aboutsummaryrefslogtreecommitdiff
path: root/include/clang/AST/Type.h
blob: 321b1f204fcfb96318c0f99a84e4a64289b824b4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines the Type interface and subclasses.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_AST_TYPE_H
#define LLVM_CLANG_AST_TYPE_H

#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/TemplateName.h"
#include "llvm/Support/Casting.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"

using llvm::isa;
using llvm::cast;
using llvm::cast_or_null;
using llvm::dyn_cast;
using llvm::dyn_cast_or_null;
namespace clang { class Type; }

namespace llvm {
  template <typename T>
  class PointerLikeTypeTraits;
  template<>
  class PointerLikeTypeTraits< ::clang::Type*> {
  public:
    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
    static inline ::clang::Type *getFromVoidPointer(void *P) {
      return static_cast< ::clang::Type*>(P);
    }
    enum { NumLowBitsAvailable = 3 };
  };
}

namespace clang {
  class ASTContext;
  class TypedefDecl;
  class TemplateDecl;
  class TemplateTypeParmDecl;
  class NonTypeTemplateParmDecl;
  class TemplateTemplateParmDecl;
  class TagDecl;
  class RecordDecl;
  class CXXRecordDecl;
  class EnumDecl;
  class FieldDecl;
  class ObjCInterfaceDecl;
  class ObjCProtocolDecl;
  class ObjCMethodDecl;
  class Expr;
  class Stmt;
  class SourceLocation;
  class StmtIteratorBase;
  class TemplateArgument;
  class QualifiedNameType;
  class PrintingPolicy;

  // Provide forward declarations for all of the *Type classes
#define TYPE(Class, Base) class Class##Type;
#include "clang/AST/TypeNodes.def"

/// QualType - For efficiency, we don't store CVR-qualified types as nodes on
/// their own: instead each reference to a type stores the qualifiers.  This
/// greatly reduces the number of nodes we need to allocate for types (for
/// example we only need one for 'int', 'const int', 'volatile int',
/// 'const volatile int', etc).
///
/// As an added efficiency bonus, instead of making this a pair, we just store
/// the three bits we care about in the low bits of the pointer.  To handle the
/// packing/unpacking, we make QualType be a simple wrapper class that acts like
/// a smart pointer.
class QualType {
  llvm::PointerIntPair<Type*, 3> Value;
public:
  enum TQ {   // NOTE: These flags must be kept in sync with DeclSpec::TQ.
    Const    = 0x1,
    Restrict = 0x2,
    Volatile = 0x4,
    CVRFlags = Const|Restrict|Volatile
  };
  
  enum GCAttrTypes {
    GCNone = 0,
    Weak,
    Strong
  };
  
  QualType() {}
  
  QualType(const Type *Ptr, unsigned Quals)
    : Value(const_cast<Type*>(Ptr), Quals) {}

  unsigned getCVRQualifiers() const { return Value.getInt(); }
  void setCVRQualifiers(unsigned Quals) { Value.setInt(Quals); }
  Type *getTypePtr() const { return Value.getPointer(); }
  
  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
  static QualType getFromOpaquePtr(void *Ptr) {
    QualType T;
    T.Value.setFromOpaqueValue(Ptr);
    return T;
  }
  
  Type &operator*() const {
    return *getTypePtr();
  }

  Type *operator->() const {
    return getTypePtr();
  }
  
  /// isNull - Return true if this QualType doesn't point to a type yet.
  bool isNull() const {
    return getTypePtr() == 0;
  }

  bool isConstQualified() const {
    return (getCVRQualifiers() & Const) ? true : false;
  }
  bool isVolatileQualified() const {
    return (getCVRQualifiers() & Volatile) ? true : false;
  }
  bool isRestrictQualified() const {
    return (getCVRQualifiers() & Restrict) ? true : false;
  }

  bool isConstant(ASTContext& Ctx) const;
  
  /// addConst/addVolatile/addRestrict - add the specified type qual to this
  /// QualType.
  void addConst()    { Value.setInt(Value.getInt() | Const); }
  void addVolatile() { Value.setInt(Value.getInt() | Volatile); }
  void addRestrict() { Value.setInt(Value.getInt() | Restrict); }

  void removeConst()    { Value.setInt(Value.getInt() & ~Const); }
  void removeVolatile() { Value.setInt(Value.getInt() & ~Volatile); }
  void removeRestrict() { Value.setInt(Value.getInt() & ~Restrict); }

  QualType getQualifiedType(unsigned TQs) const {
    return QualType(getTypePtr(), TQs);
  }
  QualType getWithAdditionalQualifiers(unsigned TQs) const {
    return QualType(getTypePtr(), TQs|getCVRQualifiers());
  }

  QualType withConst() const { return getWithAdditionalQualifiers(Const); }
  QualType withVolatile() const { return getWithAdditionalQualifiers(Volatile);}
  QualType withRestrict() const { return getWithAdditionalQualifiers(Restrict);}
  
  QualType getUnqualifiedType() const;
  bool isMoreQualifiedThan(QualType Other) const;
  bool isAtLeastAsQualifiedAs(QualType Other) const;
  QualType getNonReferenceType() const;
  
  /// getDesugaredType - Return the specified type with any "sugar" removed from
  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
  /// the type is already concrete, it returns it unmodified.  This is similar
  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
  /// concrete.
  QualType getDesugaredType(bool ForDisplay = false) const;

  /// operator==/!= - Indicate whether the specified types and qualifiers are
  /// identical.
  bool operator==(const QualType &RHS) const {
    return Value == RHS.Value;
  }
  bool operator!=(const QualType &RHS) const {
    return Value != RHS.Value;
  }
  std::string getAsString() const;

  std::string getAsString(const PrintingPolicy &Policy) const {
    std::string S;
    getAsStringInternal(S, Policy);
    return S;
  }
  void getAsStringInternal(std::string &Str, const PrintingPolicy &Policy) const;
  
  void dump(const char *s) const;
  void dump() const;
  
  void Profile(llvm::FoldingSetNodeID &ID) const {
    ID.AddPointer(getAsOpaquePtr());
  }

public:
  
  /// getAddressSpace - Return the address space of this type.
  inline unsigned getAddressSpace() const;
  
  /// GCAttrTypesAttr - Returns gc attribute of this type.
  inline QualType::GCAttrTypes getObjCGCAttr() const;

  /// isObjCGCWeak true when Type is objc's weak.
  bool isObjCGCWeak() const {
    return getObjCGCAttr() == Weak;
  }

  /// isObjCGCStrong true when Type is objc's strong.
  bool isObjCGCStrong() const {
    return getObjCGCAttr() == Strong;
  }
};

} // end clang.

namespace llvm {
/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
/// to a specific Type class.
template<> struct simplify_type<const ::clang::QualType> {
  typedef ::clang::Type* SimpleType;
  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
    return Val.getTypePtr();
  }
};
template<> struct simplify_type< ::clang::QualType>
  : public simplify_type<const ::clang::QualType> {};
  
// Teach SmallPtrSet that QualType is "basically a pointer".
template<>
class PointerLikeTypeTraits<clang::QualType> {
public:
  static inline void *getAsVoidPointer(clang::QualType P) {
    return P.getAsOpaquePtr();
  }
  static inline clang::QualType getFromVoidPointer(void *P) {
    return clang::QualType::getFromOpaquePtr(P);
  }
  // CVR qualifiers go in low bits.
  enum { NumLowBitsAvailable = 0 };
};
} // end namespace llvm

namespace clang {

/// Type - This is the base class of the type hierarchy.  A central concept
/// with types is that each type always has a canonical type.  A canonical type
/// is the type with any typedef names stripped out of it or the types it
/// references.  For example, consider:
///
///  typedef int  foo;
///  typedef foo* bar;
///    'int *'    'foo *'    'bar'
///
/// There will be a Type object created for 'int'.  Since int is canonical, its
/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
/// there is a PointerType that represents 'int*', which, like 'int', is
/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
/// is also 'int*'.
///
/// Non-canonical types are useful for emitting diagnostics, without losing
/// information about typedefs being used.  Canonical types are useful for type
/// comparisons (they allow by-pointer equality tests) and useful for reasoning
/// about whether something has a particular form (e.g. is a function type),
/// because they implicitly, recursively, strip all typedefs out of a type.
///
/// Types, once created, are immutable.
///
class Type {
public:
  enum TypeClass {
#define TYPE(Class, Base) Class,
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.def"
    TagFirst = Record, TagLast = Enum
  };
  
private:
  QualType CanonicalType;

  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
  bool Dependent : 1;

  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
  /// Note that this should stay at the end of the ivars for Type so that
  /// subclasses can pack their bitfields into the same word.
  unsigned TC : 5;

  Type(const Type&);           // DO NOT IMPLEMENT.
  void operator=(const Type&); // DO NOT IMPLEMENT.
protected:
  // silence VC++ warning C4355: 'this' : used in base member initializer list
  Type *this_() { return this; }
  Type(TypeClass tc, QualType Canonical, bool dependent)
    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
      Dependent(dependent), TC(tc) {}
  virtual ~Type() {}
  virtual void Destroy(ASTContext& C);
  friend class ASTContext;
  
public:
  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
  
  bool isCanonical() const { return CanonicalType.getTypePtr() == this; }

  /// Types are partitioned into 3 broad categories (C99 6.2.5p1): 
  /// object types, function types, and incomplete types.
  
  /// \brief Determines whether the type describes an object in memory.
  ///
  /// Note that this definition of object type corresponds to the C++
  /// definition of object type, which includes incomplete types, as
  /// opposed to the C definition (which does not include incomplete
  /// types).
  bool isObjectType() const;

  /// isIncompleteType - Return true if this is an incomplete type.
  /// A type that can describe objects, but which lacks information needed to
  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
  /// routine will need to determine if the size is actually required.  
  bool isIncompleteType() const;

  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
  /// type, in other words, not a function type.
  bool isIncompleteOrObjectType() const {
    return !isFunctionType();
  }

  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
  bool isPODType() const;

  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
  /// types that have a non-constant expression. This does not include "[]".
  bool isVariablyModifiedType() const;
  
  /// Helper methods to distinguish type categories. All type predicates
  /// operate on the canonical type, ignoring typedefs and qualifiers.

  /// isSpecificBuiltinType - Test for a particular builtin type.
  bool isSpecificBuiltinType(unsigned K) const;
  
  /// isIntegerType() does *not* include complex integers (a GCC extension).
  /// isComplexIntegerType() can be used to test for complex integers.
  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
  bool isEnumeralType() const;
  bool isBooleanType() const;
  bool isCharType() const;
  bool isWideCharType() const;
  bool isIntegralType() const;
  
  /// Floating point categories.
  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
  /// isComplexType() does *not* include complex integers (a GCC extension).
  /// isComplexIntegerType() can be used to test for complex integers.
  bool isComplexType() const;      // C99 6.2.5p11 (complex)
  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
  bool isVoidType() const;         // C99 6.2.5p19
  bool isDerivedType() const;      // C99 6.2.5p20
  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
  bool isAggregateType() const;
  
  // Type Predicates: Check to see if this type is structurally the specified
  // type, ignoring typedefs and qualifiers.
  bool isFunctionType() const;
  bool isFunctionNoProtoType() const { return getAsFunctionNoProtoType() != 0; }
  bool isFunctionProtoType() const { return getAsFunctionProtoType() != 0; }
  bool isPointerType() const;
  bool isBlockPointerType() const;
  bool isReferenceType() const;
  bool isLValueReferenceType() const;
  bool isRValueReferenceType() const;
  bool isFunctionPointerType() const;
  bool isMemberPointerType() const;
  bool isMemberFunctionPointerType() const;
  bool isArrayType() const;
  bool isConstantArrayType() const;
  bool isIncompleteArrayType() const;
  bool isVariableArrayType() const;
  bool isDependentSizedArrayType() const;
  bool isRecordType() const;
  bool isClassType() const;   
  bool isStructureType() const;   
  bool isUnionType() const;
  bool isComplexIntegerType() const;            // GCC _Complex integer type.
  bool isVectorType() const;                    // GCC vector type.
  bool isExtVectorType() const;                 // Extended vector type.
  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
  bool isObjCQualifiedIdType() const;           // id<foo>
  bool isTemplateTypeParmType() const;          // C++ template type parameter
  bool isNullPtrType() const;                   // C++0x nullptr_t

  /// isDependentType - Whether this type is a dependent type, meaning
  /// that its definition somehow depends on a template parameter 
  /// (C++ [temp.dep.type]).
  bool isDependentType() const { return Dependent; }
  bool isOverloadableType() const;

  /// hasPointerRepresentation - Whether this type is represented
  /// natively as a pointer; this includes pointers, references, block
  /// pointers, and Objective-C interface, qualified id, and qualified
  /// interface types, as well as nullptr_t.
  bool hasPointerRepresentation() const;

  /// hasObjCPointerRepresentation - Whether this type can represent
  /// an objective pointer type for the purpose of GC'ability
  bool hasObjCPointerRepresentation() const; 

  // Type Checking Functions: Check to see if this type is structurally the
  // specified type, ignoring typedefs and qualifiers, and return a pointer to
  // the best type we can.
  const BuiltinType *getAsBuiltinType() const;
  const FunctionType *getAsFunctionType() const;
  const FunctionNoProtoType *getAsFunctionNoProtoType() const;
  const FunctionProtoType *getAsFunctionProtoType() const;
  const PointerType *getAsPointerType() const;
  const BlockPointerType *getAsBlockPointerType() const;
  const ReferenceType *getAsReferenceType() const;
  const LValueReferenceType *getAsLValueReferenceType() const;
  const RValueReferenceType *getAsRValueReferenceType() const;
  const MemberPointerType *getAsMemberPointerType() const;
  const TagType *getAsTagType() const;
  const RecordType *getAsRecordType() const;
  const RecordType *getAsStructureType() const;
  /// NOTE: getAs*ArrayType are methods on ASTContext.
  const TypedefType *getAsTypedefType() const;
  const RecordType *getAsUnionType() const;
  const EnumType *getAsEnumType() const;
  const VectorType *getAsVectorType() const; // GCC vector type.
  const ComplexType *getAsComplexType() const;
  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
  const ExtVectorType *getAsExtVectorType() const; // Extended vector type.
  const ObjCObjectPointerType *getAsObjCObjectPointerType() const;
  const ObjCInterfaceType *getAsObjCInterfaceType() const;
  const ObjCQualifiedInterfaceType *getAsObjCQualifiedInterfaceType() const;
  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
  const TemplateTypeParmType *getAsTemplateTypeParmType() const;

  const TemplateSpecializationType *
    getAsTemplateSpecializationType() const;
  
  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
  /// interface, return the interface type, otherwise return null.
  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;

  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
  /// element type of the array, potentially with type qualifiers missing.
  /// This method should never be used when type qualifiers are meaningful.
  const Type *getArrayElementTypeNoTypeQual() const;
  
  /// getDesugaredType - Return the specified type with any "sugar" removed from
  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
  /// the type is already concrete, it returns it unmodified.  This is similar
  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
  /// concrete.
  QualType getDesugaredType(bool ForDisplay = false) const;
  
  /// More type predicates useful for type checking/promotion
  bool isPromotableIntegerType() const; // C99 6.3.1.1p2

  /// isSignedIntegerType - Return true if this is an integer type that is
  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
  /// an enum decl which has a signed representation, or a vector of signed
  /// integer element type.
  bool isSignedIntegerType() const;

  /// isUnsignedIntegerType - Return true if this is an integer type that is
  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
  /// decl which has an unsigned representation, or a vector of unsigned integer
  /// element type.
  bool isUnsignedIntegerType() const;

  /// isConstantSizeType - Return true if this is not a variable sized type,
  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
  /// incomplete types.
  bool isConstantSizeType() const;

  /// isSpecifierType - Returns true if this type can be represented by some
  /// set of type specifiers.
  bool isSpecifierType() const;

  QualType getCanonicalTypeInternal() const { return CanonicalType; }
  void dump() const;
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const = 0;
  static bool classof(const Type *) { return true; }
};

/// ExtQualType - TR18037 (C embedded extensions) 6.2.5p26 
/// This supports all kinds of type attributes; including,
/// address space qualified types, objective-c's __weak and
/// __strong attributes.
///
class ExtQualType : public Type, public llvm::FoldingSetNode {
  /// BaseType - This is the underlying type that this qualifies.  All CVR
  /// qualifiers are stored on the QualType that references this type, so we
  /// can't have any here.
  Type *BaseType;

  /// Address Space ID - The address space ID this type is qualified with.
  unsigned AddressSpace;
  /// GC __weak/__strong attributes
  QualType::GCAttrTypes GCAttrType;
  
  ExtQualType(Type *Base, QualType CanonicalPtr, unsigned AddrSpace,
              QualType::GCAttrTypes gcAttr) :
      Type(ExtQual, CanonicalPtr, Base->isDependentType()), BaseType(Base),
      AddressSpace(AddrSpace), GCAttrType(gcAttr) {
    assert(!isa<ExtQualType>(BaseType) &&
           "Cannot have ExtQualType of ExtQualType");
  }
  friend class ASTContext;  // ASTContext creates these.
public:
  Type *getBaseType() const { return BaseType; }
  QualType::GCAttrTypes getObjCGCAttr() const { return GCAttrType; }
  unsigned getAddressSpace() const { return AddressSpace; }
  
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
  
  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getBaseType(), AddressSpace, GCAttrType);
  }
  static void Profile(llvm::FoldingSetNodeID &ID, Type *Base, 
                      unsigned AddrSpace, QualType::GCAttrTypes gcAttr) {
    ID.AddPointer(Base);
    ID.AddInteger(AddrSpace);
    ID.AddInteger(gcAttr);
  }
  
  static bool classof(const Type *T) { return T->getTypeClass() == ExtQual; }
  static bool classof(const ExtQualType *) { return true; }
};


/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
/// types are always canonical and have a literal name field.
class BuiltinType : public Type {
public:
  enum Kind {
    Void,
    
    Bool,     // This is bool and/or _Bool.
    Char_U,   // This is 'char' for targets where char is unsigned.
    UChar,    // This is explicitly qualified unsigned char.
    UShort,
    UInt,
    ULong,
    ULongLong,
    UInt128,  // __uint128_t
    
    Char_S,   // This is 'char' for targets where char is signed.
    SChar,    // This is explicitly qualified signed char.
    WChar,    // This is 'wchar_t' for C++.
    Short,
    Int,
    Long,
    LongLong,
    Int128,   // __int128_t
    
    Float, Double, LongDouble,

    NullPtr,  // This is the type of C++0x 'nullptr'.

    Overload,  // This represents the type of an overloaded function declaration.
    Dependent, // This represents the type of a type-dependent expression.
    
    UndeducedAuto  // In C++0x, this represents the type of an auto variable
                   // that has not been deduced yet.
  };
private:
  Kind TypeKind;
public:
  BuiltinType(Kind K) 
    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)), 
      TypeKind(K) {}
  
  Kind getKind() const { return TypeKind; }
  const char *getName(bool CPlusPlus) const;
  
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
  
  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
  static bool classof(const BuiltinType *) { return true; }
};

/// FixedWidthIntType - Used for arbitrary width types that we either don't
/// want to or can't map to named integer types.  These always have a lower
/// integer rank than builtin types of the same width.
class FixedWidthIntType : public Type {
private:
  unsigned Width;
  bool Signed;
public:
  FixedWidthIntType(unsigned W, bool S) : Type(FixedWidthInt, QualType(), false),
                                          Width(W), Signed(S) {}
  
  unsigned getWidth() const { return Width; }
  bool isSigned() const { return Signed; }
  const char *getName() const;
  
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
  
  static bool classof(const Type *T) { return T->getTypeClass() == FixedWidthInt; }
  static bool classof(const FixedWidthIntType *) { return true; }
};

/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
/// types (_Complex float etc) as well as the GCC integer complex extensions.
///
class ComplexType : public Type, public llvm::FoldingSetNode {
  QualType ElementType;
  ComplexType(QualType Element, QualType CanonicalPtr) :
    Type(Complex, CanonicalPtr, Element->isDependentType()), 
    ElementType(Element) {
  }
  friend class ASTContext;  // ASTContext creates these.
public:
  QualType getElementType() const { return ElementType; }
  
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
    
  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getElementType());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
    ID.AddPointer(Element.getAsOpaquePtr());
  }
  
  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
  static bool classof(const ComplexType *) { return true; }
};

/// PointerType - C99 6.7.5.1 - Pointer Declarators.
///
class PointerType : public Type, public llvm::FoldingSetNode {
  QualType PointeeType;

  PointerType(QualType Pointee, QualType CanonicalPtr) :
    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
  }
  friend class ASTContext;  // ASTContext creates these.
public:
  
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
  
  QualType getPointeeType() const { return PointeeType; }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getPointeeType());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
    ID.AddPointer(Pointee.getAsOpaquePtr());
  }
  
  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
  static bool classof(const PointerType *) { return true; }
};

/// BlockPointerType - pointer to a block type.
/// This type is to represent types syntactically represented as
/// "void (^)(int)", etc. Pointee is required to always be a function type.
///
class BlockPointerType : public Type, public llvm::FoldingSetNode {
  QualType PointeeType;  // Block is some kind of pointer type
  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()), 
    PointeeType(Pointee) {
  }
  friend class ASTContext;  // ASTContext creates these.
public:
  
  // Get the pointee type. Pointee is required to always be a function type.
  QualType getPointeeType() const { return PointeeType; }

  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
    
  void Profile(llvm::FoldingSetNodeID &ID) {
      Profile(ID, getPointeeType());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
      ID.AddPointer(Pointee.getAsOpaquePtr());
  }
    
  static bool classof(const Type *T) { 
    return T->getTypeClass() == BlockPointer; 
  }
  static bool classof(const BlockPointerType *) { return true; }
};

/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
///
class ReferenceType : public Type, public llvm::FoldingSetNode {
  QualType PointeeType;

protected:
  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef) :
    Type(tc, CanonicalRef, Referencee->isDependentType()),
    PointeeType(Referencee) {
  }
public:
  QualType getPointeeType() const { return PointeeType; }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getPointeeType());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType Referencee) {
    ID.AddPointer(Referencee.getAsOpaquePtr());
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == LValueReference ||
           T->getTypeClass() == RValueReference;
  }
  static bool classof(const ReferenceType *) { return true; }
};

/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
///
class LValueReferenceType : public ReferenceType {
  LValueReferenceType(QualType Referencee, QualType CanonicalRef) :
    ReferenceType(LValueReference, Referencee, CanonicalRef) {
  }
  friend class ASTContext; // ASTContext creates these
public:
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;

  static bool classof(const Type *T) {
    return T->getTypeClass() == LValueReference;
  }
  static bool classof(const LValueReferenceType *) { return true; }
};

/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
///
class RValueReferenceType : public ReferenceType {
  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
    ReferenceType(RValueReference, Referencee, CanonicalRef) {
  }
  friend class ASTContext; // ASTContext creates these
public:
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;

  static bool classof(const Type *T) {
    return T->getTypeClass() == RValueReference;
  }
  static bool classof(const RValueReferenceType *) { return true; }
};

/// MemberPointerType - C++ 8.3.3 - Pointers to members
///
class MemberPointerType : public Type, public llvm::FoldingSetNode {
  QualType PointeeType;
  /// The class of which the pointee is a member. Must ultimately be a
  /// RecordType, but could be a typedef or a template parameter too.
  const Type *Class;

  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
    Type(MemberPointer, CanonicalPtr,
         Cls->isDependentType() || Pointee->isDependentType()),
    PointeeType(Pointee), Class(Cls) {
  }
  friend class ASTContext; // ASTContext creates these.
public:

  QualType getPointeeType() const { return PointeeType; }

  const Type *getClass() const { return Class; }

  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getPointeeType(), getClass());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
                      const Type *Class) {
    ID.AddPointer(Pointee.getAsOpaquePtr());
    ID.AddPointer(Class);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == MemberPointer;
  }
  static bool classof(const MemberPointerType *) { return true; }
};

/// ArrayType - C99 6.7.5.2 - Array Declarators.
///
class ArrayType : public Type, public llvm::FoldingSetNode {
public:
  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
  /// an array with a static size (e.g. int X[static 4]), or an array
  /// with a star size (e.g. int X[*]).
  /// 'static' is only allowed on function parameters.
  enum ArraySizeModifier {
    Normal, Static, Star
  };
private:
  /// ElementType - The element type of the array.
  QualType ElementType;
  
  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
  /// NOTE: These fields are packed into the bitfields space in the Type class.
  unsigned SizeModifier : 2;
  
  /// IndexTypeQuals - Capture qualifiers in declarations like:
  /// 'int X[static restrict 4]'. For function parameters only.
  unsigned IndexTypeQuals : 3;
  
protected:
  // C++ [temp.dep.type]p1:
  //   A type is dependent if it is...
  //     - an array type constructed from any dependent type or whose
  //       size is specified by a constant expression that is
  //       value-dependent,
  ArrayType(TypeClass tc, QualType et, QualType can,
            ArraySizeModifier sm, unsigned tq)
    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}

  friend class ASTContext;  // ASTContext creates these.
public:
  QualType getElementType() const { return ElementType; }
  ArraySizeModifier getSizeModifier() const {
    return ArraySizeModifier(SizeModifier);
  }
  unsigned getIndexTypeQualifier() const { return IndexTypeQuals; }
  
  static bool classof(const Type *T) {
    return T->getTypeClass() == ConstantArray ||
           T->getTypeClass() == VariableArray ||
           T->getTypeClass() == IncompleteArray ||
           T->getTypeClass() == DependentSizedArray;
  }
  static bool classof(const ArrayType *) { return true; }
};

/// ConstantArrayType - This class represents C arrays with a specified constant
/// size.  For example 'int A[100]' has ConstantArrayType where the element type
/// is 'int' and the size is 100.
class ConstantArrayType : public ArrayType {
  llvm::APInt Size; // Allows us to unique the type.
  
  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
                    ArraySizeModifier sm, unsigned tq)
    : ArrayType(ConstantArray, et, can, sm, tq), Size(size) {}
  friend class ASTContext;  // ASTContext creates these.
public:
  const llvm::APInt &getSize() const { return Size; }
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
  
  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getElementType(), getSize(), 
            getSizeModifier(), getIndexTypeQualifier());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
                      unsigned TypeQuals) {
    ID.AddPointer(ET.getAsOpaquePtr());
    ID.AddInteger(ArraySize.getZExtValue());
    ID.AddInteger(SizeMod);
    ID.AddInteger(TypeQuals);
  }
  static bool classof(const Type *T) { 
    return T->getTypeClass() == ConstantArray; 
  }
  static bool classof(const ConstantArrayType *) { return true; }
};

/// IncompleteArrayType - This class represents C arrays with an unspecified
/// size.  For example 'int A[]' has an IncompleteArrayType where the element
/// type is 'int' and the size is unspecified.
class IncompleteArrayType : public ArrayType {
  IncompleteArrayType(QualType et, QualType can,
                    ArraySizeModifier sm, unsigned tq)
    : ArrayType(IncompleteArray, et, can, sm, tq) {}
  friend class ASTContext;  // ASTContext creates these.
public:

  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;

  static bool classof(const Type *T) { 
    return T->getTypeClass() == IncompleteArray; 
  }
  static bool classof(const IncompleteArrayType *) { return true; }
  
  friend class StmtIteratorBase;
  
  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getElementType(), getSizeModifier(), getIndexTypeQualifier());
  }
  
  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
    ID.AddPointer(ET.getAsOpaquePtr());
    ID.AddInteger(SizeMod);
    ID.AddInteger(TypeQuals);
  }
};

/// VariableArrayType - This class represents C arrays with a specified size
/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
/// Since the size expression is an arbitrary expression, we store it as such.
///
/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
/// should not be: two lexically equivalent variable array types could mean
/// different things, for example, these variables do not have the same type
/// dynamically:
///
/// void foo(int x) {
///   int Y[x];
///   ++x;
///   int Z[x];
/// }
///
class VariableArrayType : public ArrayType {
  /// SizeExpr - An assignment expression. VLA's are only permitted within 
  /// a function block. 
  Stmt *SizeExpr;
  
  VariableArrayType(QualType et, QualType can, Expr *e,
                    ArraySizeModifier sm, unsigned tq)
    : ArrayType(VariableArray, et, can, sm, tq), SizeExpr((Stmt*) e) {}
  friend class ASTContext;  // ASTContext creates these.
  virtual void Destroy(ASTContext& C);

public:
  Expr *getSizeExpr() const { 
    // We use C-style casts instead of cast<> here because we do not wish
    // to have a dependency of Type.h on Stmt.h/Expr.h.
    return (Expr*) SizeExpr;
  }
  
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
  
  static bool classof(const Type *T) { 
    return T->getTypeClass() == VariableArray; 
  }
  static bool classof(const VariableArrayType *) { return true; }
  
  friend class StmtIteratorBase;
  
  void Profile(llvm::FoldingSetNodeID &ID) {
    assert(0 && "Cannnot unique VariableArrayTypes.");
  }
};

/// DependentSizedArrayType - This type represents an array type in
/// C++ whose size is a value-dependent expression. For example:
/// @code
/// template<typename T, int Size> 
/// class array {
///   T data[Size];
/// };
/// @endcode
/// For these types, we won't actually know what the array bound is
/// until template instantiation occurs, at which point this will
/// become either a ConstantArrayType or a VariableArrayType.
class DependentSizedArrayType : public ArrayType {
  /// SizeExpr - An assignment expression that will instantiate to the
  /// size of the array.
  Stmt *SizeExpr;
  
  DependentSizedArrayType(QualType et, QualType can, Expr *e,
			  ArraySizeModifier sm, unsigned tq)
    : ArrayType(DependentSizedArray, et, can, sm, tq), SizeExpr((Stmt*) e) {}
  friend class ASTContext;  // ASTContext creates these.
  virtual void Destroy(ASTContext& C);

public:
  Expr *getSizeExpr() const { 
    // We use C-style casts instead of cast<> here because we do not wish
    // to have a dependency of Type.h on Stmt.h/Expr.h.
    return (Expr*) SizeExpr;
  }
  
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
  
  static bool classof(const Type *T) { 
    return T->getTypeClass() == DependentSizedArray; 
  }
  static bool classof(const DependentSizedArrayType *) { return true; }
  
  friend class StmtIteratorBase;
  
  void Profile(llvm::FoldingSetNodeID &ID) {
    assert(0 && "Cannnot unique DependentSizedArrayTypes.");
  }
};

/// DependentSizedExtVectorType - This type represent an extended vector type
/// where either the type or size is dependent. For example:
/// @code
/// template<typename T, int Size>
/// class vector {
///   typedef T __attribute__((ext_vector_type(Size))) type;
/// }
/// @endcode
class DependentSizedExtVectorType : public Type {
  Expr *SizeExpr;
  /// ElementType - The element type of the array.
  QualType ElementType;
  SourceLocation loc;
  
  DependentSizedExtVectorType(QualType ElementType, QualType can, 
                              Expr *SizeExpr, SourceLocation loc)
    : Type (DependentSizedExtVector, can, true), 
    SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {}
  friend class ASTContext;
  virtual void Destroy(ASTContext& C);

public:
  const Expr *getSizeExpr() const { return SizeExpr; }
  QualType getElementType() const { return ElementType; }
  SourceLocation getAttributeLoc() const { return loc; }

  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
  
  static bool classof(const Type *T) { 
    return T->getTypeClass() == DependentSizedExtVector; 
  }
  static bool classof(const DependentSizedExtVectorType *) { return true; } 
};
  

/// VectorType - GCC generic vector type. This type is created using
/// __attribute__((vector_size(n)), where "n" specifies the vector size in 
/// bytes. Since the constructor takes the number of vector elements, the 
/// client is responsible for converting the size into the number of elements.
class VectorType : public Type, public llvm::FoldingSetNode {
protected:
  /// ElementType - The element type of the vector.
  QualType ElementType;
  
  /// NumElements - The number of elements in the vector.
  unsigned NumElements;
  
  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
    Type(Vector, canonType, vecType->isDependentType()), 
    ElementType(vecType), NumElements(nElements) {} 
  VectorType(TypeClass tc, QualType vecType, unsigned nElements, 
             QualType canonType) 
    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType), 
      NumElements(nElements) {} 
  friend class ASTContext;  // ASTContext creates these.
public:
    
  QualType getElementType() const { return ElementType; }
  unsigned getNumElements() const { return NumElements; } 

  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
  
  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getElementType(), getNumElements(), getTypeClass());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType, 
                      unsigned NumElements, TypeClass TypeClass) {
    ID.AddPointer(ElementType.getAsOpaquePtr());
    ID.AddInteger(NumElements);
    ID.AddInteger(TypeClass);
  }
  static bool classof(const Type *T) { 
    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector; 
  }
  static bool classof(const VectorType *) { return true; }
};

/// ExtVectorType - Extended vector type. This type is created using
/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
/// class enables syntactic extensions, like Vector Components for accessing
/// points, colors, and textures (modeled after OpenGL Shading Language).
class ExtVectorType : public VectorType {
  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
    VectorType(ExtVector, vecType, nElements, canonType) {} 
  friend class ASTContext;  // ASTContext creates these.
public:
  static int getPointAccessorIdx(char c) {
    switch (c) {
    default: return -1;
    case 'x': return 0;
    case 'y': return 1;
    case 'z': return 2;
    case 'w': return 3;
    }
  }
  static int getNumericAccessorIdx(char c) {
    switch (c) {
      default: return -1;
      case '0': return 0;
      case '1': return 1;
      case '2': return 2;
      case '3': return 3;
      case '4': return 4;
      case '5': return 5;
      case '6': return 6;
      case '7': return 7;
      case '8': return 8;
      case '9': return 9;
      case 'A':
      case 'a': return 10;
      case 'B':
      case 'b': return 11;
      case 'C':
      case 'c': return 12;
      case 'D':
      case 'd': return 13;
      case 'E':
      case 'e': return 14;
      case 'F':
      case 'f': return 15;
    }
  }
  
  static int getAccessorIdx(char c) {
    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
    return getNumericAccessorIdx(c);
  }
  
  bool isAccessorWithinNumElements(char c) const {
    if (int idx = getAccessorIdx(c)+1)
      return unsigned(idx-1) < NumElements;
    return false;
  }
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;

  static bool classof(const Type *T) { 
    return T->getTypeClass() == ExtVector; 
  }
  static bool classof(const ExtVectorType *) { return true; }
};

/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
/// class of FunctionNoProtoType and FunctionProtoType.
///
class FunctionType : public Type {
  /// SubClassData - This field is owned by the subclass, put here to pack
  /// tightly with the ivars in Type.
  bool SubClassData : 1;

  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
  /// other bitfields.
  /// The qualifiers are part of FunctionProtoType because...
  ///
  /// C++ 8.3.5p4: The return type, the parameter type list and the
  /// cv-qualifier-seq, [...], are part of the function type.
  ///
  unsigned TypeQuals : 3;
  
  // The type returned by the function.
  QualType ResultType;
protected:
  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
               unsigned typeQuals, QualType Canonical, bool Dependent)
    : Type(tc, Canonical, Dependent),
      SubClassData(SubclassInfo), TypeQuals(typeQuals), ResultType(res) {}
  bool getSubClassData() const { return SubClassData; }
  unsigned getTypeQuals() const { return TypeQuals; }
public:
  
  QualType getResultType() const { return ResultType; }

  
  static bool classof(const Type *T) {
    return T->getTypeClass() == FunctionNoProto ||
           T->getTypeClass() == FunctionProto;
  }
  static bool classof(const FunctionType *) { return true; }
};

/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
/// no information available about its arguments.
class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
  FunctionNoProtoType(QualType Result, QualType Canonical)
    : FunctionType(FunctionNoProto, Result, false, 0, Canonical, 
                   /*Dependent=*/false) {}
  friend class ASTContext;  // ASTContext creates these.
public:
  // No additional state past what FunctionType provides.
  
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getResultType());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType) {
    ID.AddPointer(ResultType.getAsOpaquePtr());
  }
  
  static bool classof(const Type *T) {
    return T->getTypeClass() == FunctionNoProto;
  }
  static bool classof(const FunctionNoProtoType *) { return true; }
};

/// FunctionProtoType - Represents a prototype with argument type info, e.g.
/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
/// arguments, not as having a single void argument. Such a type can have an
/// exception specification, but this specification is not part of the canonical
/// type.
class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
  /// hasAnyDependentType - Determine whether there are any dependent
  /// types within the arguments passed in.
  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
      if (ArgArray[Idx]->isDependentType())
    return true;

    return false;
  }

  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
                    bool isVariadic, unsigned typeQuals, bool hasExs,
                    bool hasAnyExs, const QualType *ExArray,
                    unsigned numExs, QualType Canonical)
    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
                   (Result->isDependentType() || 
                    hasAnyDependentType(ArgArray, numArgs))),
      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
      AnyExceptionSpec(hasAnyExs) {
    // Fill in the trailing argument array.
    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
    for (unsigned i = 0; i != numArgs; ++i)
      ArgInfo[i] = ArgArray[i];
    // Fill in the exception array.
    QualType *Ex = ArgInfo + numArgs;
    for (unsigned i = 0; i != numExs; ++i)
      Ex[i] = ExArray[i];
  }

  /// NumArgs - The number of arguments this function has, not counting '...'.
  unsigned NumArgs : 20;

  /// NumExceptions - The number of types in the exception spec, if any.
  unsigned NumExceptions : 10;

  /// HasExceptionSpec - Whether this function has an exception spec at all.
  bool HasExceptionSpec : 1;

  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
  bool AnyExceptionSpec : 1;

  /// ArgInfo - There is an variable size array after the class in memory that
  /// holds the argument types.

  /// Exceptions - There is another variable size array after ArgInfo that
  /// holds the exception types.

  friend class ASTContext;  // ASTContext creates these.

public:
  unsigned getNumArgs() const { return NumArgs; }
  QualType getArgType(unsigned i) const {
    assert(i < NumArgs && "Invalid argument number!");
    return arg_type_begin()[i];
  }

  bool hasExceptionSpec() const { return HasExceptionSpec; }
  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
  unsigned getNumExceptions() const { return NumExceptions; }
  QualType getExceptionType(unsigned i) const {
    assert(i < NumExceptions && "Invalid exception number!");
    return exception_begin()[i];
  }
  bool hasEmptyExceptionSpec() const { 
    return hasExceptionSpec() && !hasAnyExceptionSpec() && 
      getNumExceptions() == 0;
  }

  bool isVariadic() const { return getSubClassData(); }
  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
  
  typedef const QualType *arg_type_iterator;
  arg_type_iterator arg_type_begin() const {
    return reinterpret_cast<const QualType *>(this+1);
  }
  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }

  typedef const QualType *exception_iterator;
  exception_iterator exception_begin() const {
    // exceptions begin where arguments end
    return arg_type_end();
  }
  exception_iterator exception_end() const {
    return exception_begin() + NumExceptions;
  }

  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;

  static bool classof(const Type *T) {
    return T->getTypeClass() == FunctionProto;
  }
  static bool classof(const FunctionProtoType *) { return true; }

  void Profile(llvm::FoldingSetNodeID &ID);
  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
                      arg_type_iterator ArgTys, unsigned NumArgs,
                      bool isVariadic, unsigned TypeQuals,
                      bool hasExceptionSpec, bool anyExceptionSpec,
                      unsigned NumExceptions, exception_iterator Exs);
};


class TypedefType : public Type {
  TypedefDecl *Decl;
protected:
  TypedefType(TypeClass tc, TypedefDecl *D, QualType can) 
    : Type(tc, can, can->isDependentType()), Decl(D) {
    assert(!isa<TypedefType>(can) && "Invalid canonical type");
  }
  friend class ASTContext;  // ASTContext creates these.
public:
  
  TypedefDecl *getDecl() const { return Decl; }
  
  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
  /// potentially looking through *all* consecutive typedefs.  This returns the
  /// sum of the type qualifiers, so if you have:
  ///   typedef const int A;
  ///   typedef volatile A B;
  /// looking through the typedefs for B will give you "const volatile A".
  QualType LookThroughTypedefs() const;
    
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;

  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
  static bool classof(const TypedefType *) { return true; }
};

/// TypeOfExprType (GCC extension).
class TypeOfExprType : public Type {
  Expr *TOExpr;
  TypeOfExprType(Expr *E, QualType can);
  friend class ASTContext;  // ASTContext creates these.
public:
  Expr *getUnderlyingExpr() const { return TOExpr; }
  
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;

  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
  static bool classof(const TypeOfExprType *) { return true; }
};

/// TypeOfType (GCC extension).
class TypeOfType : public Type {
  QualType TOType;
  TypeOfType(QualType T, QualType can) 
    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
    assert(!isa<TypedefType>(can) && "Invalid canonical type");
  }
  friend class ASTContext;  // ASTContext creates these.
public:
  QualType getUnderlyingType() const { return TOType; }
  
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;

  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
  static bool classof(const TypeOfType *) { return true; }
};

/// DecltypeType (C++0x)
class DecltypeType : public Type {
  Expr *E;
  DecltypeType(Expr *E, QualType can);
  friend class ASTContext;  // ASTContext creates these.
public:
  Expr *getUnderlyingExpr() const { return E; }
  
  virtual void getAsStringInternal(std::string &InnerString, 
                                   const PrintingPolicy &Policy) const;
  
  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
  static bool classof(const DecltypeType *) { return true; }
};
  
class TagType : public Type {
  /// Stores the TagDecl associated with this type. The decl will
  /// point to the TagDecl that actually defines the entity (or is a
  /// definition in progress), if there is such a definition. The
  /// single-bit value will be non-zero when this tag is in the
  /// process of being defined.
  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
  friend class ASTContext;
  friend class TagDecl;

protected:
  TagType(TypeClass TC, TagDecl *D, QualType can);

public:   
  TagDecl *getDecl() const { return decl.getPointer(); }
  
  /// @brief Determines whether this type is in the process of being
  /// defined. 
  bool isBeingDefined() const { return decl.getInt(); }
  void setBeingDefined(bool Def) { decl.setInt(Def? 1 : 0); }

  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;

  static bool classof(const Type *T) { 
    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
  }
  static bool classof(const TagType *) { return true; }
  static bool classof(const RecordType *) { return true; }
  static bool classof(const EnumType *) { return true; }
};

/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
/// to detect TagType objects of structs/unions/classes.
class RecordType : public TagType {
protected:
  explicit RecordType(RecordDecl *D)
    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
  explicit RecordType(TypeClass TC, RecordDecl *D)
    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
  friend class ASTContext;   // ASTContext creates these.
public:
    
  RecordDecl *getDecl() const {
    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
  }
  
  // FIXME: This predicate is a helper to QualType/Type. It needs to 
  // recursively check all fields for const-ness. If any field is declared
  // const, it needs to return false. 
  bool hasConstFields() const { return false; }

  // FIXME: RecordType needs to check when it is created that all fields are in
  // the same address space, and return that.
  unsigned getAddressSpace() const { return 0; }
  
  static bool classof(const TagType *T);
  static bool classof(const Type *T) {
    return isa<TagType>(T) && classof(cast<TagType>(T));
  }
  static bool classof(const RecordType *) { return true; }
};

/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
/// to detect TagType objects of enums.
class EnumType : public TagType {
  explicit EnumType(EnumDecl *D)
    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
  friend class ASTContext;   // ASTContext creates these.
public:
    
  EnumDecl *getDecl() const {
    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
  }
  
  static bool classof(const TagType *T);
  static bool classof(const Type *T) {
    return isa<TagType>(T) && classof(cast<TagType>(T));
  }
  static bool classof(const EnumType *) { return true; }
};

class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
  unsigned Depth : 15;
  unsigned Index : 16;
  unsigned ParameterPack : 1;
  IdentifierInfo *Name;

  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N, 
                       QualType Canon) 
    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
      Depth(D), Index(I), ParameterPack(PP), Name(N) { }

  TemplateTypeParmType(unsigned D, unsigned I, bool PP) 
    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
      Depth(D), Index(I), ParameterPack(PP), Name(0) { }

  friend class ASTContext;  // ASTContext creates these

public:
  unsigned getDepth() const { return Depth; }
  unsigned getIndex() const { return Index; }
  bool isParameterPack() const { return ParameterPack; }
  IdentifierInfo *getName() const { return Name; }
  
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, Depth, Index, ParameterPack, Name);
  }

  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth, 
                      unsigned Index, bool ParameterPack, 
                      IdentifierInfo *Name) {
    ID.AddInteger(Depth);
    ID.AddInteger(Index);
    ID.AddBoolean(ParameterPack);
    ID.AddPointer(Name);
  }

  static bool classof(const Type *T) { 
    return T->getTypeClass() == TemplateTypeParm; 
  }
  static bool classof(const TemplateTypeParmType *T) { return true; }
};

/// \brief Represents the type of a template specialization as written
/// in the source code.
///
/// Template specialization types represent the syntactic form of a
/// template-id that refers to a type, e.g., @c vector<int>. Some
/// template specialization types are syntactic sugar, whose canonical
/// type will point to some other type node that represents the
/// instantiation or class template specialization. For example, a
/// class template specialization type of @c vector<int> will refer to
/// a tag type for the instantiation 
/// @c std::vector<int, std::allocator<int>>.
///
/// Other template specialization types, for which the template name
/// is dependent, may be canonical types. These types are always
/// dependent.
class TemplateSpecializationType 
  : public Type, public llvm::FoldingSetNode {

  /// \brief The name of the template being specialized.
  TemplateName Template;

  /// \brief - The number of template arguments named in this class
  /// template specialization.
  unsigned NumArgs;

  TemplateSpecializationType(TemplateName T,
                             const TemplateArgument *Args,
                             unsigned NumArgs, QualType Canon);

  virtual void Destroy(ASTContext& C);

  friend class ASTContext;  // ASTContext creates these

public:
  /// \brief Determine whether any of the given template arguments are
  /// dependent.
  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
                                            unsigned NumArgs);  

  /// \brief Print a template argument list, including the '<' and '>'
  /// enclosing the template arguments.
  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
                                               unsigned NumArgs,
                                               const PrintingPolicy &Policy);

  typedef const TemplateArgument * iterator;

  iterator begin() const { return getArgs(); }
  iterator end() const;

  /// \brief Retrieve the name of the template that we are specializing.
  TemplateName getTemplateName() const { return Template; }

  /// \brief Retrieve the template arguments.
  const TemplateArgument *getArgs() const { 
    return reinterpret_cast<const TemplateArgument *>(this + 1);
  }

  /// \brief Retrieve the number of template arguments.
  unsigned getNumArgs() const { return NumArgs; }

  /// \brief Retrieve a specific template argument as a type.
  /// \precondition @c isArgType(Arg)
  const TemplateArgument &getArg(unsigned Idx) const;

  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, Template, getArgs(), NumArgs);
  }

  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
                      const TemplateArgument *Args, unsigned NumArgs);

  static bool classof(const Type *T) { 
    return T->getTypeClass() == TemplateSpecialization; 
  }
  static bool classof(const TemplateSpecializationType *T) { return true; }
};

/// \brief Represents a type that was referred to via a qualified
/// name, e.g., N::M::type.
///
/// This type is used to keep track of a type name as written in the
/// source code, including any nested-name-specifiers. The type itself
/// is always "sugar", used to express what was written in the source
/// code but containing no additional semantic information.
class QualifiedNameType : public Type, public llvm::FoldingSetNode {
  /// \brief The nested name specifier containing the qualifier.
  NestedNameSpecifier *NNS;

  /// \brief The type that this qualified name refers to.
  QualType NamedType;

  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
                    QualType CanonType)
    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
      NNS(NNS), NamedType(NamedType) { }

  friend class ASTContext;  // ASTContext creates these

public:
  /// \brief Retrieve the qualification on this type.
  NestedNameSpecifier *getQualifier() const { return NNS; }

  /// \brief Retrieve the type named by the qualified-id.
  QualType getNamedType() const { return NamedType; }

  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, NNS, NamedType);
  }

  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
                      QualType NamedType) {
    ID.AddPointer(NNS);
    NamedType.Profile(ID);
  }

  static bool classof(const Type *T) { 
    return T->getTypeClass() == QualifiedName; 
  }
  static bool classof(const QualifiedNameType *T) { return true; }
};

/// \brief Represents a 'typename' specifier that names a type within
/// a dependent type, e.g., "typename T::type".
///
/// TypenameType has a very similar structure to QualifiedNameType,
/// which also involves a nested-name-specifier following by a type,
/// and (FIXME!) both can even be prefixed by the 'typename'
/// keyword. However, the two types serve very different roles:
/// QualifiedNameType is a non-semantic type that serves only as sugar
/// to show how a particular type was written in the source
/// code. TypenameType, on the other hand, only occurs when the
/// nested-name-specifier is dependent, such that we cannot resolve
/// the actual type until after instantiation.
class TypenameType : public Type, public llvm::FoldingSetNode {
  /// \brief The nested name specifier containing the qualifier.
  NestedNameSpecifier *NNS;

  typedef llvm::PointerUnion<const IdentifierInfo *, 
                             const TemplateSpecializationType *> NameType;

  /// \brief The type that this typename specifier refers to.
  NameType Name;

  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
               QualType CanonType)
    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) { 
    assert(NNS->isDependent() && 
           "TypenameType requires a dependent nested-name-specifier");
  }

  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
               QualType CanonType)
    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) { 
    assert(NNS->isDependent() && 
           "TypenameType requires a dependent nested-name-specifier");
  }

  friend class ASTContext;  // ASTContext creates these

public:
  /// \brief Retrieve the qualification on this type.
  NestedNameSpecifier *getQualifier() const { return NNS; }

  /// \brief Retrieve the type named by the typename specifier as an
  /// identifier.
  ///
  /// This routine will return a non-NULL identifier pointer when the
  /// form of the original typename was terminated by an identifier,
  /// e.g., "typename T::type".
  const IdentifierInfo *getIdentifier() const { 
    return Name.dyn_cast<const IdentifierInfo *>(); 
  }

  /// \brief Retrieve the type named by the typename specifier as a
  /// type specialization.
  const TemplateSpecializationType *getTemplateId() const {
    return Name.dyn_cast<const TemplateSpecializationType *>();
  }

  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, NNS, Name);
  }

  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
                      NameType Name) {
    ID.AddPointer(NNS);
    ID.AddPointer(Name.getOpaqueValue());
  }

  static bool classof(const Type *T) { 
    return T->getTypeClass() == Typename; 
  }
  static bool classof(const TypenameType *T) { return true; }
};

/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
/// and 'Interface <p> *'.
///
/// Duplicate protocols are removed and protocol list is canonicalized to be in
/// alphabetical order.
class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
  ObjCInterfaceDecl *Decl;
  // List of protocols for this protocol conforming object type
  // List is sorted on protocol name. No protocol is entered more than once.
  llvm::SmallVector<ObjCProtocolDecl*, 8> Protocols;

  ObjCObjectPointerType(ObjCInterfaceDecl *D,
                        ObjCProtocolDecl **Protos, unsigned NumP) :
    Type(ObjCObjectPointer, QualType(), /*Dependent=*/false),
    Decl(D), Protocols(Protos, Protos+NumP) { }
  friend class ASTContext;  // ASTContext creates these.

public:
  ObjCInterfaceDecl *getDecl() const { return Decl; }
  
  /// isObjCQualifiedIdType - true for "id <p>".
  bool isObjCQualifiedIdType() const { return Decl == 0 && Protocols.size(); }
  
  /// qual_iterator and friends: this provides access to the (potentially empty)
  /// list of protocols qualifying this interface.
  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;

  qual_iterator qual_begin() const { return Protocols.begin(); }
  qual_iterator qual_end() const   { return Protocols.end(); }
  bool qual_empty() const { return Protocols.size() == 0; }

  /// getNumProtocols - Return the number of qualifying protocols in this
  /// interface type, or 0 if there are none.
  unsigned getNumProtocols() const { return Protocols.size(); }

  void Profile(llvm::FoldingSetNodeID &ID);
  static void Profile(llvm::FoldingSetNodeID &ID,
                      const ObjCInterfaceDecl *Decl,
                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
  virtual void getAsStringInternal(std::string &InnerString, 
                                   const PrintingPolicy &Policy) const;
  static bool classof(const Type *T) { 
    return T->getTypeClass() == ObjCObjectPointer; 
  }
  static bool classof(const ObjCObjectPointerType *) { return true; }
};
  
/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
/// object oriented design.  They basically correspond to C++ classes.  There
/// are two kinds of interface types, normal interfaces like "NSString" and
/// qualified interfaces, which are qualified with a protocol list like
/// "NSString<NSCopyable, NSAmazing>".  Qualified interface types are instances
/// of ObjCQualifiedInterfaceType, which is a subclass of ObjCInterfaceType.
class ObjCInterfaceType : public Type {
  ObjCInterfaceDecl *Decl;
protected:
  ObjCInterfaceType(TypeClass tc, ObjCInterfaceDecl *D) : 
    Type(tc, QualType(), /*Dependent=*/false), Decl(D) { }
  friend class ASTContext;  // ASTContext creates these.
public:
  
  ObjCInterfaceDecl *getDecl() const { return Decl; }
  
  /// qual_iterator and friends: this provides access to the (potentially empty)
  /// list of protocols qualifying this interface.  If this is an instance of
  /// ObjCQualifiedInterfaceType it returns the list, otherwise it returns an
  /// empty list if there are no qualifying protocols.
  typedef llvm::SmallVector<ObjCProtocolDecl*, 8>::const_iterator qual_iterator;
  inline qual_iterator qual_begin() const;
  inline qual_iterator qual_end() const;
  bool qual_empty() const { return getTypeClass() != ObjCQualifiedInterface; }

  /// getNumProtocols - Return the number of qualifying protocols in this
  /// interface type, or 0 if there are none.
  inline unsigned getNumProtocols() const;
  
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
  static bool classof(const Type *T) { 
    return T->getTypeClass() == ObjCInterface ||
           T->getTypeClass() == ObjCQualifiedInterface; 
  }
  static bool classof(const ObjCInterfaceType *) { return true; }
};

/// ObjCQualifiedInterfaceType - This class represents interface types 
/// conforming to a list of protocols, such as INTF<Proto1, Proto2, Proto1>.
///
/// Duplicate protocols are removed and protocol list is canonicalized to be in
/// alphabetical order.
class ObjCQualifiedInterfaceType : public ObjCInterfaceType, 
                                   public llvm::FoldingSetNode {
                                     
  // List of protocols for this protocol conforming object type
  // List is sorted on protocol name. No protocol is enterred more than once.
  llvm::SmallVector<ObjCProtocolDecl*, 4> Protocols;

  ObjCQualifiedInterfaceType(ObjCInterfaceDecl *D,
                             ObjCProtocolDecl **Protos, unsigned NumP) : 
    ObjCInterfaceType(ObjCQualifiedInterface, D), 
    Protocols(Protos, Protos+NumP) { }
  friend class ASTContext;  // ASTContext creates these.
public:
  
  unsigned getNumProtocols() const {
    return Protocols.size();
  }

  qual_iterator qual_begin() const { return Protocols.begin(); }
  qual_iterator qual_end() const   { return Protocols.end(); }
                                     
  virtual void getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const;
  
  void Profile(llvm::FoldingSetNodeID &ID);
  static void Profile(llvm::FoldingSetNodeID &ID, 
                      const ObjCInterfaceDecl *Decl,
                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
 
  static bool classof(const Type *T) { 
    return T->getTypeClass() == ObjCQualifiedInterface; 
  }
  static bool classof(const ObjCQualifiedInterfaceType *) { return true; }
};
  
inline ObjCInterfaceType::qual_iterator ObjCInterfaceType::qual_begin() const {
  if (const ObjCQualifiedInterfaceType *QIT = 
         dyn_cast<ObjCQualifiedInterfaceType>(this))
    return QIT->qual_begin();
  return 0;
}
inline ObjCInterfaceType::qual_iterator ObjCInterfaceType::qual_end() const {
  if (const ObjCQualifiedInterfaceType *QIT = 
         dyn_cast<ObjCQualifiedInterfaceType>(this))
    return QIT->qual_end();
  return 0;
}

/// getNumProtocols - Return the number of qualifying protocols in this
/// interface type, or 0 if there are none.
inline unsigned ObjCInterfaceType::getNumProtocols() const {
  if (const ObjCQualifiedInterfaceType *QIT = 
        dyn_cast<ObjCQualifiedInterfaceType>(this))
    return QIT->getNumProtocols();
  return 0;
}

// Inline function definitions.

/// getUnqualifiedType - Return the type without any qualifiers.
inline QualType QualType::getUnqualifiedType() const {
  Type *TP = getTypePtr();
  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(TP))
    TP = EXTQT->getBaseType();
  return QualType(TP, 0);
}

/// getAddressSpace - Return the address space of this type.
inline unsigned QualType::getAddressSpace() const {
  QualType CT = getTypePtr()->getCanonicalTypeInternal();
  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
    return AT->getElementType().getAddressSpace();
  if (const RecordType *RT = dyn_cast<RecordType>(CT))
    return RT->getAddressSpace();
  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
    return EXTQT->getAddressSpace();
  return 0;
}

/// getObjCGCAttr - Return the gc attribute of this type.
inline QualType::GCAttrTypes QualType::getObjCGCAttr() const {
  QualType CT = getTypePtr()->getCanonicalTypeInternal();
  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
      return AT->getElementType().getObjCGCAttr();
  if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CT))
    return EXTQT->getObjCGCAttr();
  if (const PointerType *PT = CT->getAsPointerType())
    return PT->getPointeeType().getObjCGCAttr(); 
  return GCNone;
}
  
/// isMoreQualifiedThan - Determine whether this type is more
/// qualified than the Other type. For example, "const volatile int"
/// is more qualified than "const int", "volatile int", and
/// "int". However, it is not more qualified than "const volatile
/// int".
inline bool QualType::isMoreQualifiedThan(QualType Other) const {
  unsigned MyQuals = this->getCVRQualifiers();
  unsigned OtherQuals = Other.getCVRQualifiers();
  if (getAddressSpace() != Other.getAddressSpace())
    return false;
  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
}

/// isAtLeastAsQualifiedAs - Determine whether this type is at last
/// as qualified as the Other type. For example, "const volatile
/// int" is at least as qualified as "const int", "volatile int",
/// "int", and "const volatile int".
inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
  unsigned MyQuals = this->getCVRQualifiers();
  unsigned OtherQuals = Other.getCVRQualifiers();
  if (getAddressSpace() != Other.getAddressSpace())
    return false;
  return (MyQuals | OtherQuals) == MyQuals;
}

/// getNonReferenceType - If Type is a reference type (e.g., const
/// int&), returns the type that the reference refers to ("const
/// int"). Otherwise, returns the type itself. This routine is used
/// throughout Sema to implement C++ 5p6:
///
///   If an expression initially has the type "reference to T" (8.3.2,
///   8.5.3), the type is adjusted to "T" prior to any further
///   analysis, the expression designates the object or function
///   denoted by the reference, and the expression is an lvalue.
inline QualType QualType::getNonReferenceType() const {
  if (const ReferenceType *RefType = (*this)->getAsReferenceType())
    return RefType->getPointeeType();
  else
    return *this;
}

inline const TypedefType* Type::getAsTypedefType() const {
  return dyn_cast<TypedefType>(this);
}
inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
  if (const PointerType *PT = getAsPointerType())
    return PT->getPointeeType()->getAsObjCInterfaceType();
  return 0;
}
  
// NOTE: All of these methods use "getUnqualifiedType" to strip off address
// space qualifiers if present.
inline bool Type::isFunctionType() const {
  return isa<FunctionType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isPointerType() const {
  return isa<PointerType>(CanonicalType.getUnqualifiedType()); 
}
inline bool Type::isBlockPointerType() const {
  return isa<BlockPointerType>(CanonicalType.getUnqualifiedType()); 
}
inline bool Type::isReferenceType() const {
  return isa<ReferenceType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isLValueReferenceType() const {
  return isa<LValueReferenceType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isRValueReferenceType() const {
  return isa<RValueReferenceType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isFunctionPointerType() const {
  if (const PointerType* T = getAsPointerType())
    return T->getPointeeType()->isFunctionType();
  else
    return false;
}
inline bool Type::isMemberPointerType() const {
  return isa<MemberPointerType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isMemberFunctionPointerType() const {
  if (const MemberPointerType* T = getAsMemberPointerType())
    return T->getPointeeType()->isFunctionType();
  else
    return false;
}
inline bool Type::isArrayType() const {
  return isa<ArrayType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isConstantArrayType() const {
  return isa<ConstantArrayType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isIncompleteArrayType() const {
  return isa<IncompleteArrayType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isVariableArrayType() const {
  return isa<VariableArrayType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isDependentSizedArrayType() const {
  return isa<DependentSizedArrayType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isRecordType() const {
  return isa<RecordType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isAnyComplexType() const {
  return isa<ComplexType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isVectorType() const {
  return isa<VectorType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isExtVectorType() const {
  return isa<ExtVectorType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isObjCObjectPointerType() const {
  return isa<ObjCObjectPointerType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isObjCInterfaceType() const {
  return isa<ObjCInterfaceType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isObjCQualifiedInterfaceType() const {
  return isa<ObjCQualifiedInterfaceType>(CanonicalType.getUnqualifiedType());
}
inline bool Type::isObjCQualifiedIdType() const {
  if (const ObjCObjectPointerType *OPT = getAsObjCObjectPointerType()) {
    return OPT->isObjCQualifiedIdType();
  }
  return false;
}
inline bool Type::isTemplateTypeParmType() const {
  return isa<TemplateTypeParmType>(CanonicalType.getUnqualifiedType());
}

inline bool Type::isSpecificBuiltinType(unsigned K) const {
  if (const BuiltinType *BT = getAsBuiltinType())
    if (BT->getKind() == (BuiltinType::Kind) K)
      return true;
  return false;
}

/// \brief Determines whether this is a type for which one can define
/// an overloaded operator.
inline bool Type::isOverloadableType() const {
  return isDependentType() || isRecordType() || isEnumeralType();
}

inline bool Type::hasPointerRepresentation() const {
  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
          isObjCInterfaceType() || isObjCQualifiedIdType() || 
          isObjCQualifiedInterfaceType() || isNullPtrType());
}

inline bool Type::hasObjCPointerRepresentation() const {
  return (isObjCInterfaceType() || isObjCQualifiedIdType() || 
          isObjCQualifiedInterfaceType());
}

/// Insertion operator for diagnostics.  This allows sending QualType's into a
/// diagnostic with <<.
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
                                           QualType T) {
  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
                  Diagnostic::ak_qualtype);
  return DB;
}

}  // end namespace clang

#endif