1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
//=- MachineBranchProbabilityInfo.h - Branch Probability Analysis -*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass is used to evaluate branch probabilties on machine basic blocks.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEBRANCHPROBABILITYINFO_H
#define LLVM_CODEGEN_MACHINEBRANCHPROBABILITYINFO_H
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include <climits>
namespace llvm {
class MachineBranchProbabilityInfo : public ImmutablePass {
virtual void anchor();
// Default weight value. Used when we don't have information about the edge.
// TODO: DEFAULT_WEIGHT makes sense during static predication, when none of
// the successors have a weight yet. But it doesn't make sense when providing
// weight to an edge that may have siblings with non-zero weights. This can
// be handled various ways, but it's probably fine for an edge with unknown
// weight to just "inherit" the non-zero weight of an adjacent successor.
static const uint32_t DEFAULT_WEIGHT = 16;
public:
static char ID;
MachineBranchProbabilityInfo() : ImmutablePass(ID) {
PassRegistry &Registry = *PassRegistry::getPassRegistry();
initializeMachineBranchProbabilityInfoPass(Registry);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
// Return edge weight. If we don't have any informations about it - return
// DEFAULT_WEIGHT.
uint32_t getEdgeWeight(const MachineBasicBlock *Src,
const MachineBasicBlock *Dst) const;
// Same thing, but using a const_succ_iterator from Src. This is faster when
// the iterator is already available.
uint32_t getEdgeWeight(const MachineBasicBlock *Src,
MachineBasicBlock::const_succ_iterator Dst) const;
// Get sum of the block successors' weights, potentially scaling them to fit
// within 32-bits. If scaling is required, sets Scale based on the necessary
// adjustment. Any edge weights used with the sum should be divided by Scale.
uint32_t getSumForBlock(const MachineBasicBlock *MBB, uint32_t &Scale) const;
// A 'Hot' edge is an edge which probability is >= 80%.
bool isEdgeHot(const MachineBasicBlock *Src,
const MachineBasicBlock *Dst) const;
// Return a hot successor for the block BB or null if there isn't one.
// NB: This routine's complexity is linear on the number of successors.
MachineBasicBlock *getHotSucc(MachineBasicBlock *MBB) const;
// Return a probability as a fraction between 0 (0% probability) and
// 1 (100% probability), however the value is never equal to 0, and can be 1
// only iff SRC block has only one successor.
// NB: This routine's complexity is linear on the number of successors of
// Src. Querying sequentially for each successor's probability is a quadratic
// query pattern.
BranchProbability getEdgeProbability(const MachineBasicBlock *Src,
const MachineBasicBlock *Dst) const;
// Print value between 0 (0% probability) and 1 (100% probability),
// however the value is never equal to 0, and can be 1 only iff SRC block
// has only one successor.
raw_ostream &printEdgeProbability(raw_ostream &OS,
const MachineBasicBlock *Src,
const MachineBasicBlock *Dst) const;
};
}
#endif
|