aboutsummaryrefslogtreecommitdiff
path: root/include/llvm/CodeGen/GlobalISel/LegalizerInfo.h
blob: 713d72eb4c9be7d841afb25b16964eaef0ae8ec4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
//===- llvm/CodeGen/GlobalISel/LegalizerInfo.h ------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// Interface for Targets to specify which operations they can successfully
/// select and how the others should be expanded most efficiently.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H
#define LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include <cassert>
#include <cstdint>
#include <tuple>
#include <unordered_map>
#include <utility>

namespace llvm {

extern cl::opt<bool> DisableGISelLegalityCheck;

class MachineInstr;
class MachineIRBuilder;
class MachineRegisterInfo;
class MCInstrInfo;

namespace LegalizeActions {
enum LegalizeAction : std::uint8_t {
  /// The operation is expected to be selectable directly by the target, and
  /// no transformation is necessary.
  Legal,

  /// The operation should be synthesized from multiple instructions acting on
  /// a narrower scalar base-type. For example a 64-bit add might be
  /// implemented in terms of 32-bit add-with-carry.
  NarrowScalar,

  /// The operation should be implemented in terms of a wider scalar
  /// base-type. For example a <2 x s8> add could be implemented as a <2
  /// x s32> add (ignoring the high bits).
  WidenScalar,

  /// The (vector) operation should be implemented by splitting it into
  /// sub-vectors where the operation is legal. For example a <8 x s64> add
  /// might be implemented as 4 separate <2 x s64> adds.
  FewerElements,

  /// The (vector) operation should be implemented by widening the input
  /// vector and ignoring the lanes added by doing so. For example <2 x i8> is
  /// rarely legal, but you might perform an <8 x i8> and then only look at
  /// the first two results.
  MoreElements,

  /// The operation itself must be expressed in terms of simpler actions on
  /// this target. E.g. a SREM replaced by an SDIV and subtraction.
  Lower,

  /// The operation should be implemented as a call to some kind of runtime
  /// support library. For example this usually happens on machines that don't
  /// support floating-point operations natively.
  Libcall,

  /// The target wants to do something special with this combination of
  /// operand and type. A callback will be issued when it is needed.
  Custom,

  /// This operation is completely unsupported on the target. A programming
  /// error has occurred.
  Unsupported,

  /// Sentinel value for when no action was found in the specified table.
  NotFound,

  /// Fall back onto the old rules.
  /// TODO: Remove this once we've migrated
  UseLegacyRules,
};
} // end namespace LegalizeActions

using LegalizeActions::LegalizeAction;

/// Legalization is decided based on an instruction's opcode, which type slot
/// we're considering, and what the existing type is. These aspects are gathered
/// together for convenience in the InstrAspect class.
struct InstrAspect {
  unsigned Opcode;
  unsigned Idx = 0;
  LLT Type;

  InstrAspect(unsigned Opcode, LLT Type) : Opcode(Opcode), Type(Type) {}
  InstrAspect(unsigned Opcode, unsigned Idx, LLT Type)
      : Opcode(Opcode), Idx(Idx), Type(Type) {}

  bool operator==(const InstrAspect &RHS) const {
    return Opcode == RHS.Opcode && Idx == RHS.Idx && Type == RHS.Type;
  }
};

/// The LegalityQuery object bundles together all the information that's needed
/// to decide whether a given operation is legal or not.
/// For efficiency, it doesn't make a copy of Types so care must be taken not
/// to free it before using the query.
struct LegalityQuery {
  unsigned Opcode;
  ArrayRef<LLT> Types;

  struct MemDesc {
    uint64_t Size;
    AtomicOrdering Ordering;
  };

  /// Operations which require memory can use this to place requirements on the
  /// memory type for each MMO.
  ArrayRef<MemDesc> MMODescrs;

  constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types,
                          const ArrayRef<MemDesc> MMODescrs)
      : Opcode(Opcode), Types(Types), MMODescrs(MMODescrs) {}
  constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types)
      : LegalityQuery(Opcode, Types, {}) {}

  raw_ostream &print(raw_ostream &OS) const;
};

/// The result of a query. It either indicates a final answer of Legal or
/// Unsupported or describes an action that must be taken to make an operation
/// more legal.
struct LegalizeActionStep {
  /// The action to take or the final answer.
  LegalizeAction Action;
  /// If describing an action, the type index to change. Otherwise zero.
  unsigned TypeIdx;
  /// If describing an action, the new type for TypeIdx. Otherwise LLT{}.
  LLT NewType;

  LegalizeActionStep(LegalizeAction Action, unsigned TypeIdx,
                     const LLT &NewType)
      : Action(Action), TypeIdx(TypeIdx), NewType(NewType) {}

  bool operator==(const LegalizeActionStep &RHS) const {
    return std::tie(Action, TypeIdx, NewType) ==
        std::tie(RHS.Action, RHS.TypeIdx, RHS.NewType);
  }
};

using LegalityPredicate = std::function<bool (const LegalityQuery &)>;
using LegalizeMutation =
    std::function<std::pair<unsigned, LLT>(const LegalityQuery &)>;

namespace LegalityPredicates {
struct TypePairAndMemSize {
  LLT Type0;
  LLT Type1;
  uint64_t MemSize;

  bool operator==(const TypePairAndMemSize &Other) const {
    return Type0 == Other.Type0 && Type1 == Other.Type1 &&
           MemSize == Other.MemSize;
  }
};

/// True iff P0 and P1 are true.
template<typename Predicate>
Predicate all(Predicate P0, Predicate P1) {
  return [=](const LegalityQuery &Query) {
    return P0(Query) && P1(Query);
  };
}
/// True iff all given predicates are true.
template<typename Predicate, typename... Args>
Predicate all(Predicate P0, Predicate P1, Args... args) {
  return all(all(P0, P1), args...);
}
/// True iff the given type index is the specified types.
LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit);
/// True iff the given type index is one of the specified types.
LegalityPredicate typeInSet(unsigned TypeIdx,
                            std::initializer_list<LLT> TypesInit);
/// True iff the given types for the given pair of type indexes is one of the
/// specified type pairs.
LegalityPredicate
typePairInSet(unsigned TypeIdx0, unsigned TypeIdx1,
              std::initializer_list<std::pair<LLT, LLT>> TypesInit);
/// True iff the given types for the given pair of type indexes is one of the
/// specified type pairs.
LegalityPredicate typePairAndMemSizeInSet(
    unsigned TypeIdx0, unsigned TypeIdx1, unsigned MMOIdx,
    std::initializer_list<TypePairAndMemSize> TypesAndMemSizeInit);
/// True iff the specified type index is a scalar.
LegalityPredicate isScalar(unsigned TypeIdx);
/// True iff the specified type index is a scalar that's narrower than the given
/// size.
LegalityPredicate narrowerThan(unsigned TypeIdx, unsigned Size);
/// True iff the specified type index is a scalar that's wider than the given
/// size.
LegalityPredicate widerThan(unsigned TypeIdx, unsigned Size);
/// True iff the specified type index is a scalar whose size is not a power of
/// 2.
LegalityPredicate sizeNotPow2(unsigned TypeIdx);
/// True iff the specified MMO index has a size that is not a power of 2
LegalityPredicate memSizeInBytesNotPow2(unsigned MMOIdx);
/// True iff the specified type index is a vector whose element count is not a
/// power of 2.
LegalityPredicate numElementsNotPow2(unsigned TypeIdx);
/// True iff the specified MMO index has at an atomic ordering of at Ordering or
/// stronger.
LegalityPredicate atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx,
                                                      AtomicOrdering Ordering);
} // end namespace LegalityPredicates

namespace LegalizeMutations {
/// Select this specific type for the given type index.
LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty);
/// Keep the same type as the given type index.
LegalizeMutation changeTo(unsigned TypeIdx, unsigned FromTypeIdx);
/// Widen the type for the given type index to the next power of 2.
LegalizeMutation widenScalarToNextPow2(unsigned TypeIdx, unsigned Min = 0);
/// Add more elements to the type for the given type index to the next power of
/// 2.
LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min = 0);
} // end namespace LegalizeMutations

/// A single rule in a legalizer info ruleset.
/// The specified action is chosen when the predicate is true. Where appropriate
/// for the action (e.g. for WidenScalar) the new type is selected using the
/// given mutator.
class LegalizeRule {
  LegalityPredicate Predicate;
  LegalizeAction Action;
  LegalizeMutation Mutation;

public:
  LegalizeRule(LegalityPredicate Predicate, LegalizeAction Action,
               LegalizeMutation Mutation = nullptr)
      : Predicate(Predicate), Action(Action), Mutation(Mutation) {}

  /// Test whether the LegalityQuery matches.
  bool match(const LegalityQuery &Query) const {
    return Predicate(Query);
  }

  LegalizeAction getAction() const { return Action; }

  /// Determine the change to make.
  std::pair<unsigned, LLT> determineMutation(const LegalityQuery &Query) const {
    if (Mutation)
      return Mutation(Query);
    return std::make_pair(0, LLT{});
  }
};

class LegalizeRuleSet {
  /// When non-zero, the opcode we are an alias of
  unsigned AliasOf;
  /// If true, there is another opcode that aliases this one
  bool IsAliasedByAnother;
  SmallVector<LegalizeRule, 2> Rules;

#ifndef NDEBUG
  /// If bit I is set, this rule set contains a rule that may handle (predicate
  /// or perform an action upon (or both)) the type index I. The uncertainty
  /// comes from free-form rules executing user-provided lambda functions. We
  /// conservatively assume such rules do the right thing and cover all type
  /// indices. The bitset is intentionally 1 bit wider than it absolutely needs
  /// to be to distinguish such cases from the cases where all type indices are
  /// individually handled.
  SmallBitVector TypeIdxsCovered{MCOI::OPERAND_LAST_GENERIC -
                                 MCOI::OPERAND_FIRST_GENERIC + 2};
#endif

  unsigned typeIdx(unsigned TypeIdx) {
    assert(TypeIdx <=
               (MCOI::OPERAND_LAST_GENERIC - MCOI::OPERAND_FIRST_GENERIC) &&
           "Type Index is out of bounds");
#ifndef NDEBUG
    TypeIdxsCovered.set(TypeIdx);
#endif
    return TypeIdx;
  }
  void markAllTypeIdxsAsCovered() {
#ifndef NDEBUG
    TypeIdxsCovered.set();
#endif
  }

  void add(const LegalizeRule &Rule) {
    assert(AliasOf == 0 &&
           "RuleSet is aliased, change the representative opcode instead");
    Rules.push_back(Rule);
  }

  static bool always(const LegalityQuery &) { return true; }

  /// Use the given action when the predicate is true.
  /// Action should not be an action that requires mutation.
  LegalizeRuleSet &actionIf(LegalizeAction Action,
                            LegalityPredicate Predicate) {
    add({Predicate, Action});
    return *this;
  }
  /// Use the given action when the predicate is true.
  /// Action should be an action that requires mutation.
  LegalizeRuleSet &actionIf(LegalizeAction Action, LegalityPredicate Predicate,
                            LegalizeMutation Mutation) {
    add({Predicate, Action, Mutation});
    return *this;
  }
  /// Use the given action when type index 0 is any type in the given list.
  /// Action should not be an action that requires mutation.
  LegalizeRuleSet &actionFor(LegalizeAction Action,
                             std::initializer_list<LLT> Types) {
    using namespace LegalityPredicates;
    return actionIf(Action, typeInSet(typeIdx(0), Types));
  }
  /// Use the given action when type index 0 is any type in the given list.
  /// Action should be an action that requires mutation.
  LegalizeRuleSet &actionFor(LegalizeAction Action,
                             std::initializer_list<LLT> Types,
                             LegalizeMutation Mutation) {
    using namespace LegalityPredicates;
    return actionIf(Action, typeInSet(typeIdx(0), Types), Mutation);
  }
  /// Use the given action when type indexes 0 and 1 is any type pair in the
  /// given list.
  /// Action should not be an action that requires mutation.
  LegalizeRuleSet &actionFor(LegalizeAction Action,
                             std::initializer_list<std::pair<LLT, LLT>> Types) {
    using namespace LegalityPredicates;
    return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types));
  }
  /// Use the given action when type indexes 0 and 1 is any type pair in the
  /// given list.
  /// Action should be an action that requires mutation.
  LegalizeRuleSet &actionFor(LegalizeAction Action,
                             std::initializer_list<std::pair<LLT, LLT>> Types,
                             LegalizeMutation Mutation) {
    using namespace LegalityPredicates;
    return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types),
                    Mutation);
  }
  /// Use the given action when type indexes 0 and 1 are both in the given list.
  /// That is, the type pair is in the cartesian product of the list.
  /// Action should not be an action that requires mutation.
  LegalizeRuleSet &actionForCartesianProduct(LegalizeAction Action,
                                             std::initializer_list<LLT> Types) {
    using namespace LegalityPredicates;
    return actionIf(Action, all(typeInSet(typeIdx(0), Types),
                                typeInSet(typeIdx(1), Types)));
  }
  /// Use the given action when type indexes 0 and 1 are both in their
  /// respective lists.
  /// That is, the type pair is in the cartesian product of the lists
  /// Action should not be an action that requires mutation.
  LegalizeRuleSet &
  actionForCartesianProduct(LegalizeAction Action,
                            std::initializer_list<LLT> Types0,
                            std::initializer_list<LLT> Types1) {
    using namespace LegalityPredicates;
    return actionIf(Action, all(typeInSet(typeIdx(0), Types0),
                                typeInSet(typeIdx(1), Types1)));
  }
  /// Use the given action when type indexes 0, 1, and 2 are all in their
  /// respective lists.
  /// That is, the type triple is in the cartesian product of the lists
  /// Action should not be an action that requires mutation.
  LegalizeRuleSet &actionForCartesianProduct(
      LegalizeAction Action, std::initializer_list<LLT> Types0,
      std::initializer_list<LLT> Types1, std::initializer_list<LLT> Types2) {
    using namespace LegalityPredicates;
    return actionIf(Action, all(typeInSet(typeIdx(0), Types0),
                                all(typeInSet(typeIdx(1), Types1),
                                    typeInSet(typeIdx(2), Types2))));
  }

public:
  LegalizeRuleSet() : AliasOf(0), IsAliasedByAnother(false), Rules() {}

  bool isAliasedByAnother() { return IsAliasedByAnother; }
  void setIsAliasedByAnother() { IsAliasedByAnother = true; }
  void aliasTo(unsigned Opcode) {
    assert((AliasOf == 0 || AliasOf == Opcode) &&
           "Opcode is already aliased to another opcode");
    assert(Rules.empty() && "Aliasing will discard rules");
    AliasOf = Opcode;
  }
  unsigned getAlias() const { return AliasOf; }

  /// The instruction is legal if predicate is true.
  LegalizeRuleSet &legalIf(LegalityPredicate Predicate) {
    // We have no choice but conservatively assume that the free-form
    // user-provided Predicate properly handles all type indices:
    markAllTypeIdxsAsCovered();
    return actionIf(LegalizeAction::Legal, Predicate);
  }
  /// The instruction is legal when type index 0 is any type in the given list.
  LegalizeRuleSet &legalFor(std::initializer_list<LLT> Types) {
    return actionFor(LegalizeAction::Legal, Types);
  }
  /// The instruction is legal when type indexes 0 and 1 is any type pair in the
  /// given list.
  LegalizeRuleSet &legalFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
    return actionFor(LegalizeAction::Legal, Types);
  }
  /// The instruction is legal when type indexes 0 and 1 along with the memory
  /// size is any type and size tuple in the given list.
  LegalizeRuleSet &legalForTypesWithMemSize(
      std::initializer_list<LegalityPredicates::TypePairAndMemSize>
          TypesAndMemSize) {
    return actionIf(LegalizeAction::Legal,
                    LegalityPredicates::typePairAndMemSizeInSet(
                        typeIdx(0), typeIdx(1), /*MMOIdx*/ 0, TypesAndMemSize));
  }
  /// The instruction is legal when type indexes 0 and 1 are both in the given
  /// list. That is, the type pair is in the cartesian product of the list.
  LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types) {
    return actionForCartesianProduct(LegalizeAction::Legal, Types);
  }
  /// The instruction is legal when type indexes 0 and 1 are both their
  /// respective lists.
  LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0,
                                            std::initializer_list<LLT> Types1) {
    return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1);
  }

  /// The instruction is lowered.
  LegalizeRuleSet &lower() {
    using namespace LegalizeMutations;
    // We have no choice but conservatively assume that predicate-less lowering
    // properly handles all type indices by design:
    markAllTypeIdxsAsCovered();
    return actionIf(LegalizeAction::Lower, always);
  }
  /// The instruction is lowered if predicate is true. Keep type index 0 as the
  /// same type.
  LegalizeRuleSet &lowerIf(LegalityPredicate Predicate) {
    using namespace LegalizeMutations;
    // We have no choice but conservatively assume that lowering with a
    // free-form user provided Predicate properly handles all type indices:
    markAllTypeIdxsAsCovered();
    return actionIf(LegalizeAction::Lower, Predicate);
  }
  /// The instruction is lowered if predicate is true.
  LegalizeRuleSet &lowerIf(LegalityPredicate Predicate,
                           LegalizeMutation Mutation) {
    // We have no choice but conservatively assume that lowering with a
    // free-form user provided Predicate properly handles all type indices:
    markAllTypeIdxsAsCovered();
    return actionIf(LegalizeAction::Lower, Predicate, Mutation);
  }
  /// The instruction is lowered when type index 0 is any type in the given
  /// list. Keep type index 0 as the same type.
  LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types) {
    return actionFor(LegalizeAction::Lower, Types,
                     LegalizeMutations::changeTo(0, 0));
  }
  /// The instruction is lowered when type index 0 is any type in the given
  /// list.
  LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types,
                            LegalizeMutation Mutation) {
    return actionFor(LegalizeAction::Lower, Types, Mutation);
  }
  /// The instruction is lowered when type indexes 0 and 1 is any type pair in
  /// the given list. Keep type index 0 as the same type.
  LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
    return actionFor(LegalizeAction::Lower, Types,
                     LegalizeMutations::changeTo(0, 0));
  }
  /// The instruction is lowered when type indexes 0 and 1 is any type pair in
  /// the given list.
  LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types,
                            LegalizeMutation Mutation) {
    return actionFor(LegalizeAction::Lower, Types, Mutation);
  }
  /// The instruction is lowered when type indexes 0 and 1 are both in their
  /// respective lists.
  LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0,
                                            std::initializer_list<LLT> Types1) {
    using namespace LegalityPredicates;
    return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1);
  }
  /// The instruction is lowered when when type indexes 0, 1, and 2 are all in
  /// their respective lists.
  LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0,
                                            std::initializer_list<LLT> Types1,
                                            std::initializer_list<LLT> Types2) {
    using namespace LegalityPredicates;
    return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1,
                                     Types2);
  }

  /// Like legalIf, but for the Libcall action.
  LegalizeRuleSet &libcallIf(LegalityPredicate Predicate) {
    // We have no choice but conservatively assume that a libcall with a
    // free-form user provided Predicate properly handles all type indices:
    markAllTypeIdxsAsCovered();
    return actionIf(LegalizeAction::Libcall, Predicate);
  }
  LegalizeRuleSet &libcallFor(std::initializer_list<LLT> Types) {
    return actionFor(LegalizeAction::Libcall, Types);
  }
  LegalizeRuleSet &
  libcallFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
    return actionFor(LegalizeAction::Libcall, Types);
  }
  LegalizeRuleSet &
  libcallForCartesianProduct(std::initializer_list<LLT> Types) {
    return actionForCartesianProduct(LegalizeAction::Libcall, Types);
  }
  LegalizeRuleSet &
  libcallForCartesianProduct(std::initializer_list<LLT> Types0,
                             std::initializer_list<LLT> Types1) {
    return actionForCartesianProduct(LegalizeAction::Libcall, Types0, Types1);
  }

  /// Widen the scalar to the one selected by the mutation if the predicate is
  /// true.
  LegalizeRuleSet &widenScalarIf(LegalityPredicate Predicate,
                                 LegalizeMutation Mutation) {
    // We have no choice but conservatively assume that an action with a
    // free-form user provided Predicate properly handles all type indices:
    markAllTypeIdxsAsCovered();
    return actionIf(LegalizeAction::WidenScalar, Predicate, Mutation);
  }
  /// Narrow the scalar to the one selected by the mutation if the predicate is
  /// true.
  LegalizeRuleSet &narrowScalarIf(LegalityPredicate Predicate,
                                  LegalizeMutation Mutation) {
    // We have no choice but conservatively assume that an action with a
    // free-form user provided Predicate properly handles all type indices:
    markAllTypeIdxsAsCovered();
    return actionIf(LegalizeAction::NarrowScalar, Predicate, Mutation);
  }

  /// Add more elements to reach the type selected by the mutation if the
  /// predicate is true.
  LegalizeRuleSet &moreElementsIf(LegalityPredicate Predicate,
                                  LegalizeMutation Mutation) {
    // We have no choice but conservatively assume that an action with a
    // free-form user provided Predicate properly handles all type indices:
    markAllTypeIdxsAsCovered();
    return actionIf(LegalizeAction::MoreElements, Predicate, Mutation);
  }
  /// Remove elements to reach the type selected by the mutation if the
  /// predicate is true.
  LegalizeRuleSet &fewerElementsIf(LegalityPredicate Predicate,
                                   LegalizeMutation Mutation) {
    // We have no choice but conservatively assume that an action with a
    // free-form user provided Predicate properly handles all type indices:
    markAllTypeIdxsAsCovered();
    return actionIf(LegalizeAction::FewerElements, Predicate, Mutation);
  }

  /// The instruction is unsupported.
  LegalizeRuleSet &unsupported() {
    return actionIf(LegalizeAction::Unsupported, always);
  }
  LegalizeRuleSet &unsupportedIf(LegalityPredicate Predicate) {
    return actionIf(LegalizeAction::Unsupported, Predicate);
  }
  LegalizeRuleSet &unsupportedIfMemSizeNotPow2() {
    return actionIf(LegalizeAction::Unsupported,
                    LegalityPredicates::memSizeInBytesNotPow2(0));
  }

  LegalizeRuleSet &customIf(LegalityPredicate Predicate) {
    // We have no choice but conservatively assume that a custom action with a
    // free-form user provided Predicate properly handles all type indices:
    markAllTypeIdxsAsCovered();
    return actionIf(LegalizeAction::Custom, Predicate);
  }
  LegalizeRuleSet &customFor(std::initializer_list<LLT> Types) {
    return actionFor(LegalizeAction::Custom, Types);
  }
  LegalizeRuleSet &customForCartesianProduct(std::initializer_list<LLT> Types) {
    return actionForCartesianProduct(LegalizeAction::Custom, Types);
  }
  LegalizeRuleSet &
  customForCartesianProduct(std::initializer_list<LLT> Types0,
                            std::initializer_list<LLT> Types1) {
    return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1);
  }

  /// Widen the scalar to the next power of two that is at least MinSize.
  /// No effect if the type is not a scalar or is a power of two.
  LegalizeRuleSet &widenScalarToNextPow2(unsigned TypeIdx,
                                         unsigned MinSize = 0) {
    using namespace LegalityPredicates;
    return actionIf(LegalizeAction::WidenScalar, sizeNotPow2(typeIdx(TypeIdx)),
                    LegalizeMutations::widenScalarToNextPow2(TypeIdx, MinSize));
  }

  LegalizeRuleSet &narrowScalar(unsigned TypeIdx, LegalizeMutation Mutation) {
    using namespace LegalityPredicates;
    return actionIf(LegalizeAction::NarrowScalar, isScalar(typeIdx(TypeIdx)),
                    Mutation);
  }

  /// Ensure the scalar is at least as wide as Ty.
  LegalizeRuleSet &minScalar(unsigned TypeIdx, const LLT &Ty) {
    using namespace LegalityPredicates;
    using namespace LegalizeMutations;
    return actionIf(LegalizeAction::WidenScalar,
                    narrowerThan(TypeIdx, Ty.getSizeInBits()),
                    changeTo(typeIdx(TypeIdx), Ty));
  }

  /// Ensure the scalar is at most as wide as Ty.
  LegalizeRuleSet &maxScalar(unsigned TypeIdx, const LLT &Ty) {
    using namespace LegalityPredicates;
    using namespace LegalizeMutations;
    return actionIf(LegalizeAction::NarrowScalar,
                    widerThan(TypeIdx, Ty.getSizeInBits()),
                    changeTo(typeIdx(TypeIdx), Ty));
  }

  /// Conditionally limit the maximum size of the scalar.
  /// For example, when the maximum size of one type depends on the size of
  /// another such as extracting N bits from an M bit container.
  LegalizeRuleSet &maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx,
                               const LLT &Ty) {
    using namespace LegalityPredicates;
    using namespace LegalizeMutations;
    return actionIf(LegalizeAction::NarrowScalar,
                    [=](const LegalityQuery &Query) {
                      return widerThan(TypeIdx, Ty.getSizeInBits()) &&
                             Predicate(Query);
                    },
                    changeTo(typeIdx(TypeIdx), Ty));
  }

  /// Limit the range of scalar sizes to MinTy and MaxTy.
  LegalizeRuleSet &clampScalar(unsigned TypeIdx, const LLT &MinTy,
                               const LLT &MaxTy) {
    assert(MinTy.isScalar() && MaxTy.isScalar() && "Expected scalar types");
    return minScalar(TypeIdx, MinTy).maxScalar(TypeIdx, MaxTy);
  }

  /// Add more elements to the vector to reach the next power of two.
  /// No effect if the type is not a vector or the element count is a power of
  /// two.
  LegalizeRuleSet &moreElementsToNextPow2(unsigned TypeIdx) {
    using namespace LegalityPredicates;
    return actionIf(LegalizeAction::MoreElements,
                    numElementsNotPow2(typeIdx(TypeIdx)),
                    LegalizeMutations::moreElementsToNextPow2(TypeIdx));
  }

  /// Limit the number of elements in EltTy vectors to at least MinElements.
  LegalizeRuleSet &clampMinNumElements(unsigned TypeIdx, const LLT &EltTy,
                                       unsigned MinElements) {
    // Mark the type index as covered:
    typeIdx(TypeIdx);
    return actionIf(
        LegalizeAction::MoreElements,
        [=](const LegalityQuery &Query) {
          LLT VecTy = Query.Types[TypeIdx];
          return VecTy.isVector() && VecTy.getElementType() == EltTy &&
                 VecTy.getNumElements() < MinElements;
        },
        [=](const LegalityQuery &Query) {
          LLT VecTy = Query.Types[TypeIdx];
          return std::make_pair(
              TypeIdx, LLT::vector(MinElements, VecTy.getScalarSizeInBits()));
        });
  }
  /// Limit the number of elements in EltTy vectors to at most MaxElements.
  LegalizeRuleSet &clampMaxNumElements(unsigned TypeIdx, const LLT &EltTy,
                                       unsigned MaxElements) {
    // Mark the type index as covered:
    typeIdx(TypeIdx);
    return actionIf(
        LegalizeAction::FewerElements,
        [=](const LegalityQuery &Query) {
          LLT VecTy = Query.Types[TypeIdx];
          return VecTy.isVector() && VecTy.getElementType() == EltTy &&
                 VecTy.getNumElements() > MaxElements;
        },
        [=](const LegalityQuery &Query) {
          LLT VecTy = Query.Types[TypeIdx];
          return std::make_pair(
              TypeIdx, LLT::vector(MaxElements, VecTy.getScalarSizeInBits()));
        });
  }
  /// Limit the number of elements for the given vectors to at least MinTy's
  /// number of elements and at most MaxTy's number of elements.
  ///
  /// No effect if the type is not a vector or does not have the same element
  /// type as the constraints.
  /// The element type of MinTy and MaxTy must match.
  LegalizeRuleSet &clampNumElements(unsigned TypeIdx, const LLT &MinTy,
                                    const LLT &MaxTy) {
    assert(MinTy.getElementType() == MaxTy.getElementType() &&
           "Expected element types to agree");

    const LLT &EltTy = MinTy.getElementType();
    return clampMinNumElements(TypeIdx, EltTy, MinTy.getNumElements())
        .clampMaxNumElements(TypeIdx, EltTy, MaxTy.getNumElements());
  }

  /// Fallback on the previous implementation. This should only be used while
  /// porting a rule.
  LegalizeRuleSet &fallback() {
    add({always, LegalizeAction::UseLegacyRules});
    return *this;
  }

  /// Check if there is no type index which is obviously not handled by the
  /// LegalizeRuleSet in any way at all.
  /// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set.
  bool verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const;

  /// Apply the ruleset to the given LegalityQuery.
  LegalizeActionStep apply(const LegalityQuery &Query) const;
};

class LegalizerInfo {
public:
  LegalizerInfo();
  virtual ~LegalizerInfo() = default;

  unsigned getOpcodeIdxForOpcode(unsigned Opcode) const;
  unsigned getActionDefinitionsIdx(unsigned Opcode) const;

  /// Compute any ancillary tables needed to quickly decide how an operation
  /// should be handled. This must be called after all "set*Action"methods but
  /// before any query is made or incorrect results may be returned.
  void computeTables();

  /// Perform simple self-diagnostic and assert if there is anything obviously
  /// wrong with the actions set up.
  void verify(const MCInstrInfo &MII) const;

  static bool needsLegalizingToDifferentSize(const LegalizeAction Action) {
    using namespace LegalizeActions;
    switch (Action) {
    case NarrowScalar:
    case WidenScalar:
    case FewerElements:
    case MoreElements:
    case Unsupported:
      return true;
    default:
      return false;
    }
  }

  using SizeAndAction = std::pair<uint16_t, LegalizeAction>;
  using SizeAndActionsVec = std::vector<SizeAndAction>;
  using SizeChangeStrategy =
      std::function<SizeAndActionsVec(const SizeAndActionsVec &v)>;

  /// More friendly way to set an action for common types that have an LLT
  /// representation.
  /// The LegalizeAction must be one for which NeedsLegalizingToDifferentSize
  /// returns false.
  void setAction(const InstrAspect &Aspect, LegalizeAction Action) {
    assert(!needsLegalizingToDifferentSize(Action));
    TablesInitialized = false;
    const unsigned OpcodeIdx = Aspect.Opcode - FirstOp;
    if (SpecifiedActions[OpcodeIdx].size() <= Aspect.Idx)
      SpecifiedActions[OpcodeIdx].resize(Aspect.Idx + 1);
    SpecifiedActions[OpcodeIdx][Aspect.Idx][Aspect.Type] = Action;
  }

  /// The setAction calls record the non-size-changing legalization actions
  /// to take on specificly-sized types. The SizeChangeStrategy defines what
  /// to do when the size of the type needs to be changed to reach a legally
  /// sized type (i.e., one that was defined through a setAction call).
  /// e.g.
  /// setAction ({G_ADD, 0, LLT::scalar(32)}, Legal);
  /// setLegalizeScalarToDifferentSizeStrategy(
  ///   G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
  /// will end up defining getAction({G_ADD, 0, T}) to return the following 
  /// actions for different scalar types T:
  ///  LLT::scalar(1)..LLT::scalar(31): {WidenScalar, 0, LLT::scalar(32)}
  ///  LLT::scalar(32):                 {Legal, 0, LLT::scalar(32)}
  ///  LLT::scalar(33)..:               {NarrowScalar, 0, LLT::scalar(32)}
  ///
  /// If no SizeChangeAction gets defined, through this function,
  /// the default is unsupportedForDifferentSizes.
  void setLegalizeScalarToDifferentSizeStrategy(const unsigned Opcode,
                                                const unsigned TypeIdx,
                                                SizeChangeStrategy S) {
    const unsigned OpcodeIdx = Opcode - FirstOp;
    if (ScalarSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx)
      ScalarSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1);
    ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] = S;
  }

  /// See also setLegalizeScalarToDifferentSizeStrategy.
  /// This function allows to set the SizeChangeStrategy for vector elements.
  void setLegalizeVectorElementToDifferentSizeStrategy(const unsigned Opcode,
                                                       const unsigned TypeIdx,
                                                       SizeChangeStrategy S) {
    const unsigned OpcodeIdx = Opcode - FirstOp;
    if (VectorElementSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx)
      VectorElementSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1);
    VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] = S;
  }

  /// A SizeChangeStrategy for the common case where legalization for a 
  /// particular operation consists of only supporting a specific set of type
  /// sizes. E.g.
  ///   setAction ({G_DIV, 0, LLT::scalar(32)}, Legal);
  ///   setAction ({G_DIV, 0, LLT::scalar(64)}, Legal);
  ///   setLegalizeScalarToDifferentSizeStrategy(
  ///     G_DIV, 0, unsupportedForDifferentSizes);
  /// will result in getAction({G_DIV, 0, T}) to return Legal for s32 and s64,
  /// and Unsupported for all other scalar types T.
  static SizeAndActionsVec
  unsupportedForDifferentSizes(const SizeAndActionsVec &v) {
    using namespace LegalizeActions;
    return increaseToLargerTypesAndDecreaseToLargest(v, Unsupported,
                                                     Unsupported);
  }

  /// A SizeChangeStrategy for the common case where legalization for a
  /// particular operation consists of widening the type to a large legal type,
  /// unless there is no such type and then instead it should be narrowed to the
  /// largest legal type.
  static SizeAndActionsVec
  widenToLargerTypesAndNarrowToLargest(const SizeAndActionsVec &v) {
    using namespace LegalizeActions;
    assert(v.size() > 0 &&
           "At least one size that can be legalized towards is needed"
           " for this SizeChangeStrategy");
    return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar,
                                                     NarrowScalar);
  }

  static SizeAndActionsVec
  widenToLargerTypesUnsupportedOtherwise(const SizeAndActionsVec &v) {
    using namespace LegalizeActions;
    return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar,
                                                     Unsupported);
  }

  static SizeAndActionsVec
  narrowToSmallerAndUnsupportedIfTooSmall(const SizeAndActionsVec &v) {
    using namespace LegalizeActions;
    return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar,
                                                       Unsupported);
  }

  static SizeAndActionsVec
  narrowToSmallerAndWidenToSmallest(const SizeAndActionsVec &v) {
    using namespace LegalizeActions;
    assert(v.size() > 0 &&
           "At least one size that can be legalized towards is needed"
           " for this SizeChangeStrategy");
    return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar,
                                                       WidenScalar);
  }

  /// A SizeChangeStrategy for the common case where legalization for a
  /// particular vector operation consists of having more elements in the
  /// vector, to a type that is legal. Unless there is no such type and then
  /// instead it should be legalized towards the widest vector that's still
  /// legal. E.g.
  ///   setAction({G_ADD, LLT::vector(8, 8)}, Legal);
  ///   setAction({G_ADD, LLT::vector(16, 8)}, Legal);
  ///   setAction({G_ADD, LLT::vector(2, 32)}, Legal);
  ///   setAction({G_ADD, LLT::vector(4, 32)}, Legal);
  ///   setLegalizeVectorElementToDifferentSizeStrategy(
  ///     G_ADD, 0, moreToWiderTypesAndLessToWidest);
  /// will result in the following getAction results:
  ///   * getAction({G_ADD, LLT::vector(8,8)}) returns
  ///       (Legal, vector(8,8)).
  ///   * getAction({G_ADD, LLT::vector(9,8)}) returns
  ///       (MoreElements, vector(16,8)).
  ///   * getAction({G_ADD, LLT::vector(8,32)}) returns
  ///       (FewerElements, vector(4,32)).
  static SizeAndActionsVec
  moreToWiderTypesAndLessToWidest(const SizeAndActionsVec &v) {
    using namespace LegalizeActions;
    return increaseToLargerTypesAndDecreaseToLargest(v, MoreElements,
                                                     FewerElements);
  }

  /// Helper function to implement many typical SizeChangeStrategy functions.
  static SizeAndActionsVec
  increaseToLargerTypesAndDecreaseToLargest(const SizeAndActionsVec &v,
                                            LegalizeAction IncreaseAction,
                                            LegalizeAction DecreaseAction);
  /// Helper function to implement many typical SizeChangeStrategy functions.
  static SizeAndActionsVec
  decreaseToSmallerTypesAndIncreaseToSmallest(const SizeAndActionsVec &v,
                                              LegalizeAction DecreaseAction,
                                              LegalizeAction IncreaseAction);

  /// Get the action definitions for the given opcode. Use this to run a
  /// LegalityQuery through the definitions.
  const LegalizeRuleSet &getActionDefinitions(unsigned Opcode) const;

  /// Get the action definition builder for the given opcode. Use this to define
  /// the action definitions.
  ///
  /// It is an error to request an opcode that has already been requested by the
  /// multiple-opcode variant.
  LegalizeRuleSet &getActionDefinitionsBuilder(unsigned Opcode);

  /// Get the action definition builder for the given set of opcodes. Use this
  /// to define the action definitions for multiple opcodes at once. The first
  /// opcode given will be considered the representative opcode and will hold
  /// the definitions whereas the other opcodes will be configured to refer to
  /// the representative opcode. This lowers memory requirements and very
  /// slightly improves performance.
  ///
  /// It would be very easy to introduce unexpected side-effects as a result of
  /// this aliasing if it were permitted to request different but intersecting
  /// sets of opcodes but that is difficult to keep track of. It is therefore an
  /// error to request the same opcode twice using this API, to request an
  /// opcode that already has definitions, or to use the single-opcode API on an
  /// opcode that has already been requested by this API.
  LegalizeRuleSet &
  getActionDefinitionsBuilder(std::initializer_list<unsigned> Opcodes);
  void aliasActionDefinitions(unsigned OpcodeTo, unsigned OpcodeFrom);

  /// Determine what action should be taken to legalize the described
  /// instruction. Requires computeTables to have been called.
  ///
  /// \returns a description of the next legalization step to perform.
  LegalizeActionStep getAction(const LegalityQuery &Query) const;

  /// Determine what action should be taken to legalize the given generic
  /// instruction.
  ///
  /// \returns a description of the next legalization step to perform.
  LegalizeActionStep getAction(const MachineInstr &MI,
                               const MachineRegisterInfo &MRI) const;

  bool isLegal(const MachineInstr &MI, const MachineRegisterInfo &MRI) const;

  virtual bool legalizeCustom(MachineInstr &MI,
                              MachineRegisterInfo &MRI,
                              MachineIRBuilder &MIRBuilder) const;

private:
  /// Determine what action should be taken to legalize the given generic
  /// instruction opcode, type-index and type. Requires computeTables to have
  /// been called.
  ///
  /// \returns a pair consisting of the kind of legalization that should be
  /// performed and the destination type.
  std::pair<LegalizeAction, LLT>
  getAspectAction(const InstrAspect &Aspect) const;

  /// The SizeAndActionsVec is a representation mapping between all natural
  /// numbers and an Action. The natural number represents the bit size of
  /// the InstrAspect. For example, for a target with native support for 32-bit
  /// and 64-bit additions, you'd express that as:
  /// setScalarAction(G_ADD, 0,
  ///           {{1, WidenScalar},  // bit sizes [ 1, 31[
  ///            {32, Legal},       // bit sizes [32, 33[
  ///            {33, WidenScalar}, // bit sizes [33, 64[
  ///            {64, Legal},       // bit sizes [64, 65[
  ///            {65, NarrowScalar} // bit sizes [65, +inf[
  ///           });
  /// It may be that only 64-bit pointers are supported on your target:
  /// setPointerAction(G_GEP, 0, LLT:pointer(1),
  ///           {{1, Unsupported},  // bit sizes [ 1, 63[
  ///            {64, Legal},       // bit sizes [64, 65[
  ///            {65, Unsupported}, // bit sizes [65, +inf[
  ///           });
  void setScalarAction(const unsigned Opcode, const unsigned TypeIndex,
                       const SizeAndActionsVec &SizeAndActions) {
    const unsigned OpcodeIdx = Opcode - FirstOp;
    SmallVector<SizeAndActionsVec, 1> &Actions = ScalarActions[OpcodeIdx];
    setActions(TypeIndex, Actions, SizeAndActions);
  }
  void setPointerAction(const unsigned Opcode, const unsigned TypeIndex,
                        const unsigned AddressSpace,
                        const SizeAndActionsVec &SizeAndActions) {
    const unsigned OpcodeIdx = Opcode - FirstOp;
    if (AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace) ==
        AddrSpace2PointerActions[OpcodeIdx].end())
      AddrSpace2PointerActions[OpcodeIdx][AddressSpace] = {{}};
    SmallVector<SizeAndActionsVec, 1> &Actions =
        AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace)->second;
    setActions(TypeIndex, Actions, SizeAndActions);
  }

  /// If an operation on a given vector type (say <M x iN>) isn't explicitly
  /// specified, we proceed in 2 stages. First we legalize the underlying scalar
  /// (so that there's at least one legal vector with that scalar), then we
  /// adjust the number of elements in the vector so that it is legal. The
  /// desired action in the first step is controlled by this function.
  void setScalarInVectorAction(const unsigned Opcode, const unsigned TypeIndex,
                               const SizeAndActionsVec &SizeAndActions) {
    unsigned OpcodeIdx = Opcode - FirstOp;
    SmallVector<SizeAndActionsVec, 1> &Actions =
        ScalarInVectorActions[OpcodeIdx];
    setActions(TypeIndex, Actions, SizeAndActions);
  }

  /// See also setScalarInVectorAction.
  /// This function let's you specify the number of elements in a vector that
  /// are legal for a legal element size.
  void setVectorNumElementAction(const unsigned Opcode,
                                 const unsigned TypeIndex,
                                 const unsigned ElementSize,
                                 const SizeAndActionsVec &SizeAndActions) {
    const unsigned OpcodeIdx = Opcode - FirstOp;
    if (NumElements2Actions[OpcodeIdx].find(ElementSize) ==
        NumElements2Actions[OpcodeIdx].end())
      NumElements2Actions[OpcodeIdx][ElementSize] = {{}};
    SmallVector<SizeAndActionsVec, 1> &Actions =
        NumElements2Actions[OpcodeIdx].find(ElementSize)->second;
    setActions(TypeIndex, Actions, SizeAndActions);
  }

  /// A partial SizeAndActionsVec potentially doesn't cover all bit sizes,
  /// i.e. it's OK if it doesn't start from size 1.
  static void checkPartialSizeAndActionsVector(const SizeAndActionsVec& v) {
    using namespace LegalizeActions;
#ifndef NDEBUG
    // The sizes should be in increasing order
    int prev_size = -1;
    for(auto SizeAndAction: v) {
      assert(SizeAndAction.first > prev_size);
      prev_size = SizeAndAction.first;
    }
    // - for every Widen action, there should be a larger bitsize that
    //   can be legalized towards (e.g. Legal, Lower, Libcall or Custom
    //   action).
    // - for every Narrow action, there should be a smaller bitsize that
    //   can be legalized towards.
    int SmallestNarrowIdx = -1;
    int LargestWidenIdx = -1;
    int SmallestLegalizableToSameSizeIdx = -1;
    int LargestLegalizableToSameSizeIdx = -1;
    for(size_t i=0; i<v.size(); ++i) {
      switch (v[i].second) {
        case FewerElements:
        case NarrowScalar:
          if (SmallestNarrowIdx == -1)
            SmallestNarrowIdx = i;
          break;
        case WidenScalar:
        case MoreElements:
          LargestWidenIdx = i;
          break;
        case Unsupported:
          break;
        default:
          if (SmallestLegalizableToSameSizeIdx == -1)
            SmallestLegalizableToSameSizeIdx = i;
          LargestLegalizableToSameSizeIdx = i;
      }
    }
    if (SmallestNarrowIdx != -1) {
      assert(SmallestLegalizableToSameSizeIdx != -1);
      assert(SmallestNarrowIdx > SmallestLegalizableToSameSizeIdx);
    }
    if (LargestWidenIdx != -1)
      assert(LargestWidenIdx < LargestLegalizableToSameSizeIdx);
#endif
  }

  /// A full SizeAndActionsVec must cover all bit sizes, i.e. must start with
  /// from size 1.
  static void checkFullSizeAndActionsVector(const SizeAndActionsVec& v) {
#ifndef NDEBUG
    // Data structure invariant: The first bit size must be size 1.
    assert(v.size() >= 1);
    assert(v[0].first == 1);
    checkPartialSizeAndActionsVector(v);
#endif
  }

  /// Sets actions for all bit sizes on a particular generic opcode, type
  /// index and scalar or pointer type.
  void setActions(unsigned TypeIndex,
                  SmallVector<SizeAndActionsVec, 1> &Actions,
                  const SizeAndActionsVec &SizeAndActions) {
    checkFullSizeAndActionsVector(SizeAndActions);
    if (Actions.size() <= TypeIndex)
      Actions.resize(TypeIndex + 1);
    Actions[TypeIndex] = SizeAndActions;
  }

  static SizeAndAction findAction(const SizeAndActionsVec &Vec,
                                  const uint32_t Size);

  /// Returns the next action needed to get the scalar or pointer type closer
  /// to being legal
  /// E.g. findLegalAction({G_REM, 13}) should return
  /// (WidenScalar, 32). After that, findLegalAction({G_REM, 32}) will
  /// probably be called, which should return (Lower, 32).
  /// This is assuming the setScalarAction on G_REM was something like:
  /// setScalarAction(G_REM, 0,
  ///           {{1, WidenScalar},  // bit sizes [ 1, 31[
  ///            {32, Lower},       // bit sizes [32, 33[
  ///            {33, NarrowScalar} // bit sizes [65, +inf[
  ///           });
  std::pair<LegalizeAction, LLT>
  findScalarLegalAction(const InstrAspect &Aspect) const;

  /// Returns the next action needed towards legalizing the vector type.
  std::pair<LegalizeAction, LLT>
  findVectorLegalAction(const InstrAspect &Aspect) const;

  static const int FirstOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_START;
  static const int LastOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_END;

  // Data structures used temporarily during construction of legality data:
  using TypeMap = DenseMap<LLT, LegalizeAction>;
  SmallVector<TypeMap, 1> SpecifiedActions[LastOp - FirstOp + 1];
  SmallVector<SizeChangeStrategy, 1>
      ScalarSizeChangeStrategies[LastOp - FirstOp + 1];
  SmallVector<SizeChangeStrategy, 1>
      VectorElementSizeChangeStrategies[LastOp - FirstOp + 1];
  bool TablesInitialized;

  // Data structures used by getAction:
  SmallVector<SizeAndActionsVec, 1> ScalarActions[LastOp - FirstOp + 1];
  SmallVector<SizeAndActionsVec, 1> ScalarInVectorActions[LastOp - FirstOp + 1];
  std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>>
      AddrSpace2PointerActions[LastOp - FirstOp + 1];
  std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>>
      NumElements2Actions[LastOp - FirstOp + 1];

  LegalizeRuleSet RulesForOpcode[LastOp - FirstOp + 1];
};

#ifndef NDEBUG
/// Checks that MIR is fully legal, returns an illegal instruction if it's not,
/// nullptr otherwise
const MachineInstr *machineFunctionIsIllegal(const MachineFunction &MF);
#endif

} // end namespace llvm.

#endif // LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H