  ///
  /// \brief ID once the profiling operation is complete, will contain
  /// the unique representation of the given statement.
  ///
  /// \brief Context the AST context in which the statement resides
  ///
  /// \brief Canonical whether the profile should be based on the canonical
  /// representation of this statement (e.g., where non-type template
  /// parameters are identified by index/level rather than their
  /// declaration pointers) or the exact representation of the statement as
  /// written in the source.
  void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
               bool Canonical);
};

/// DeclStmt - Adaptor class for mixing declarations with statements and
/// expressions. For example, CompoundStmt mixes statements, expressions
/// and declarations (variables, types). Another example is ForStmt, where
/// the first statement can be an expression or a declaration.
///
class DeclStmt : public Stmt {
  DeclGroupRef DG;
  SourceLocation StartLoc, EndLoc;

protected:
  virtual void DoDestroy(ASTContext &Ctx);

public:
  DeclStmt(DeclGroupRef dg, SourceLocation startLoc,
           SourceLocation endLoc) : Stmt(DeclStmtClass), DG(dg),
                                    StartLoc(startLoc), EndLoc(endLoc) {}

  /// \brief Build an empty declaration statement.
  explicit DeclStmt(EmptyShell Empty) : Stmt(DeclStmtClass, Empty) { }

  /// isSingleDecl - This method returns true if this DeclStmt refers
  /// to a single Decl.
  bool isSingleDecl() const {
    return DG.isSingleDecl();
  }

  const Decl *getSingleDecl() const { return DG.getSingleDecl(); }
  Decl *getSingleDecl() { return DG.getSingleDecl(); }

  const DeclGroupRef getDeclGroup() const { return DG; }
  DeclGroupRef getDeclGroup() { return DG; }
  void setDeclGroup(DeclGroupRef DGR) { DG = DGR; }

  SourceLocation getStartLoc() const { return StartLoc; }
  void setStartLoc(SourceLocation L) { StartLoc = L; }
  SourceLocation getEndLoc() const { return EndLoc; }
  void setEndLoc(SourceLocation L) { EndLoc = L; }

  SourceRange getSourceRange() const {
    return SourceRange(StartLoc, EndLoc);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == DeclStmtClass;
  }
  static bool classof(const DeclStmt *) { return true; }

  // Iterators over subexpressions.
  virtual child_iterator child_begin();
  virtual child_iterator child_end();

  typedef DeclGroupRef::iterator decl_iterator;
  typedef DeclGroupRef::const_iterator const_decl_iterator;

  decl_iterator decl_begin() { return DG.begin(); }
  decl_iterator decl_end() { return DG.end(); }
  const_decl_iterator decl_begin() const { return DG.begin(); }
  const_decl_iterator decl_end() const { return DG.end(); }
};

/// NullStmt - This is the null statement ";": C99 6.8.3p3.
///
class NullStmt : public Stmt {
  SourceLocation SemiLoc;
public:
  NullStmt(SourceLocation L) : Stmt(NullStmtClass), SemiLoc(L) {}

  /// \brief Build an empty null statement.
  explicit NullStmt(EmptyShell Empty) : Stmt(NullStmtClass, Empty) { }

  SourceLocation getSemiLoc() const { return SemiLoc; }
  void setSemiLoc(SourceLocation L) { SemiLoc = L; }

  virtual SourceRange getSourceRange() const { return SourceRange(SemiLoc); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == NullStmtClass;
  }
  static bool classof(const NullStmt *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// CompoundStmt - This represents a group of statements like { stmt stmt }.
///
class CompoundStmt : public Stmt {
  Stmt** Body;
  unsigned NumStmts;
  SourceLocation LBracLoc, RBracLoc;
public:
  CompoundStmt(ASTContext& C, Stmt **StmtStart, unsigned numStmts,
                             SourceLocation LB, SourceLocation RB)
  : Stmt(CompoundStmtClass), NumStmts(numStmts), LBracLoc(LB), RBracLoc(RB) {
    if (NumStmts == 0) {
      Body = 0;
      return;
    }

    Body = new (C) Stmt*[NumStmts];
    memcpy(Body, StmtStart, numStmts * sizeof(*Body));
  }

  // \brief Build an empty compound statement.
  explicit CompoundStmt(EmptyShell Empty)
    : Stmt(CompoundStmtClass, Empty), Body(0), NumStmts(0) { }

  void setStmts(ASTContext &C, Stmt **Stmts, unsigned NumStmts);

  bool body_empty() const { return NumStmts == 0; }
  unsigned size() const { return NumStmts; }

  typedef Stmt** body_iterator;
  body_iterator body_begin() { return Body; }
  body_iterator body_end() { return Body + NumStmts; }
  Stmt *body_back() { return NumStmts ? Body[NumStmts-1] : 0; }

  typedef Stmt* const * const_body_iterator;
  const_body_iterator body_begin() const { return Body; }
  const_body_iterator body_end() const { return Body + NumStmts; }
  const Stmt *body_back() const { return NumStmts ? Body[NumStmts-1] : 0; }

  typedef std::reverse_iterator<body_iterator> reverse_body_iterator;
  reverse_body_iterator body_rbegin() {
    return reverse_body_iterator(body_end());
  }
  reverse_body_iterator body_rend() {
    return reverse_body_iterator(body_begin());
  }

  typedef std::reverse_iterator<const_body_iterator>
          const_reverse_body_iterator;

  const_reverse_body_iterator body_rbegin() const {
    return const_reverse_body_iterator(body_end());
  }

  const_reverse_body_iterator body_rend() const {
    return const_reverse_body_iterator(body_begin());
  }

  virtual SourceRange getSourceRange() const {
    return SourceRange(LBracLoc, RBracLoc);
  }

  SourceLocation getLBracLoc() const { return LBracLoc; }
  void setLBracLoc(SourceLocation L) { LBracLoc = L; }
  SourceLocation getRBracLoc() const { return RBracLoc; }
  void setRBracLoc(SourceLocation L) { RBracLoc = L; }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CompoundStmtClass;
  }
  static bool classof(const CompoundStmt *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

// SwitchCase is the base class for CaseStmt and DefaultStmt,
class SwitchCase : public Stmt {
protected:
  // A pointer to the following CaseStmt or DefaultStmt class,
  // used by SwitchStmt.
  SwitchCase *NextSwitchCase;

  SwitchCase(StmtClass SC) : Stmt(SC), NextSwitchCase(0) {}

public:
  const SwitchCase *getNextSwitchCase() const { return NextSwitchCase; }

  SwitchCase *getNextSwitchCase() { return NextSwitchCase; }

  void setNextSwitchCase(SwitchCase *SC) { NextSwitchCase = SC; }

  Stmt *getSubStmt() { return v_getSubStmt(); }

  virtual SourceRange getSourceRange() const { return SourceRange(); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CaseStmtClass ||
    T->getStmtClass() == DefaultStmtClass;
  }
  static bool classof(const SwitchCase *) { return true; }
protected:
  virtual Stmt* v_getSubStmt() = 0;
};

class CaseStmt : public SwitchCase {
  enum { SUBSTMT, LHS, RHS, END_EXPR };
  Stmt* SubExprs[END_EXPR];  // The expression for the RHS is Non-null for
                             // GNU "case 1 ... 4" extension
  SourceLocation CaseLoc;
  SourceLocation EllipsisLoc;
  SourceLocation ColonLoc;

  virtual Stmt* v_getSubStmt() { return getSubStmt(); }
public:
  CaseStmt(Expr *lhs, Expr *rhs, SourceLocation caseLoc,
           SourceLocation ellipsisLoc, SourceLocation colonLoc)
    : SwitchCase(CaseStmtClass) {
    SubExprs[SUBSTMT] = 0;
    SubExprs[LHS] = reinterpret_cast<Stmt*>(lhs);
    SubExprs[RHS] = reinterpret_cast<Stmt*>(rhs);
    CaseLoc = caseLoc;
    EllipsisLoc = ellipsisLoc;
    ColonLoc = colonLoc;
  }

  /// \brief Build an empty switch case statement.
  explicit CaseStmt(EmptyShell Empty) : SwitchCase(CaseStmtClass) { }

  SourceLocation getCaseLoc() const { return CaseLoc; }
  void setCaseLoc(SourceLocation L) { CaseLoc = L; }
  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
  void setEllipsisLoc(SourceLocation L) { EllipsisLoc = L; }
  SourceLocation getColonLoc() const { return ColonLoc; }
  void setColonLoc(SourceLocation L) { ColonLoc = L; }

  Expr *getLHS() { return reinterpret_cast<Expr*>(SubExprs[LHS]); }
  Expr *getRHS() { return reinterpret_cast<Expr*>(SubExprs[RHS]); }
  Stmt *getSubStmt() { return SubExprs[SUBSTMT]; }

  const Expr *getLHS() const {
    return reinterpret_cast<const Expr*>(SubExprs[LHS]);
  }
  const Expr *getRHS() const {
    return reinterpret_cast<const Expr*>(SubExprs[RHS]);
  }
  const Stmt *getSubStmt() const { return SubExprs[SUBSTMT]; }

  void setSubStmt(Stmt *S) { SubExprs[SUBSTMT] = S; }
  void setLHS(Expr *Val) { SubExprs[LHS] = reinterpret_cast<Stmt*>(Val); }
  void setRHS(Expr *Val) { SubExprs[RHS] = reinterpret_cast<Stmt*>(Val); }


  virtual SourceRange getSourceRange() const {
    // Handle deeply nested case statements with iteration instead of recursion.
    const CaseStmt *CS = this;
    while (const CaseStmt *CS2 = dyn_cast<CaseStmt>(CS->getSubStmt()))
      CS = CS2;

    return SourceRange(CaseLoc, CS->getSubStmt()->getLocEnd());
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == CaseStmtClass;
  }
  static bool classof(const CaseStmt *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

class DefaultStmt : public SwitchCase {
  Stmt* SubStmt;
  SourceLocation DefaultLoc;
  SourceLocation ColonLoc;
  virtual Stmt* v_getSubStmt() { return getSubStmt(); }
public:
  DefaultStmt(SourceLocation DL, SourceLocation CL, Stmt *substmt) :
    SwitchCase(DefaultStmtClass), SubStmt(substmt), DefaultLoc(DL),
    ColonLoc(CL) {}

  /// \brief Build an empty default statement.
  explicit DefaultStmt(EmptyShell) : SwitchCase(DefaultStmtClass) { }

  Stmt *getSubStmt() { return SubStmt; }
  const Stmt *getSubStmt() const { return SubStmt; }
  void setSubStmt(Stmt *S) { SubStmt = S; }

  SourceLocation getDefaultLoc() const { return DefaultLoc; }
  void setDefaultLoc(SourceLocation L) { DefaultLoc = L; }
  SourceLocation getColonLoc() const { return ColonLoc; }
  void setColonLoc(SourceLocation L) { ColonLoc = L; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(DefaultLoc, SubStmt->getLocEnd());
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == DefaultStmtClass;
  }
  static bool classof(const DefaultStmt *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

class LabelStmt : public Stmt {
  IdentifierInfo *Label;
  Stmt *SubStmt;
  SourceLocation IdentLoc;
public:
  LabelStmt(SourceLocation IL, IdentifierInfo *label, Stmt *substmt)
    : Stmt(LabelStmtClass), Label(label),
      SubStmt(substmt), IdentLoc(IL) {}

  // \brief Build an empty label statement.
  explicit LabelStmt(EmptyShell Empty) : Stmt(LabelStmtClass, Empty) { }

  SourceLocation getIdentLoc() const { return IdentLoc; }
  IdentifierInfo *getID() const { return Label; }
  void setID(IdentifierInfo *II) { Label = II; }
  const char *getName() const;
  Stmt *getSubStmt() { return SubStmt; }
  const Stmt *getSubStmt() const { return SubStmt; }
  void setIdentLoc(SourceLocation L) { IdentLoc = L; }
  void setSubStmt(Stmt *SS) { SubStmt = SS; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(IdentLoc, SubStmt->getLocEnd());
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == LabelStmtClass;
  }
  static bool classof(const LabelStmt *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};


/// IfStmt - This represents an if/then/else.
///
class IfStmt : public Stmt {
  enum { COND, THEN, ELSE, END_EXPR };
  Stmt* SubExprs[END_EXPR];

  /// \brief If non-NULL, the declaration in the "if" statement.
  VarDecl *Var;
  
  SourceLocation IfLoc;
  SourceLocation ElseLoc;
  
public:
  IfStmt(SourceLocation IL, VarDecl *var, Expr *cond, Stmt *then,
         SourceLocation EL = SourceLocation(), Stmt *elsev = 0)
    : Stmt(IfStmtClass), Var(var), IfLoc(IL), ElseLoc(EL)  {
    SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
    SubExprs[THEN] = then;
    SubExprs[ELSE] = elsev;
  }

  /// \brief Build an empty if/then/else statement
  explicit IfStmt(EmptyShell Empty) : Stmt(IfStmtClass, Empty) { }

  /// \brief Retrieve the variable declared in this "if" statement, if any.
  ///
  /// In the following example, "x" is the condition variable.
  /// \code
  /// if (int x = foo()) {
  ///   printf("x is %d", x);
  /// }
  /// \endcode
  VarDecl *getConditionVariable() const { return Var; }
  void setConditionVariable(VarDecl *V) { Var = V; }
  
  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
  const Stmt *getThen() const { return SubExprs[THEN]; }
  void setThen(Stmt *S) { SubExprs[THEN] = S; }
  const Stmt *getElse() const { return SubExprs[ELSE]; }
  void setElse(Stmt *S) { SubExprs[ELSE] = S; }

  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
  Stmt *getThen() { return SubExprs[THEN]; }
  Stmt *getElse() { return SubExprs[ELSE]; }

  SourceLocation getIfLoc() const { return IfLoc; }
  void setIfLoc(SourceLocation L) { IfLoc = L; }
  SourceLocation getElseLoc() const { return ElseLoc; }
  void setElseLoc(SourceLocation L) { ElseLoc = L; }

  virtual SourceRange getSourceRange() const {
    if (SubExprs[ELSE])
      return SourceRange(IfLoc, SubExprs[ELSE]->getLocEnd());
    else
      return SourceRange(IfLoc, SubExprs[THEN]->getLocEnd());
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == IfStmtClass;
  }
  static bool classof(const IfStmt *) { return true; }

  // Iterators over subexpressions.  The iterators will include iterating
  // over the initialization expression referenced by the condition variable.
  virtual child_iterator child_begin();
  virtual child_iterator child_end();

protected:
  virtual void DoDestroy(ASTContext &Ctx);
};

/// SwitchStmt - This represents a 'switch' stmt.
///
class SwitchStmt : public Stmt {
  enum { COND, BODY, END_EXPR };
  Stmt* SubExprs[END_EXPR];
  VarDecl *Var;
  // This points to a linked list of case and default statements.
  SwitchCase *FirstCase;
  SourceLocation SwitchLoc;

protected:
  virtual void DoDestroy(ASTContext &Ctx);

public:
  SwitchStmt(VarDecl *Var, Expr *cond) 
    : Stmt(SwitchStmtClass), Var(Var), FirstCase(0) 
  {
    SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
    SubExprs[BODY] = NULL;
  }

  /// \brief Build a empty switch statement.
  explicit SwitchStmt(EmptyShell Empty) : Stmt(SwitchStmtClass, Empty) { }

  /// \brief Retrieve the variable declared in this "switch" statement, if any.
  ///
  /// In the following example, "x" is the condition variable.
  /// \code
  /// switch (int x = foo()) {
  ///   case 0: break;
  ///   // ...
  /// }
  /// \endcode
  VarDecl *getConditionVariable() const { return Var; }
  void setConditionVariable(VarDecl *V) { Var = V; }

  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
  const Stmt *getBody() const { return SubExprs[BODY]; }
  const SwitchCase *getSwitchCaseList() const { return FirstCase; }

  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]);}
  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt *>(E); }
  Stmt *getBody() { return SubExprs[BODY]; }
  void setBody(Stmt *S) { SubExprs[BODY] = S; }
  SwitchCase *getSwitchCaseList() { return FirstCase; }

  /// \brief Set the case list for this switch statement.
  ///
  /// The caller is responsible for incrementing the retain counts on
  /// all of the SwitchCase statements in this list.
  void setSwitchCaseList(SwitchCase *SC) { FirstCase = SC; }

  SourceLocation getSwitchLoc() const { return SwitchLoc; }
  void setSwitchLoc(SourceLocation L) { SwitchLoc = L; }

  void setBody(Stmt *S, SourceLocation SL) {
    SubExprs[BODY] = S;
    SwitchLoc = SL;
  }
  void addSwitchCase(SwitchCase *SC) {
    assert(!SC->getNextSwitchCase() && "case/default already added to a switch");
    SC->Retain();
    SC->setNextSwitchCase(FirstCase);
    FirstCase = SC;
  }
  virtual SourceRange getSourceRange() const {
    return SourceRange(SwitchLoc, SubExprs[BODY]->getLocEnd());
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == SwitchStmtClass;
  }
  static bool classof(const SwitchStmt *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};


/// WhileStmt - This represents a 'while' stmt.
///
class WhileStmt : public Stmt {
  enum { COND, BODY, END_EXPR };
  VarDecl *Var;
  Stmt* SubExprs[END_EXPR];
  SourceLocation WhileLoc;
public:
  WhileStmt(VarDecl *Var, Expr *cond, Stmt *body, SourceLocation WL)
    : Stmt(WhileStmtClass), Var(Var) 
  {
    SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
    SubExprs[BODY] = body;
    WhileLoc = WL;
  }

  /// \brief Build an empty while statement.
  explicit WhileStmt(EmptyShell Empty) : Stmt(WhileStmtClass, Empty) { }

  /// \brief Retrieve the variable declared in this "while" statement, if any.
  ///
  /// In the following example, "x" is the condition variable.
  /// \code
  /// while (int x = random()) {
  ///   // ...
  /// }
  /// \endcode
  VarDecl *getConditionVariable() const { return Var; }
  void setConditionVariable(VarDecl *V) { Var = V; }

  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
  Stmt *getBody() { return SubExprs[BODY]; }
  const Stmt *getBody() const { return SubExprs[BODY]; }
  void setBody(Stmt *S) { SubExprs[BODY] = S; }

  SourceLocation getWhileLoc() const { return WhileLoc; }
  void setWhileLoc(SourceLocation L) { WhileLoc = L; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(WhileLoc, SubExprs[BODY]->getLocEnd());
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == WhileStmtClass;
  }
  static bool classof(const WhileStmt *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
  
protected:
  virtual void DoDestroy(ASTContext &Ctx);
};

/// DoStmt - This represents a 'do/while' stmt.
///
class DoStmt : public Stmt {
  enum { COND, BODY, END_EXPR };
  Stmt* SubExprs[END_EXPR];
  SourceLocation DoLoc;
  SourceLocation WhileLoc;
  SourceLocation RParenLoc;  // Location of final ')' in do stmt condition.

public:
  DoStmt(Stmt *body, Expr *cond, SourceLocation DL, SourceLocation WL,
         SourceLocation RP)
    : Stmt(DoStmtClass), DoLoc(DL), WhileLoc(WL), RParenLoc(RP) {
    SubExprs[COND] = reinterpret_cast<Stmt*>(cond);
    SubExprs[BODY] = body;
  }

  /// \brief Build an empty do-while statement.
  explicit DoStmt(EmptyShell Empty) : Stmt(DoStmtClass, Empty) { }

  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
  Stmt *getBody() { return SubExprs[BODY]; }
  const Stmt *getBody() const { return SubExprs[BODY]; }
  void setBody(Stmt *S) { SubExprs[BODY] = S; }

  SourceLocation getDoLoc() const { return DoLoc; }
  void setDoLoc(SourceLocation L) { DoLoc = L; }
  SourceLocation getWhileLoc() const { return WhileLoc; }
  void setWhileLoc(SourceLocation L) { WhileLoc = L; }

  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(DoLoc, RParenLoc);
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == DoStmtClass;
  }
  static bool classof(const DoStmt *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};


/// ForStmt - This represents a 'for (init;cond;inc)' stmt.  Note that any of
/// the init/cond/inc parts of the ForStmt will be null if they were not
/// specified in the source.
///
class ForStmt : public Stmt {
  enum { INIT, COND, INC, BODY, END_EXPR };
  Stmt* SubExprs[END_EXPR]; // SubExprs[INIT] is an expression or declstmt.
  VarDecl *CondVar;
  SourceLocation ForLoc;
  SourceLocation LParenLoc, RParenLoc;

public:
  ForStmt(Stmt *Init, Expr *Cond, VarDecl *condVar, Expr *Inc, Stmt *Body, 
          SourceLocation FL, SourceLocation LP, SourceLocation RP)
    : Stmt(ForStmtClass), CondVar(condVar), ForLoc(FL), LParenLoc(LP), 
      RParenLoc(RP) 
  {
    SubExprs[INIT] = Init;
    SubExprs[COND] = reinterpret_cast<Stmt*>(Cond);
    SubExprs[INC] = reinterpret_cast<Stmt*>(Inc);
    SubExprs[BODY] = Body;
  }

  /// \brief Build an empty for statement.
  explicit ForStmt(EmptyShell Empty) : Stmt(ForStmtClass, Empty) { }

  Stmt *getInit() { return SubExprs[INIT]; }
  
  /// \brief Retrieve the variable declared in this "for" statement, if any.
  ///
  /// In the following example, "y" is the condition variable.
  /// \code
  /// for (int x = random(); int y = mangle(x); ++x) {
  ///   // ...
  /// }
  /// \endcode
  VarDecl *getConditionVariable() const { return CondVar; }
  void setConditionVariable(VarDecl *V) { CondVar = V; }
  
  Expr *getCond() { return reinterpret_cast<Expr*>(SubExprs[COND]); }
  Expr *getInc()  { return reinterpret_cast<Expr*>(SubExprs[INC]); }
  Stmt *getBody() { return SubExprs[BODY]; }

  const Stmt *getInit() const { return SubExprs[INIT]; }
  const Expr *getCond() const { return reinterpret_cast<Expr*>(SubExprs[COND]);}
  const Expr *getInc()  const { return reinterpret_cast<Expr*>(SubExprs[INC]); }
  const Stmt *getBody() const { return SubExprs[BODY]; }

  void setInit(Stmt *S) { SubExprs[INIT] = S; }
  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
  void setInc(Expr *E) { SubExprs[INC] = reinterpret_cast<Stmt*>(E); }
  void setBody(Stmt *S) { SubExprs[BODY] = S; }

  SourceLocation getForLoc() const { return ForLoc; }
  void setForLoc(SourceLocation L) { ForLoc = L; }
  SourceLocation getLParenLoc() const { return LParenLoc; }
  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(ForLoc, SubExprs[BODY]->getLocEnd());
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ForStmtClass;
  }
  static bool classof(const ForStmt *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
  
protected:
  virtual void DoDestroy(ASTContext &Ctx);
};

/// GotoStmt - This represents a direct goto.
///
class GotoStmt : public Stmt {
  LabelStmt *Label;
  SourceLocation GotoLoc;
  SourceLocation LabelLoc;
public:
  GotoStmt(LabelStmt *label, SourceLocation GL, SourceLocation LL)
    : Stmt(GotoStmtClass), Label(label), GotoLoc(GL), LabelLoc(LL) {}

  /// \brief Build an empty goto statement.
  explicit GotoStmt(EmptyShell Empty) : Stmt(GotoStmtClass, Empty) { }

  LabelStmt *getLabel() const { return Label; }
  void setLabel(LabelStmt *S) { Label = S; }

  SourceLocation getGotoLoc() const { return GotoLoc; }
  void setGotoLoc(SourceLocation L) { GotoLoc = L; }
  SourceLocation getLabelLoc() const { return LabelLoc; }
  void setLabelLoc(SourceLocation L) { LabelLoc = L; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(GotoLoc, LabelLoc);
  }
  static bool classof(const Stmt *T) {
    return T->getStmtClass() == GotoStmtClass;
  }
  static bool classof(const GotoStmt *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// IndirectGotoStmt - This represents an indirect goto.
///
class IndirectGotoStmt : public Stmt {
  SourceLocation GotoLoc;
  SourceLocation StarLoc;
  Stmt *Target;
public:
  IndirectGotoStmt(SourceLocation gotoLoc, SourceLocation starLoc,
                   Expr *target)
    : Stmt(IndirectGotoStmtClass), GotoLoc(gotoLoc), StarLoc(starLoc),
      Target((Stmt*)target) {}

  /// \brief Build an empty indirect goto statement.
  explicit IndirectGotoStmt(EmptyShell Empty)
    : Stmt(IndirectGotoStmtClass, Empty) { }

  void setGotoLoc(SourceLocation L) { GotoLoc = L; }
  SourceLocation getGotoLoc() const { return GotoLoc; }
  void setStarLoc(SourceLocation L) { StarLoc = L; }
  SourceLocation getStarLoc() const { return StarLoc; }

  Expr *getTarget();
  const Expr *getTarget() const;
  void setTarget(Expr *E) { Target = reinterpret_cast<Stmt*>(E); }

  virtual SourceRange getSourceRange() const {
    return SourceRange(GotoLoc, Target->getLocEnd());
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == IndirectGotoStmtClass;
  }
  static bool classof(const IndirectGotoStmt *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};


/// ContinueStmt - This represents a continue.
///
class ContinueStmt : public Stmt {
  SourceLocation ContinueLoc;
public:
  ContinueStmt(SourceLocation CL) : Stmt(ContinueStmtClass), ContinueLoc(CL) {}

  /// \brief Build an empty continue statement.
  explicit ContinueStmt(EmptyShell Empty) : Stmt(ContinueStmtClass, Empty) { }

  SourceLocation getContinueLoc() const { return ContinueLoc; }
  void setContinueLoc(SourceLocation L) { ContinueLoc = L; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(ContinueLoc);
  }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ContinueStmtClass;
  }
  static bool classof(const ContinueStmt *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// BreakStmt - This represents a break.
///
class BreakStmt : public Stmt {
  SourceLocation BreakLoc;
public:
  BreakStmt(SourceLocation BL) : Stmt(BreakStmtClass), BreakLoc(BL) {}

  /// \brief Build an empty break statement.
  explicit BreakStmt(EmptyShell Empty) : Stmt(BreakStmtClass, Empty) { }

  SourceLocation getBreakLoc() const { return BreakLoc; }
  void setBreakLoc(SourceLocation L) { BreakLoc = L; }

  virtual SourceRange getSourceRange() const { return SourceRange(BreakLoc); }

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == BreakStmtClass;
  }
  static bool classof(const BreakStmt *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};


/// ReturnStmt - This represents a return, optionally of an expression:
///   return;
///   return 4;
///
/// Note that GCC allows return with no argument in a function declared to
/// return a value, and it allows returning a value in functions declared to
/// return void.  We explicitly model this in the AST, which means you can't
/// depend on the return type of the function and the presence of an argument.
///
class ReturnStmt : public Stmt {
  Stmt *RetExpr;
  SourceLocation RetLoc;
public:
  ReturnStmt(SourceLocation RL, Expr *E = 0) : Stmt(ReturnStmtClass),
    RetExpr((Stmt*) E), RetLoc(RL) {}

  /// \brief Build an empty return expression.
  explicit ReturnStmt(EmptyShell Empty) : Stmt(ReturnStmtClass, Empty) { }

  const Expr *getRetValue() const;
  Expr *getRetValue();
  void setRetValue(Expr *E) { RetExpr = reinterpret_cast<Stmt*>(E); }

  SourceLocation getReturnLoc() const { return RetLoc; }
  void setReturnLoc(SourceLocation L) { RetLoc = L; }

  virtual SourceRange getSourceRange() const;

  static bool classof(const Stmt *T) {
    return T->getStmtClass() == ReturnStmtClass;
  }
  static bool classof(const ReturnStmt *) { return true; }

  // Iterators
  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

/// AsmStmt - This represents a GNU inline-assembly statement extension.
///
class AsmStmt : public Stmt {
  SourceLocation AsmLoc, RParenLoc;
  StringLiteral *AsmStr;

  bool IsSimple;
  bool IsVolatile;
  bool MSAsm;

  unsigned NumOutputs;
  unsigned NumInputs;
  unsigned NumClobbers;

  // FIXME: If we wanted to, we could allocate all of these in one big array.
  IdentifierInfo **Names;
  StringLiteral **Constraints;
  Stmt **Exprs;
  StringLiteral **Clobbers;

protected:
  virtual void DoDestroy(ASTContext &Ctx);
  
public:
  AsmStmt(ASTContext &C, SourceLocation asmloc, bool issimple, bool isvolatile, 
          bool msasm, unsigned numoutputs, unsigned numinputs,
          IdentifierInfo **names, StringLiteral **constraints,
          Expr **exprs, StringLiteral *asmstr, unsigned numclobbers,
          StringLiteral **clobbers, SourceLocation rparenloc);

  /// \brief Build an empty inline-assembly statement.
  explicit AsmStmt(EmptyShell Empty) : Stmt(AsmStmtClass, Empty), 
    Names(0), Constraints(0), Exprs(0), Clobbers(0) { }

  SourceLocation getAsmLoc() const { return AsmLoc; }
  void setAsmLoc(SourceLocation L) { AsmLoc = L; }
  SourceLocation getRParenLoc() const { return RParenLoc; }
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }

  bool isVolatile() const { return IsVolatile; }
  void setVolatile(bool V) { IsVolatile = V; }
  bool isSimple() const { return IsSimple; }
  void setSimple(bool V) { IsSimple = V; }
  bool isMSAsm() const { return MSAsm; }
  void setMSAsm(bool V) { MSAsm = V; }

  //===--- Asm String Analysis ---===//

  const StringLiteral *getAsmString() const { return AsmStr; }
  StringLiteral *getAsmString() { return AsmStr; }
  void setAsmString(StringLiteral *E) { AsmStr = E; }

  /// AsmStringPiece - this is part of a decomposed asm string specification
  /// (for use with the AnalyzeAsmString function below).  An asm string is
  /// considered to be a concatenation of these parts.
  class AsmStringPiece {
  public:
    enum Kind {
      String,  // String in .ll asm string form, "$" -> "$$" and "%%" -> "%".
      Operand  // Operand reference, with optional modifier %c4.
    };
  private:
    Kind MyKind;
    std::string Str;
    unsigned OperandNo;
  public:
    AsmStringPiece(const std::string &S) : MyKind(String), Str(S) {}
    AsmStringPiece(unsigned OpNo, char Modifier)
      : MyKind(Operand), Str(), OperandNo(OpNo) {
      Str += Modifier;
    }

    bool isString() const { return MyKind == String; }
    bool isOperand() const { return MyKind == Operand; }

    const std::string &getString() const {
      assert(isString());
      return Str;
    }

    unsigned getOperandNo() const {
      assert(isOperand());
      return OperandNo;
    }

    /// getModifier - Get the modifier for this operand, if present.  This
    /// returns '\0' if there was no modifier.
    char getModifier() const {
      assert(isOperand());
      return Str[0];
    }
  };

  /// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing
  /// it into pieces.  If the asm string is erroneous, emit errors and return
  /// true, otherwise return false.  This handles canonicalization and
  /// translation of strings from GCC syntax to LLVM IR syntax, and handles
  //// flattening of named references like %[foo] to Operand AsmStringPiece's.
  unsigned AnalyzeAsmString(llvm::SmallVectorImpl<AsmStringPiece> &Pieces,
                            ASTContext &C, unsigned &DiagOffs) const;


  //===--- Output operands ---===//

  unsigned getNumOutputs() const { return NumOutputs; }

  IdentifierInfo *getOutputIdentifier(unsigned i) const {
    return Names[i];
  }

  llvm::StringRef getOutputName(unsigned i) const {
    if (IdentifierInfo *II = getOutputIdentifier(i))
      return II->getName();
    
    return llvm::StringRef();
  }

  /// getOutputConstraint - Return the constraint string for the specified
  /// output operand.  All output constraints are known to be non-empty (either
  /// '=' or '+').
  llvm::StringRef getOutputConstraint(unsigned i) const;

  const StringLiteral *getOutputConstraintLiteral(unsigned i) const {
    return Constraints[i];
  }
  StringLiteral *getOutputConstraintLiteral(unsigned i) {
    return Constraints[i];
  }

  Expr *getOutputExpr(unsigned i);

  const Expr *getOutputExpr(unsigned i) const {
    return const_cast<AsmStmt*>(this)->getOutputExpr(i);
  }

  /// isOutputPlusConstraint - Return true if the specified output constraint
  /// is a "+" constraint (which is both an input and an output) or false if it
  /// is an "=" constraint (just an output).
  bool isOutputPlusConstraint(unsigned i) const {
    return getOutputConstraint(i)[0] == '+';
  }

  /// getNumPlusOperands - Return the number of output operands that have a "+"
  /// constraint.
  unsigned getNumPlusOperands() const;

  //===--- Input operands ---===//

  unsigned getNumInputs() const { return NumInputs; }

  IdentifierInfo *getInputIdentifier(unsigned i) const {
    return Names[i + NumOutputs];
  }

  llvm::StringRef getInputName(unsigned i) const {
    if (IdentifierInfo *II = getInputIdentifier(i))
      return II->getName();

    return llvm::StringRef();
  }

  /// getInputConstraint - Return the specified input constraint.  Unlike output
  /// constraints, these can be empty.
  llvm::StringRef getInputConstraint(unsigned i) const;

  const StringLiteral *getInputConstraintLiteral(unsigned i) const {
    return Constraints[i + NumOutputs];
  }
  StringLiteral *getInputConstraintLiteral(unsigned i) {
    return Constraints[i + NumOutputs];
  }

  Expr *getInputExpr(unsigned i);

  const Expr *getInputExpr(unsigned i) const {
    return const_cast<AsmStmt*>(this)->getInputExpr(i);
  }

  void setOutputsAndInputsAndClobbers(ASTContext &C,
                                      IdentifierInfo **Names,
                                      StringLiteral **Constraints,
                                      Stmt **Exprs,
                                      unsigned NumOutputs,
                                      unsigned NumInputs,                                      
                                      StringLiteral **Clobbers,
                                      unsigned NumClobbers);

  //===--- Other ---===//

  /// getNamedOperand - Given a symbolic operand reference like %[foo],
  /// translate this into a numeric value needed to reference the same operand.
  /// This returns -1 if the operand name is invalid.
  int getNamedOperand(llvm::StringRef SymbolicName) const;

  unsigned getNumClobbers() const { return NumClobbers; }
  StringLiteral *getClobber(unsigned i) { return Clobbers[i]; }
  const StringLiteral *getClobber(unsigned i) const { return Clobbers[i]; }

  virtual SourceRange getSourceRange() const {
    return SourceRange(AsmLoc, RParenLoc);
  }

  static bool classof(const Stmt *T) {return T->getStmtClass() == AsmStmtClass;}
  static bool classof(const AsmStmt *) { return true; }

  // Input expr iterators.

  typedef ExprIterator inputs_iterator;
  typedef ConstExprIterator const_inputs_iterator;

  inputs_iterator begin_inputs() {
    return &Exprs[0] + NumOutputs;
  }

  inputs_iterator end_inputs() {
    return &Exprs[0] + NumOutputs + NumInputs;
  }

  const_inputs_iterator begin_inputs() const {
    return &Exprs[0] + NumOutputs;
  }

  const_inputs_iterator end_inputs() const {
    return &Exprs[0] + NumOutputs + NumInputs;
  }

  // Output expr iterators.

  typedef ExprIterator outputs_iterator;
  typedef ConstExprIterator const_outputs_iterator;

  outputs_iterator begin_outputs() {
    return &Exprs[0];
  }
  outputs_iterator end_outputs() {
    return &Exprs[0] + NumOutputs;
  }

  const_outputs_iterator begin_outputs() const {
    return &Exprs[0];
  }
  const_outputs_iterator end_outputs() const {
    return &Exprs[0] + NumOutputs;
  }

  // Child iterators

  virtual child_iterator child_begin();
  virtual child_iterator child_end();
};

}  // end namespace clang

#endif