aboutsummaryrefslogtreecommitdiff
path: root/include/llvm/ADT/BitVector.h
blob: 45108c8cc5198ac5ae83fc60c38d44c6359e38eb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the BitVector class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_BITVECTOR_H
#define LLVM_ADT_BITVECTOR_H

#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstring>

namespace llvm {

class BitVector {
  typedef unsigned long BitWord;

  enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };

  BitWord  *Bits;        // Actual bits.
  unsigned Size;         // Size of bitvector in bits.
  unsigned Capacity;     // Size of allocated memory in BitWord.

public:
  // Encapsulation of a single bit.
  class reference {
    friend class BitVector;

    BitWord *WordRef;
    unsigned BitPos;

    reference();  // Undefined

  public:
    reference(BitVector &b, unsigned Idx) {
      WordRef = &b.Bits[Idx / BITWORD_SIZE];
      BitPos = Idx % BITWORD_SIZE;
    }

    ~reference() {}

    reference& operator=(bool t) {
      if (t)
        *WordRef |= 1L << BitPos;
      else
        *WordRef &= ~(1L << BitPos);
      return *this;
    }

    operator bool() const {
      return ((*WordRef) & (1L << BitPos)) ? true : false;
    }
  };


  /// BitVector default ctor - Creates an empty bitvector.
  BitVector() : Size(0), Capacity(0) {
    Bits = 0;
  }

  /// BitVector ctor - Creates a bitvector of specified number of bits. All
  /// bits are initialized to the specified value.
  explicit BitVector(unsigned s, bool t = false) : Size(s) {
    Capacity = NumBitWords(s);
    Bits = new BitWord[Capacity];
    init_words(Bits, Capacity, t);
    if (t)
      clear_unused_bits();
  }

  /// BitVector copy ctor.
  BitVector(const BitVector &RHS) : Size(RHS.size()) {
    if (Size == 0) {
      Bits = 0;
      Capacity = 0;
      return;
    }

    Capacity = NumBitWords(RHS.size());
    Bits = new BitWord[Capacity];
    std::copy(RHS.Bits, &RHS.Bits[Capacity], Bits);
  }

  ~BitVector() {
    delete[] Bits;
  }

  /// empty - Tests whether there are no bits in this bitvector.
  bool empty() const { return Size == 0; }

  /// size - Returns the number of bits in this bitvector.
  unsigned size() const { return Size; }

  /// count - Returns the number of bits which are set.
  unsigned count() const {
    unsigned NumBits = 0;
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
      if (sizeof(BitWord) == 4)
        NumBits += CountPopulation_32((uint32_t)Bits[i]);
      else if (sizeof(BitWord) == 8)
        NumBits += CountPopulation_64(Bits[i]);
      else
        assert(0 && "Unsupported!");
    return NumBits;
  }

  /// any - Returns true if any bit is set.
  bool any() const {
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
      if (Bits[i] != 0)
        return true;
    return false;
  }

  /// none - Returns true if none of the bits are set.
  bool none() const {
    return !any();
  }

  /// find_first - Returns the index of the first set bit, -1 if none
  /// of the bits are set.
  int find_first() const {
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
      if (Bits[i] != 0) {
        if (sizeof(BitWord) == 4)
          return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]);
        else if (sizeof(BitWord) == 8)
          return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
        else
          assert(0 && "Unsupported!");
      }
    return -1;
  }

  /// find_next - Returns the index of the next set bit following the
  /// "Prev" bit. Returns -1 if the next set bit is not found.
  int find_next(unsigned Prev) const {
    ++Prev;
    if (Prev >= Size)
      return -1;

    unsigned WordPos = Prev / BITWORD_SIZE;
    unsigned BitPos = Prev % BITWORD_SIZE;
    BitWord Copy = Bits[WordPos];
    // Mask off previous bits.
    Copy &= ~0L << BitPos;

    if (Copy != 0) {
      if (sizeof(BitWord) == 4)
        return WordPos * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Copy);
      else if (sizeof(BitWord) == 8)
        return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy);
      else
        assert(0 && "Unsupported!");
    }

    // Check subsequent words.
    for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
      if (Bits[i] != 0) {
        if (sizeof(BitWord) == 4)
          return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]);
        else if (sizeof(BitWord) == 8)
          return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
        else
          assert(0 && "Unsupported!");
      }
    return -1;
  }

  /// clear - Clear all bits.
  void clear() {
    Size = 0;
  }

  /// resize - Grow or shrink the bitvector.
  void resize(unsigned N, bool t = false) {
    if (N > Capacity * BITWORD_SIZE) {
      unsigned OldCapacity = Capacity;
      grow(N);
      init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
    }

    // Set any old unused bits that are now included in the BitVector. This
    // may set bits that are not included in the new vector, but we will clear
    // them back out below.
    if (N > Size)
      set_unused_bits(t);

    // Update the size, and clear out any bits that are now unused
    unsigned OldSize = Size;
    Size = N;
    if (t || N < OldSize)
      clear_unused_bits();
  }

  void reserve(unsigned N) {
    if (N > Capacity * BITWORD_SIZE)
      grow(N);
  }

  // Set, reset, flip
  BitVector &set() {
    init_words(Bits, Capacity, true);
    clear_unused_bits();
    return *this;
  }

  BitVector &set(unsigned Idx) {
    Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
    return *this;
  }

  BitVector &reset() {
    init_words(Bits, Capacity, false);
    return *this;
  }

  BitVector &reset(unsigned Idx) {
    Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
    return *this;
  }

  BitVector &flip() {
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
      Bits[i] = ~Bits[i];
    clear_unused_bits();
    return *this;
  }

  BitVector &flip(unsigned Idx) {
    Bits[Idx / BITWORD_SIZE] ^= 1L << (Idx % BITWORD_SIZE);
    return *this;
  }

  // No argument flip.
  BitVector operator~() const {
    return BitVector(*this).flip();
  }

  // Indexing.
  reference operator[](unsigned Idx) {
    assert (Idx < Size && "Out-of-bounds Bit access.");
    return reference(*this, Idx);
  }

  bool operator[](unsigned Idx) const {
    assert (Idx < Size && "Out-of-bounds Bit access.");
    BitWord Mask = 1L << (Idx % BITWORD_SIZE);
    return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
  }

  bool test(unsigned Idx) const {
    return (*this)[Idx];
  }

  // Comparison operators.
  bool operator==(const BitVector &RHS) const {
    unsigned ThisWords = NumBitWords(size());
    unsigned RHSWords  = NumBitWords(RHS.size());
    unsigned i;
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
      if (Bits[i] != RHS.Bits[i])
        return false;

    // Verify that any extra words are all zeros.
    if (i != ThisWords) {
      for (; i != ThisWords; ++i)
        if (Bits[i])
          return false;
    } else if (i != RHSWords) {
      for (; i != RHSWords; ++i)
        if (RHS.Bits[i])
          return false;
    }
    return true;
  }

  bool operator!=(const BitVector &RHS) const {
    return !(*this == RHS);
  }

  // Intersection, union, disjoint union.
  BitVector &operator&=(const BitVector &RHS) {
    unsigned ThisWords = NumBitWords(size());
    unsigned RHSWords  = NumBitWords(RHS.size());
    unsigned i;
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
      Bits[i] &= RHS.Bits[i];

    // Any bits that are just in this bitvector become zero, because they aren't
    // in the RHS bit vector.  Any words only in RHS are ignored because they
    // are already zero in the LHS.
    for (; i != ThisWords; ++i)
      Bits[i] = 0;

    return *this;
  }

  BitVector &operator|=(const BitVector &RHS) {
    assert(Size == RHS.Size && "Illegal operation!");
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
      Bits[i] |= RHS.Bits[i];
    return *this;
  }

  BitVector &operator^=(const BitVector &RHS) {
    assert(Size == RHS.Size && "Illegal operation!");
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
      Bits[i] ^= RHS.Bits[i];
    return *this;
  }

  // Assignment operator.
  const BitVector &operator=(const BitVector &RHS) {
    if (this == &RHS) return *this;

    Size = RHS.size();
    unsigned RHSWords = NumBitWords(Size);
    if (Size <= Capacity * BITWORD_SIZE) {
      std::copy(RHS.Bits, &RHS.Bits[RHSWords], Bits);
      clear_unused_bits();
      return *this;
    }

    // Grow the bitvector to have enough elements.
    Capacity = RHSWords;
    BitWord *NewBits = new BitWord[Capacity];
    std::copy(RHS.Bits, &RHS.Bits[RHSWords], NewBits);

    // Destroy the old bits.
    delete[] Bits;
    Bits = NewBits;

    return *this;
  }

  void swap(BitVector &RHS) {
    std::swap(Bits, RHS.Bits);
    std::swap(Size, RHS.Size);
    std::swap(Capacity, RHS.Capacity);
  }

private:
  unsigned NumBitWords(unsigned S) const {
    return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
  }

  // Set the unused bits in the high words.
  void set_unused_bits(bool t = true) {
    //  Set high words first.
    unsigned UsedWords = NumBitWords(Size);
    if (Capacity > UsedWords)
      init_words(&Bits[UsedWords], (Capacity-UsedWords), t);

    //  Then set any stray high bits of the last used word.
    unsigned ExtraBits = Size % BITWORD_SIZE;
    if (ExtraBits) {
      Bits[UsedWords-1] &= ~(~0L << ExtraBits);
      Bits[UsedWords-1] |= (0 - (BitWord)t) << ExtraBits;
    }
  }

  // Clear the unused bits in the high words.
  void clear_unused_bits() {
    set_unused_bits(false);
  }

  void grow(unsigned NewSize) {
    unsigned OldCapacity = Capacity;
    Capacity = NumBitWords(NewSize);
    BitWord *NewBits = new BitWord[Capacity];

    // Copy the old bits over.
    if (OldCapacity != 0)
      std::copy(Bits, &Bits[OldCapacity], NewBits);

    // Destroy the old bits.
    delete[] Bits;
    Bits = NewBits;

    clear_unused_bits();
  }

  void init_words(BitWord *B, unsigned NumWords, bool t) {
    memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
  }
};

inline BitVector operator&(const BitVector &LHS, const BitVector &RHS) {
  BitVector Result(LHS);
  Result &= RHS;
  return Result;
}

inline BitVector operator|(const BitVector &LHS, const BitVector &RHS) {
  BitVector Result(LHS);
  Result |= RHS;
  return Result;
}

inline BitVector operator^(const BitVector &LHS, const BitVector &RHS) {
  BitVector Result(LHS);
  Result ^= RHS;
  return Result;
}

} // End llvm namespace

namespace std {
  /// Implement std::swap in terms of BitVector swap.
  inline void
  swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
    LHS.swap(RHS);
  }
}

#endif