aboutsummaryrefslogtreecommitdiff
path: root/include/llvm/IR/Dominators.h
blob: f445a49b67b82f2e1eaffe027805bc7da701df84 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
//===- Dominators.h - Dominator Info Calculation ----------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DominatorTree class, which provides fast and efficient
// dominance queries.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_DOMINATORS_H
#define LLVM_IR_DOMINATORS_H

#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/GenericDomTree.h"

namespace llvm {

class Function;
class BasicBlock;
class raw_ostream;

extern template class DomTreeNodeBase<BasicBlock>;
extern template class DominatorTreeBase<BasicBlock>;

extern template void Calculate<Function, BasicBlock *>(
    DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT, Function &F);
extern template void Calculate<Function, Inverse<BasicBlock *>>(
    DominatorTreeBase<GraphTraits<Inverse<BasicBlock *>>::NodeType> &DT,
    Function &F);

typedef DomTreeNodeBase<BasicBlock> DomTreeNode;

class BasicBlockEdge {
  const BasicBlock *Start;
  const BasicBlock *End;
public:
  BasicBlockEdge(const BasicBlock *Start_, const BasicBlock *End_) :
    Start(Start_), End(End_) { }
  const BasicBlock *getStart() const {
    return Start;
  }
  const BasicBlock *getEnd() const {
    return End;
  }
  bool isSingleEdge() const;
};

template <> struct DenseMapInfo<BasicBlockEdge> {
  static unsigned getHashValue(const BasicBlockEdge *V);
  typedef DenseMapInfo<const BasicBlock *> BBInfo;
  static inline BasicBlockEdge getEmptyKey() {
    return BasicBlockEdge(BBInfo::getEmptyKey(), BBInfo::getEmptyKey());
  }
  static inline BasicBlockEdge getTombstoneKey() {
    return BasicBlockEdge(BBInfo::getTombstoneKey(), BBInfo::getTombstoneKey());
  }

  static unsigned getHashValue(const BasicBlockEdge &Edge) {
    return hash_combine(BBInfo::getHashValue(Edge.getStart()),
                        BBInfo::getHashValue(Edge.getEnd()));
  }
  static bool isEqual(const BasicBlockEdge &LHS, const BasicBlockEdge &RHS) {
    return BBInfo::isEqual(LHS.getStart(), RHS.getStart()) &&
           BBInfo::isEqual(LHS.getEnd(), RHS.getEnd());
  }
};

/// \brief Concrete subclass of DominatorTreeBase that is used to compute a
/// normal dominator tree.
///
/// Definition: A block is said to be forward statically reachable if there is
/// a path from the entry of the function to the block.  A statically reachable
/// block may become statically unreachable during optimization.
///
/// A forward unreachable block may appear in the dominator tree, or it may
/// not.  If it does, dominance queries will return results as if all reachable
/// blocks dominate it.  When asking for a Node corresponding to a potentially
/// unreachable block, calling code must handle the case where the block was
/// unreachable and the result of getNode() is nullptr.
///
/// Generally, a block known to be unreachable when the dominator tree is
/// constructed will not be in the tree.  One which becomes unreachable after
/// the dominator tree is initially constructed may still exist in the tree,
/// even if the tree is properly updated. Calling code should not rely on the
/// preceding statements; this is stated only to assist human understanding.
class DominatorTree : public DominatorTreeBase<BasicBlock> {
public:
  typedef DominatorTreeBase<BasicBlock> Base;

  DominatorTree() : DominatorTreeBase<BasicBlock>(false) {}
  explicit DominatorTree(Function &F) : DominatorTreeBase<BasicBlock>(false) {
    recalculate(F);
  }

  DominatorTree(DominatorTree &&Arg)
      : Base(std::move(static_cast<Base &>(Arg))) {}
  DominatorTree &operator=(DominatorTree &&RHS) {
    Base::operator=(std::move(static_cast<Base &>(RHS)));
    return *this;
  }

  /// \brief Returns *false* if the other dominator tree matches this dominator
  /// tree.
  inline bool compare(const DominatorTree &Other) const {
    const DomTreeNode *R = getRootNode();
    const DomTreeNode *OtherR = Other.getRootNode();

    if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
      return true;

    if (Base::compare(Other))
      return true;

    return false;
  }

  // Ensure base-class overloads are visible.
  using Base::dominates;

  /// \brief Return true if Def dominates a use in User.
  ///
  /// This performs the special checks necessary if Def and User are in the same
  /// basic block. Note that Def doesn't dominate a use in Def itself!
  bool dominates(const Instruction *Def, const Use &U) const;
  bool dominates(const Instruction *Def, const Instruction *User) const;
  bool dominates(const Instruction *Def, const BasicBlock *BB) const;
  bool dominates(const BasicBlockEdge &BBE, const Use &U) const;
  bool dominates(const BasicBlockEdge &BBE, const BasicBlock *BB) const;

  // Ensure base class overloads are visible.
  using Base::isReachableFromEntry;

  /// \brief Provide an overload for a Use.
  bool isReachableFromEntry(const Use &U) const;

  /// \brief Verify the correctness of the domtree by re-computing it.
  ///
  /// This should only be used for debugging as it aborts the program if the
  /// verification fails.
  void verifyDomTree() const;
};

//===-------------------------------------
// DominatorTree GraphTraits specializations so the DominatorTree can be
// iterable by generic graph iterators.

template <class Node, class ChildIterator> struct DomTreeGraphTraitsBase {
  typedef Node NodeType;
  typedef ChildIterator ChildIteratorType;
  typedef df_iterator<Node *, SmallPtrSet<NodeType *, 8>> nodes_iterator;

  static NodeType *getEntryNode(NodeType *N) { return N; }
  static inline ChildIteratorType child_begin(NodeType *N) {
    return N->begin();
  }
  static inline ChildIteratorType child_end(NodeType *N) { return N->end(); }

  static nodes_iterator nodes_begin(NodeType *N) {
    return df_begin(getEntryNode(N));
  }

  static nodes_iterator nodes_end(NodeType *N) {
    return df_end(getEntryNode(N));
  }
};

template <>
struct GraphTraits<DomTreeNode *>
    : public DomTreeGraphTraitsBase<DomTreeNode, DomTreeNode::iterator> {};

template <>
struct GraphTraits<const DomTreeNode *>
    : public DomTreeGraphTraitsBase<const DomTreeNode,
                                    DomTreeNode::const_iterator> {};

template <> struct GraphTraits<DominatorTree*>
  : public GraphTraits<DomTreeNode*> {
  static NodeType *getEntryNode(DominatorTree *DT) {
    return DT->getRootNode();
  }

  static nodes_iterator nodes_begin(DominatorTree *N) {
    return df_begin(getEntryNode(N));
  }

  static nodes_iterator nodes_end(DominatorTree *N) {
    return df_end(getEntryNode(N));
  }
};

/// \brief Analysis pass which computes a \c DominatorTree.
class DominatorTreeAnalysis : public AnalysisInfoMixin<DominatorTreeAnalysis> {
  friend AnalysisInfoMixin<DominatorTreeAnalysis>;
  static char PassID;

public:
  /// \brief Provide the result typedef for this analysis pass.
  typedef DominatorTree Result;

  /// \brief Run the analysis pass over a function and produce a dominator tree.
  DominatorTree run(Function &F, AnalysisManager<Function> &);
};

/// \brief Printer pass for the \c DominatorTree.
class DominatorTreePrinterPass
    : public PassInfoMixin<DominatorTreePrinterPass> {
  raw_ostream &OS;

public:
  explicit DominatorTreePrinterPass(raw_ostream &OS);
  PreservedAnalyses run(Function &F, AnalysisManager<Function> &AM);
};

/// \brief Verifier pass for the \c DominatorTree.
struct DominatorTreeVerifierPass : PassInfoMixin<DominatorTreeVerifierPass> {
  PreservedAnalyses run(Function &F, AnalysisManager<Function> &AM);
};

/// \brief Legacy analysis pass which computes a \c DominatorTree.
class DominatorTreeWrapperPass : public FunctionPass {
  DominatorTree DT;

public:
  static char ID;

  DominatorTreeWrapperPass() : FunctionPass(ID) {
    initializeDominatorTreeWrapperPassPass(*PassRegistry::getPassRegistry());
  }

  DominatorTree &getDomTree() { return DT; }
  const DominatorTree &getDomTree() const { return DT; }

  bool runOnFunction(Function &F) override;

  void verifyAnalysis() const override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesAll();
  }

  void releaseMemory() override { DT.releaseMemory(); }

  void print(raw_ostream &OS, const Module *M = nullptr) const override;
};

} // End llvm namespace

#endif