aboutsummaryrefslogtreecommitdiff
path: root/include/clang/Sema/Ownership.h
blob: 7739f3a5d229d682359c0d1c007952f77921c85a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
//===--- Ownership.h - Parser ownership helpers -----------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file contains classes for managing ownership of Stmt and Expr nodes.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_SEMA_OWNERSHIP_H
#define LLVM_CLANG_SEMA_OWNERSHIP_H

#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/PointerIntPair.h"

//===----------------------------------------------------------------------===//
// OpaquePtr
//===----------------------------------------------------------------------===//

namespace clang {
  class Attr;
  class CXXBaseOrMemberInitializer;
  class CXXBaseSpecifier;
  class Decl;
  class DeclGroupRef;
  class Expr;
  class NestedNameSpecifier;
  class QualType;
  class Sema;
  class Stmt;
  class TemplateName;
  class TemplateParameterList;

  /// OpaquePtr - This is a very simple POD type that wraps a pointer that the
  /// Parser doesn't know about but that Sema or another client does.  The UID
  /// template argument is used to make sure that "Decl" pointers are not
  /// compatible with "Type" pointers for example.
  template <class PtrTy>
  class OpaquePtr {
    void *Ptr;
    explicit OpaquePtr(void *Ptr) : Ptr(Ptr) {}

    typedef llvm::PointerLikeTypeTraits<PtrTy> Traits;

  public:
    OpaquePtr() : Ptr(0) {}

    static OpaquePtr make(PtrTy P) { OpaquePtr OP; OP.set(P); return OP; }

    template <typename T> T* getAs() const {
      return get();
    }

    template <typename T> T getAsVal() const {
      return get();
    }

    PtrTy get() const {
      return Traits::getFromVoidPointer(Ptr);
    }

    void set(PtrTy P) {
      Ptr = Traits::getAsVoidPointer(P);
    }

    operator bool() const { return Ptr != 0; }

    void *getAsOpaquePtr() const { return Ptr; }
    static OpaquePtr getFromOpaquePtr(void *P) { return OpaquePtr(P); }
  };

  /// UnionOpaquePtr - A version of OpaquePtr suitable for membership
  /// in a union.
  template <class T> struct UnionOpaquePtr {
    void *Ptr;

    static UnionOpaquePtr make(OpaquePtr<T> P) {
      UnionOpaquePtr OP = { P.getAsOpaquePtr() };
      return OP;
    }

    OpaquePtr<T> get() const { return OpaquePtr<T>::getFromOpaquePtr(Ptr); }
    operator OpaquePtr<T>() const { return get(); }

    UnionOpaquePtr &operator=(OpaquePtr<T> P) {
      Ptr = P.getAsOpaquePtr();
      return *this;
    }
  };
}

namespace llvm {
  template <class T>
  class PointerLikeTypeTraits<clang::OpaquePtr<T> > {
  public:
    static inline void *getAsVoidPointer(clang::OpaquePtr<T> P) {
      // FIXME: Doesn't work? return P.getAs< void >();
      return P.getAsOpaquePtr();
    }
    static inline clang::OpaquePtr<T> getFromVoidPointer(void *P) {
      return clang::OpaquePtr<T>::getFromOpaquePtr(P);
    }
    enum { NumLowBitsAvailable = 0 };
  };
}



// -------------------------- About Move Emulation -------------------------- //
// The smart pointer classes in this file attempt to emulate move semantics
// as they appear in C++0x with rvalue references. Since C++03 doesn't have
// rvalue references, some tricks are needed to get similar results.
// Move semantics in C++0x have the following properties:
// 1) "Moving" means transferring the value of an object to another object,
//    similar to copying, but without caring what happens to the old object.
//    In particular, this means that the new object can steal the old object's
//    resources instead of creating a copy.
// 2) Since moving can modify the source object, it must either be explicitly
//    requested by the user, or the modifications must be unnoticeable.
// 3) As such, C++0x moving is only allowed in three contexts:
//    * By explicitly using std::move() to request it.
//    * From a temporary object, since that object cannot be accessed
//      afterwards anyway, thus making the state unobservable.
//    * On function return, since the object is not observable afterwards.
//
// To sum up: moving from a named object should only be possible with an
// explicit std::move(), or on function return. Moving from a temporary should
// be implicitly done. Moving from a const object is forbidden.
//
// The emulation is not perfect, and has the following shortcomings:
// * move() is not in namespace std.
// * move() is required on function return.
// * There are difficulties with implicit conversions.
// * Microsoft's compiler must be given the /Za switch to successfully compile.
//
// -------------------------- Implementation -------------------------------- //
// The move emulation relies on the peculiar reference binding semantics of
// C++03: as a rule, a non-const reference may not bind to a temporary object,
// except for the implicit object parameter in a member function call, which
// can refer to a temporary even when not being const.
// The moveable object has five important functions to facilitate moving:
// * A private, unimplemented constructor taking a non-const reference to its
//   own class. This constructor serves a two-fold purpose.
//   - It prevents the creation of a copy constructor that takes a const
//     reference. Temporaries would be able to bind to the argument of such a
//     constructor, and that would be bad.
//   - Named objects will bind to the non-const reference, but since it's
//     private, this will fail to compile. This prevents implicit moving from
//     named objects.
//   There's also a copy assignment operator for the same purpose.
// * An implicit, non-const conversion operator to a special mover type. This
//   type represents the rvalue reference of C++0x. Being a non-const member,
//   its implicit this parameter can bind to temporaries.
// * A constructor that takes an object of this mover type. This constructor
//   performs the actual move operation. There is an equivalent assignment
//   operator.
// There is also a free move() function that takes a non-const reference to
// an object and returns a temporary. Internally, this function uses explicit
// constructor calls to move the value from the referenced object to the return
// value.
//
// There are now three possible scenarios of use.
// * Copying from a const object. Constructor overload resolution will find the
//   non-const copy constructor, and the move constructor. The first is not
//   viable because the const object cannot be bound to the non-const reference.
//   The second fails because the conversion to the mover object is non-const.
//   Moving from a const object fails as intended.
// * Copying from a named object. Constructor overload resolution will select
//   the non-const copy constructor, but fail as intended, because this
//   constructor is private.
// * Copying from a temporary. Constructor overload resolution cannot select
//   the non-const copy constructor, because the temporary cannot be bound to
//   the non-const reference. It thus selects the move constructor. The
//   temporary can be bound to the implicit this parameter of the conversion
//   operator, because of the special binding rule. Construction succeeds.
//   Note that the Microsoft compiler, as an extension, allows binding
//   temporaries against non-const references. The compiler thus selects the
//   non-const copy constructor and fails, because the constructor is private.
//   Passing /Za (disable extensions) disables this behaviour.
// The free move() function is used to move from a named object.
//
// Note that when passing an object of a different type (the classes below
// have OwningResult and OwningPtr, which should be mixable), you get a problem.
// Argument passing and function return use copy initialization rules. The
// effect of this is that, when the source object is not already of the target
// type, the compiler will first seek a way to convert the source object to the
// target type, and only then attempt to copy the resulting object. This means
// that when passing an OwningResult where an OwningPtr is expected, the
// compiler will first seek a conversion from OwningResult to OwningPtr, then
// copy the OwningPtr. The resulting conversion sequence is:
// OwningResult object -> ResultMover -> OwningResult argument to
// OwningPtr(OwningResult) -> OwningPtr -> PtrMover -> final OwningPtr
// This conversion sequence is too complex to be allowed. Thus the special
// move_* functions, which help the compiler out with some explicit
// conversions.

namespace clang {
  // Basic
  class DiagnosticBuilder;

  // Determines whether the low bit of the result pointer for the
  // given UID is always zero. If so, ActionResult will use that bit
  // for it's "invalid" flag.
  template<class Ptr>
  struct IsResultPtrLowBitFree {
    static const bool value = false;
  };

  /// ActionResult - This structure is used while parsing/acting on
  /// expressions, stmts, etc.  It encapsulates both the object returned by
  /// the action, plus a sense of whether or not it is valid.
  /// When CompressInvalid is true, the "invalid" flag will be
  /// stored in the low bit of the Val pointer.
  template<class PtrTy,
           bool CompressInvalid = IsResultPtrLowBitFree<PtrTy>::value>
  class ActionResult {
    PtrTy Val;
    bool Invalid;

  public:
    ActionResult(bool Invalid = false)
      : Val(PtrTy()), Invalid(Invalid) {}
    ActionResult(PtrTy val) : Val(val), Invalid(false) {}
    ActionResult(const DiagnosticBuilder &) : Val(PtrTy()), Invalid(true) {}

    // These two overloads prevent void* -> bool conversions.
    ActionResult(const void *);
    ActionResult(volatile void *);

    bool isInvalid() const { return Invalid; }
    bool isUsable() const { return !Invalid && Val; }

    PtrTy get() const { return Val; }
    PtrTy release() const { return Val; }
    PtrTy take() const { return Val; }
    template <typename T> T *takeAs() { return static_cast<T*>(get()); }

    void set(PtrTy V) { Val = V; }

    const ActionResult &operator=(PtrTy RHS) {
      Val = RHS;
      Invalid = false;
      return *this;
    }
  };

  // This ActionResult partial specialization places the "invalid"
  // flag into the low bit of the pointer.
  template<typename PtrTy>
  class ActionResult<PtrTy, true> {
    // A pointer whose low bit is 1 if this result is invalid, 0
    // otherwise.
    uintptr_t PtrWithInvalid;
    typedef llvm::PointerLikeTypeTraits<PtrTy> PtrTraits;
  public:
    ActionResult(bool Invalid = false)
      : PtrWithInvalid(static_cast<uintptr_t>(Invalid)) { }

    ActionResult(PtrTy V) {
      void *VP = PtrTraits::getAsVoidPointer(V);
      PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
      assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
    }
    ActionResult(const DiagnosticBuilder &) : PtrWithInvalid(0x01) { }

    // These two overloads prevent void* -> bool conversions.
    ActionResult(const void *);
    ActionResult(volatile void *);

    bool isInvalid() const { return PtrWithInvalid & 0x01; }
    bool isUsable() const { return PtrWithInvalid > 0x01; }

    PtrTy get() const {
      void *VP = reinterpret_cast<void *>(PtrWithInvalid & ~0x01);
      return PtrTraits::getFromVoidPointer(VP);
    }
    PtrTy take() const { return get(); }
    PtrTy release() const { return get(); }
    template <typename T> T *takeAs() { return static_cast<T*>(get()); }

    void set(PtrTy V) {
      void *VP = PtrTraits::getAsVoidPointer(V);
      PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
      assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
    }

    const ActionResult &operator=(PtrTy RHS) {
      void *VP = PtrTraits::getAsVoidPointer(RHS);
      PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
      assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
      return *this;
    }
  };

  /// ASTMultiPtr - A moveable smart pointer to multiple AST nodes. Only owns
  /// the individual pointers, not the array holding them.
  template <typename PtrTy> class ASTMultiPtr;

  template <class PtrTy>
  class ASTMultiPtr {
    PtrTy *Nodes;
    unsigned Count;

  public:
    // Normal copying implicitly defined
    ASTMultiPtr() : Nodes(0), Count(0) {}
    explicit ASTMultiPtr(Sema &) : Nodes(0), Count(0) {}
    ASTMultiPtr(Sema &, PtrTy *nodes, unsigned count)
      : Nodes(nodes), Count(count) {}
    // Fake mover in Parse/AstGuard.h needs this:
    ASTMultiPtr(PtrTy *nodes, unsigned count) : Nodes(nodes), Count(count) {}

    /// Access to the raw pointers.
    PtrTy *get() const { return Nodes; }

    /// Access to the count.
    unsigned size() const { return Count; }

    PtrTy *release() {
      return Nodes;
    }
  };

  class ParsedTemplateArgument;
    
  class ASTTemplateArgsPtr {
    ParsedTemplateArgument *Args;
    mutable unsigned Count;

  public:
    ASTTemplateArgsPtr(Sema &actions, ParsedTemplateArgument *args,
                       unsigned count) :
      Args(args), Count(count) { }

    // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
    ASTTemplateArgsPtr(ASTTemplateArgsPtr &Other) :
      Args(Other.Args), Count(Other.Count) {
    }

    // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
    ASTTemplateArgsPtr& operator=(ASTTemplateArgsPtr &Other)  {
      Args = Other.Args;
      Count = Other.Count;
      return *this;
    }

    ParsedTemplateArgument *getArgs() const { return Args; }
    unsigned size() const { return Count; }

    void reset(ParsedTemplateArgument *args, unsigned count) {
      Args = args;
      Count = count;
    }

    const ParsedTemplateArgument &operator[](unsigned Arg) const;

    ParsedTemplateArgument *release() const {
      return Args;
    }
  };

  /// \brief A small vector that owns a set of AST nodes.
  template <class PtrTy, unsigned N = 8>
  class ASTOwningVector : public llvm::SmallVector<PtrTy, N> {
    ASTOwningVector(ASTOwningVector &); // do not implement
    ASTOwningVector &operator=(ASTOwningVector &); // do not implement

  public:
    explicit ASTOwningVector(Sema &Actions)
    { }

    PtrTy *take() {
      return &this->front();
    }

    template<typename T> T **takeAs() { return reinterpret_cast<T**>(take()); }
  };

  /// A SmallVector of statements, with stack size 32 (as that is the only one
  /// used.)
  typedef ASTOwningVector<Stmt*, 32> StmtVector;
  /// A SmallVector of expressions, with stack size 12 (the maximum used.)
  typedef ASTOwningVector<Expr*, 12> ExprVector;

  template <class T, unsigned N> inline
  ASTMultiPtr<T> move_arg(ASTOwningVector<T, N> &vec) {
    return ASTMultiPtr<T>(vec.take(), vec.size());
  }

  // These versions are hopefully no-ops.
  template <class T, bool C>
  inline ActionResult<T,C> move(ActionResult<T,C> &ptr) {
    return ptr;
  }

  template <class T> inline
  ASTMultiPtr<T>& move(ASTMultiPtr<T> &ptr) {
    return ptr;
  }

  // We can re-use the low bit of expression, statement, base, and
  // member-initializer pointers for the "invalid" flag of
  // ActionResult.
  template<> struct IsResultPtrLowBitFree<Expr*> {
    static const bool value = true;
  };
  template<> struct IsResultPtrLowBitFree<Stmt*> {
    static const bool value = true;
  };
  template<> struct IsResultPtrLowBitFree<CXXBaseSpecifier*> {
    static const bool value = true;
  };
  template<> struct IsResultPtrLowBitFree<CXXBaseOrMemberInitializer*> {
    static const bool value = true;
  };

  /// An opaque type for threading parsed type information through the
  /// parser.
  typedef OpaquePtr<QualType> ParsedType;
  typedef UnionOpaquePtr<QualType> UnionParsedType;

  typedef ActionResult<Expr*> ExprResult;
  typedef ActionResult<Stmt*> StmtResult;
  typedef ActionResult<ParsedType> TypeResult;
  typedef ActionResult<CXXBaseSpecifier*> BaseResult;
  typedef ActionResult<CXXBaseOrMemberInitializer*> MemInitResult;

  typedef ActionResult<Decl*> DeclResult;
  typedef OpaquePtr<TemplateName> ParsedTemplateTy;

  inline Expr *move(Expr *E) { return E; }
  inline Stmt *move(Stmt *S) { return S; }

  typedef ASTMultiPtr<Expr*> MultiExprArg;
  typedef ASTMultiPtr<Stmt*> MultiStmtArg;
  typedef ASTMultiPtr<TemplateParameterList*> MultiTemplateParamsArg;

  inline ExprResult ExprError() { return ExprResult(true); }
  inline StmtResult StmtError() { return StmtResult(true); }

  inline ExprResult ExprError(const DiagnosticBuilder&) { return ExprError(); }
  inline StmtResult StmtError(const DiagnosticBuilder&) { return StmtError(); }

  inline ExprResult ExprEmpty() { return ExprResult(false); }
  inline StmtResult StmtEmpty() { return StmtResult(false); }

  inline Expr *AssertSuccess(ExprResult R) {
    assert(!R.isInvalid() && "operation was asserted to never fail!");
    return R.get();
  }

  inline Stmt *AssertSuccess(StmtResult R) {
    assert(!R.isInvalid() && "operation was asserted to never fail!");
    return R.get();
  }
}

#endif