aboutsummaryrefslogtreecommitdiff
path: root/include/llvm/ProfileData/SampleProfReader.h
blob: 5a5d4cfde224d0bb3661c915cea6bff719458b3e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
//===- SampleProfReader.h - Read LLVM sample profile data -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains definitions needed for reading sample profiles.
//
// NOTE: If you are making changes to this file format, please remember
//       to document them in the Clang documentation at
//       tools/clang/docs/UsersManual.rst.
//
// Text format
// -----------
//
// Sample profiles are written as ASCII text. The file is divided into
// sections, which correspond to each of the functions executed at runtime.
// Each section has the following format
//
//     function1:total_samples:total_head_samples
//      offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
//      offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
//      ...
//      offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
//      offsetA[.discriminator]: fnA:num_of_total_samples
//       offsetA1[.discriminator]: number_of_samples [fn7:num fn8:num ... ]
//       ...
//
// This is a nested tree in which the identation represents the nesting level
// of the inline stack. There are no blank lines in the file. And the spacing
// within a single line is fixed. Additional spaces will result in an error
// while reading the file.
//
// Any line starting with the '#' character is completely ignored.
//
// Inlined calls are represented with indentation. The Inline stack is a
// stack of source locations in which the top of the stack represents the
// leaf function, and the bottom of the stack represents the actual
// symbol to which the instruction belongs.
//
// Function names must be mangled in order for the profile loader to
// match them in the current translation unit. The two numbers in the
// function header specify how many total samples were accumulated in the
// function (first number), and the total number of samples accumulated
// in the prologue of the function (second number). This head sample
// count provides an indicator of how frequently the function is invoked.
//
// There are two types of lines in the function body.
//
// * Sampled line represents the profile information of a source location.
// * Callsite line represents the profile information of a callsite.
//
// Each sampled line may contain several items. Some are optional (marked
// below):
//
// a. Source line offset. This number represents the line number
//    in the function where the sample was collected. The line number is
//    always relative to the line where symbol of the function is
//    defined. So, if the function has its header at line 280, the offset
//    13 is at line 293 in the file.
//
//    Note that this offset should never be a negative number. This could
//    happen in cases like macros. The debug machinery will register the
//    line number at the point of macro expansion. So, if the macro was
//    expanded in a line before the start of the function, the profile
//    converter should emit a 0 as the offset (this means that the optimizers
//    will not be able to associate a meaningful weight to the instructions
//    in the macro).
//
// b. [OPTIONAL] Discriminator. This is used if the sampled program
//    was compiled with DWARF discriminator support
//    (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators).
//    DWARF discriminators are unsigned integer values that allow the
//    compiler to distinguish between multiple execution paths on the
//    same source line location.
//
//    For example, consider the line of code ``if (cond) foo(); else bar();``.
//    If the predicate ``cond`` is true 80% of the time, then the edge
//    into function ``foo`` should be considered to be taken most of the
//    time. But both calls to ``foo`` and ``bar`` are at the same source
//    line, so a sample count at that line is not sufficient. The
//    compiler needs to know which part of that line is taken more
//    frequently.
//
//    This is what discriminators provide. In this case, the calls to
//    ``foo`` and ``bar`` will be at the same line, but will have
//    different discriminator values. This allows the compiler to correctly
//    set edge weights into ``foo`` and ``bar``.
//
// c. Number of samples. This is an integer quantity representing the
//    number of samples collected by the profiler at this source
//    location.
//
// d. [OPTIONAL] Potential call targets and samples. If present, this
//    line contains a call instruction. This models both direct and
//    number of samples. For example,
//
//      130: 7  foo:3  bar:2  baz:7
//
//    The above means that at relative line offset 130 there is a call
//    instruction that calls one of ``foo()``, ``bar()`` and ``baz()``,
//    with ``baz()`` being the relatively more frequently called target.
//
// Each callsite line may contain several items. Some are optional.
//
// a. Source line offset. This number represents the line number of the
//    callsite that is inlined in the profiled binary.
//
// b. [OPTIONAL] Discriminator. Same as the discriminator for sampled line.
//
// c. Number of samples. This is an integer quantity representing the
//    total number of samples collected for the inlined instance at this
//    callsite
//
//
// Binary format
// -------------
//
// This is a more compact encoding. Numbers are encoded as ULEB128 values
// and all strings are encoded in a name table. The file is organized in
// the following sections:
//
// MAGIC (uint64_t)
//    File identifier computed by function SPMagic() (0x5350524f463432ff)
//
// VERSION (uint32_t)
//    File format version number computed by SPVersion()
//
// SUMMARY
//    TOTAL_COUNT (uint64_t)
//        Total number of samples in the profile.
//    MAX_COUNT (uint64_t)
//        Maximum value of samples on a line.
//    MAX_FUNCTION_COUNT (uint64_t)
//        Maximum number of samples at function entry (head samples).
//    NUM_COUNTS (uint64_t)
//        Number of lines with samples.
//    NUM_FUNCTIONS (uint64_t)
//        Number of functions with samples.
//    NUM_DETAILED_SUMMARY_ENTRIES (size_t)
//        Number of entries in detailed summary
//    DETAILED_SUMMARY
//        A list of detailed summary entry. Each entry consists of
//        CUTOFF (uint32_t)
//            Required percentile of total sample count expressed as a fraction
//            multiplied by 1000000.
//        MIN_COUNT (uint64_t)
//            The minimum number of samples required to reach the target
//            CUTOFF.
//        NUM_COUNTS (uint64_t)
//            Number of samples to get to the desrired percentile.
//
// NAME TABLE
//    SIZE (uint32_t)
//        Number of entries in the name table.
//    NAMES
//        A NUL-separated list of SIZE strings.
//
// FUNCTION BODY (one for each uninlined function body present in the profile)
//    HEAD_SAMPLES (uint64_t) [only for top-level functions]
//        Total number of samples collected at the head (prologue) of the
//        function.
//        NOTE: This field should only be present for top-level functions
//              (i.e., not inlined into any caller). Inlined function calls
//              have no prologue, so they don't need this.
//    NAME_IDX (uint32_t)
//        Index into the name table indicating the function name.
//    SAMPLES (uint64_t)
//        Total number of samples collected in this function.
//    NRECS (uint32_t)
//        Total number of sampling records this function's profile.
//    BODY RECORDS
//        A list of NRECS entries. Each entry contains:
//          OFFSET (uint32_t)
//            Line offset from the start of the function.
//          DISCRIMINATOR (uint32_t)
//            Discriminator value (see description of discriminators
//            in the text format documentation above).
//          SAMPLES (uint64_t)
//            Number of samples collected at this location.
//          NUM_CALLS (uint32_t)
//            Number of non-inlined function calls made at this location. In the
//            case of direct calls, this number will always be 1. For indirect
//            calls (virtual functions and function pointers) this will
//            represent all the actual functions called at runtime.
//          CALL_TARGETS
//            A list of NUM_CALLS entries for each called function:
//               NAME_IDX (uint32_t)
//                  Index into the name table with the callee name.
//               SAMPLES (uint64_t)
//                  Number of samples collected at the call site.
//    NUM_INLINED_FUNCTIONS (uint32_t)
//      Number of callees inlined into this function.
//    INLINED FUNCTION RECORDS
//      A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
//      callees.
//        OFFSET (uint32_t)
//          Line offset from the start of the function.
//        DISCRIMINATOR (uint32_t)
//          Discriminator value (see description of discriminators
//          in the text format documentation above).
//        FUNCTION BODY
//          A FUNCTION BODY entry describing the inlined function.
//===----------------------------------------------------------------------===//

#ifndef LLVM_PROFILEDATA_SAMPLEPROFREADER_H
#define LLVM_PROFILEDATA_SAMPLEPROFREADER_H

#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/GCOV.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SymbolRemappingReader.h"
#include <algorithm>
#include <cstdint>
#include <memory>
#include <string>
#include <system_error>
#include <vector>

namespace llvm {

class raw_ostream;

namespace sampleprof {

class SampleProfileReader;

/// SampleProfileReaderItaniumRemapper remaps the profile data from a
/// sample profile data reader, by applying a provided set of equivalences
/// between components of the symbol names in the profile.
class SampleProfileReaderItaniumRemapper {
public:
  SampleProfileReaderItaniumRemapper(std::unique_ptr<MemoryBuffer> B,
                                     std::unique_ptr<SymbolRemappingReader> SRR,
                                     SampleProfileReader &R)
      : Buffer(std::move(B)), Remappings(std::move(SRR)), Reader(R) {
    assert(Remappings && "Remappings cannot be nullptr");
  }

  /// Create a remapper from the given remapping file. The remapper will
  /// be used for profile read in by Reader.
  static ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
  create(const std::string Filename, SampleProfileReader &Reader,
         LLVMContext &C);

  /// Create a remapper from the given Buffer. The remapper will
  /// be used for profile read in by Reader.
  static ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
  create(std::unique_ptr<MemoryBuffer> &B, SampleProfileReader &Reader,
         LLVMContext &C);

  /// Apply remappings to the profile read by Reader.
  void applyRemapping(LLVMContext &Ctx);

  bool hasApplied() { return RemappingApplied; }

  /// Insert function name into remapper.
  void insert(StringRef FunctionName) { Remappings->insert(FunctionName); }

  /// Query whether there is equivalent in the remapper which has been
  /// inserted.
  bool exist(StringRef FunctionName) {
    return Remappings->lookup(FunctionName);
  }

  /// Return the samples collected for function \p F if remapper knows
  /// it is present in SampleMap.
  FunctionSamples *getSamplesFor(StringRef FunctionName);

private:
  // The buffer holding the content read from remapping file.
  std::unique_ptr<MemoryBuffer> Buffer;
  std::unique_ptr<SymbolRemappingReader> Remappings;
  DenseMap<SymbolRemappingReader::Key, FunctionSamples *> SampleMap;
  // The Reader the remapper is servicing.
  SampleProfileReader &Reader;
  // Indicate whether remapping has been applied to the profile read
  // by Reader -- by calling applyRemapping.
  bool RemappingApplied = false;
};

/// Sample-based profile reader.
///
/// Each profile contains sample counts for all the functions
/// executed. Inside each function, statements are annotated with the
/// collected samples on all the instructions associated with that
/// statement.
///
/// For this to produce meaningful data, the program needs to be
/// compiled with some debug information (at minimum, line numbers:
/// -gline-tables-only). Otherwise, it will be impossible to match IR
/// instructions to the line numbers collected by the profiler.
///
/// From the profile file, we are interested in collecting the
/// following information:
///
/// * A list of functions included in the profile (mangled names).
///
/// * For each function F:
///   1. The total number of samples collected in F.
///
///   2. The samples collected at each line in F. To provide some
///      protection against source code shuffling, line numbers should
///      be relative to the start of the function.
///
/// The reader supports two file formats: text and binary. The text format
/// is useful for debugging and testing, while the binary format is more
/// compact and I/O efficient. They can both be used interchangeably.
class SampleProfileReader {
public:
  SampleProfileReader(std::unique_ptr<MemoryBuffer> B, LLVMContext &C,
                      SampleProfileFormat Format = SPF_None)
      : Profiles(0), Ctx(C), Buffer(std::move(B)), Format(Format) {}

  virtual ~SampleProfileReader() = default;

  /// Read and validate the file header.
  virtual std::error_code readHeader() = 0;

  /// The interface to read sample profiles from the associated file.
  std::error_code read() {
    if (std::error_code EC = readImpl())
      return EC;
    if (Remapper)
      Remapper->applyRemapping(Ctx);
    return sampleprof_error::success;
  }

  /// The implementaion to read sample profiles from the associated file.
  virtual std::error_code readImpl() = 0;

  /// Print the profile for \p FName on stream \p OS.
  void dumpFunctionProfile(StringRef FName, raw_ostream &OS = dbgs());

  virtual void collectFuncsFrom(const Module &M) {}

  /// Print all the profiles on stream \p OS.
  void dump(raw_ostream &OS = dbgs());

  /// Return the samples collected for function \p F.
  FunctionSamples *getSamplesFor(const Function &F) {
    // The function name may have been updated by adding suffix. Call
    // a helper to (optionally) strip off suffixes so that we can
    // match against the original function name in the profile.
    StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
    return getSamplesFor(CanonName);
  }

  /// Return the samples collected for function \p F.
  virtual FunctionSamples *getSamplesFor(StringRef Fname) {
    if (Remapper) {
      if (auto FS = Remapper->getSamplesFor(Fname))
        return FS;
    }
    std::string FGUID;
    Fname = getRepInFormat(Fname, getFormat(), FGUID);
    auto It = Profiles.find(Fname);
    if (It != Profiles.end())
      return &It->second;
    return nullptr;
  }

  /// Return all the profiles.
  StringMap<FunctionSamples> &getProfiles() { return Profiles; }

  /// Report a parse error message.
  void reportError(int64_t LineNumber, Twine Msg) const {
    Ctx.diagnose(DiagnosticInfoSampleProfile(Buffer->getBufferIdentifier(),
                                             LineNumber, Msg));
  }

  /// Create a sample profile reader appropriate to the file format.
  /// Create a remapper underlying if RemapFilename is not empty.
  static ErrorOr<std::unique_ptr<SampleProfileReader>>
  create(const std::string Filename, LLVMContext &C,
         const std::string RemapFilename = "");

  /// Create a sample profile reader from the supplied memory buffer.
  /// Create a remapper underlying if RemapFilename is not empty.
  static ErrorOr<std::unique_ptr<SampleProfileReader>>
  create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C,
         const std::string RemapFilename = "");

  /// Return the profile summary.
  ProfileSummary &getSummary() const { return *(Summary.get()); }

  MemoryBuffer *getBuffer() const { return Buffer.get(); }

  /// \brief Return the profile format.
  SampleProfileFormat getFormat() const { return Format; }

  virtual std::unique_ptr<ProfileSymbolList> getProfileSymbolList() {
    return nullptr;
  };

  /// It includes all the names that have samples either in outline instance
  /// or inline instance.
  virtual std::vector<StringRef> *getNameTable() { return nullptr; }
  virtual bool dumpSectionInfo(raw_ostream &OS = dbgs()) { return false; };

protected:
  /// Map every function to its associated profile.
  ///
  /// The profile of every function executed at runtime is collected
  /// in the structure FunctionSamples. This maps function objects
  /// to their corresponding profiles.
  StringMap<FunctionSamples> Profiles;

  /// LLVM context used to emit diagnostics.
  LLVMContext &Ctx;

  /// Memory buffer holding the profile file.
  std::unique_ptr<MemoryBuffer> Buffer;

  /// Profile summary information.
  std::unique_ptr<ProfileSummary> Summary;

  /// Take ownership of the summary of this reader.
  static std::unique_ptr<ProfileSummary>
  takeSummary(SampleProfileReader &Reader) {
    return std::move(Reader.Summary);
  }

  /// Compute summary for this profile.
  void computeSummary();

  std::unique_ptr<SampleProfileReaderItaniumRemapper> Remapper;

  /// \brief The format of sample.
  SampleProfileFormat Format = SPF_None;
};

class SampleProfileReaderText : public SampleProfileReader {
public:
  SampleProfileReaderText(std::unique_ptr<MemoryBuffer> B, LLVMContext &C)
      : SampleProfileReader(std::move(B), C, SPF_Text) {}

  /// Read and validate the file header.
  std::error_code readHeader() override { return sampleprof_error::success; }

  /// Read sample profiles from the associated file.
  std::error_code readImpl() override;

  /// Return true if \p Buffer is in the format supported by this class.
  static bool hasFormat(const MemoryBuffer &Buffer);
};

class SampleProfileReaderBinary : public SampleProfileReader {
public:
  SampleProfileReaderBinary(std::unique_ptr<MemoryBuffer> B, LLVMContext &C,
                            SampleProfileFormat Format = SPF_None)
      : SampleProfileReader(std::move(B), C, Format) {}

  /// Read and validate the file header.
  virtual std::error_code readHeader() override;

  /// Read sample profiles from the associated file.
  std::error_code readImpl() override;

  /// It includes all the names that have samples either in outline instance
  /// or inline instance.
  virtual std::vector<StringRef> *getNameTable() override { return &NameTable; }

protected:
  /// Read a numeric value of type T from the profile.
  ///
  /// If an error occurs during decoding, a diagnostic message is emitted and
  /// EC is set.
  ///
  /// \returns the read value.
  template <typename T> ErrorOr<T> readNumber();

  /// Read a numeric value of type T from the profile. The value is saved
  /// without encoded.
  template <typename T> ErrorOr<T> readUnencodedNumber();

  /// Read a string from the profile.
  ///
  /// If an error occurs during decoding, a diagnostic message is emitted and
  /// EC is set.
  ///
  /// \returns the read value.
  ErrorOr<StringRef> readString();

  /// Read the string index and check whether it overflows the table.
  template <typename T> inline ErrorOr<uint32_t> readStringIndex(T &Table);

  /// Return true if we've reached the end of file.
  bool at_eof() const { return Data >= End; }

  /// Read the next function profile instance.
  std::error_code readFuncProfile(const uint8_t *Start);

  /// Read the contents of the given profile instance.
  std::error_code readProfile(FunctionSamples &FProfile);

  /// Read the contents of Magic number and Version number.
  std::error_code readMagicIdent();

  /// Read profile summary.
  std::error_code readSummary();

  /// Read the whole name table.
  virtual std::error_code readNameTable();

  /// Points to the current location in the buffer.
  const uint8_t *Data = nullptr;

  /// Points to the end of the buffer.
  const uint8_t *End = nullptr;

  /// Function name table.
  std::vector<StringRef> NameTable;

  /// Read a string indirectly via the name table.
  virtual ErrorOr<StringRef> readStringFromTable();

private:
  std::error_code readSummaryEntry(std::vector<ProfileSummaryEntry> &Entries);
  virtual std::error_code verifySPMagic(uint64_t Magic) = 0;
};

class SampleProfileReaderRawBinary : public SampleProfileReaderBinary {
private:
  virtual std::error_code verifySPMagic(uint64_t Magic) override;

public:
  SampleProfileReaderRawBinary(std::unique_ptr<MemoryBuffer> B, LLVMContext &C,
                               SampleProfileFormat Format = SPF_Binary)
      : SampleProfileReaderBinary(std::move(B), C, Format) {}

  /// \brief Return true if \p Buffer is in the format supported by this class.
  static bool hasFormat(const MemoryBuffer &Buffer);
};

/// SampleProfileReaderExtBinaryBase/SampleProfileWriterExtBinaryBase defines
/// the basic structure of the extensible binary format.
/// The format is organized in sections except the magic and version number
/// at the beginning. There is a section table before all the sections, and
/// each entry in the table describes the entry type, start, size and
/// attributes. The format in each section is defined by the section itself.
///
/// It is easy to add a new section while maintaining the backward
/// compatibility of the profile. Nothing extra needs to be done. If we want
/// to extend an existing section, like add cache misses information in
/// addition to the sample count in the profile body, we can add a new section
/// with the extension and retire the existing section, and we could choose
/// to keep the parser of the old section if we want the reader to be able
/// to read both new and old format profile.
///
/// SampleProfileReaderExtBinary/SampleProfileWriterExtBinary define the
/// commonly used sections of a profile in extensible binary format. It is
/// possible to define other types of profile inherited from
/// SampleProfileReaderExtBinaryBase/SampleProfileWriterExtBinaryBase.
class SampleProfileReaderExtBinaryBase : public SampleProfileReaderBinary {
private:
  std::error_code decompressSection(const uint8_t *SecStart,
                                    const uint64_t SecSize,
                                    const uint8_t *&DecompressBuf,
                                    uint64_t &DecompressBufSize);

  BumpPtrAllocator Allocator;

protected:
  std::vector<SecHdrTableEntry> SecHdrTable;
  std::unique_ptr<ProfileSymbolList> ProfSymList;
  std::error_code readSecHdrTableEntry();
  std::error_code readSecHdrTable();
  virtual std::error_code readHeader() override;
  virtual std::error_code verifySPMagic(uint64_t Magic) override = 0;
  virtual std::error_code readOneSection(const uint8_t *Start, uint64_t Size,
                                         SecType Type) = 0;

public:
  SampleProfileReaderExtBinaryBase(std::unique_ptr<MemoryBuffer> B,
                                   LLVMContext &C, SampleProfileFormat Format)
      : SampleProfileReaderBinary(std::move(B), C, Format) {}

  /// Read sample profiles in extensible format from the associated file.
  std::error_code readImpl() override;

  /// Get the total size of all \p Type sections.
  uint64_t getSectionSize(SecType Type);
  /// Get the total size of header and all sections.
  uint64_t getFileSize();
  virtual bool dumpSectionInfo(raw_ostream &OS = dbgs()) override;
};

class SampleProfileReaderExtBinary : public SampleProfileReaderExtBinaryBase {
private:
  virtual std::error_code verifySPMagic(uint64_t Magic) override;
  virtual std::error_code readOneSection(const uint8_t *Start, uint64_t Size,
                                         SecType Type) override;
  std::error_code readProfileSymbolList();
  std::error_code readFuncOffsetTable();
  std::error_code readFuncProfiles();

  /// The table mapping from function name to the offset of its FunctionSample
  /// towards file start.
  DenseMap<StringRef, uint64_t> FuncOffsetTable;
  /// The set containing the functions to use when compiling a module.
  DenseSet<StringRef> FuncsToUse;
  /// Use all functions from the input profile.
  bool UseAllFuncs = true;

public:
  SampleProfileReaderExtBinary(std::unique_ptr<MemoryBuffer> B, LLVMContext &C,
                               SampleProfileFormat Format = SPF_Ext_Binary)
      : SampleProfileReaderExtBinaryBase(std::move(B), C, Format) {}

  /// \brief Return true if \p Buffer is in the format supported by this class.
  static bool hasFormat(const MemoryBuffer &Buffer);

  virtual std::unique_ptr<ProfileSymbolList> getProfileSymbolList() override {
    return std::move(ProfSymList);
  };

  /// Collect functions with definitions in Module \p M.
  void collectFuncsFrom(const Module &M) override;
};

class SampleProfileReaderCompactBinary : public SampleProfileReaderBinary {
private:
  /// Function name table.
  std::vector<std::string> NameTable;
  /// The table mapping from function name to the offset of its FunctionSample
  /// towards file start.
  DenseMap<StringRef, uint64_t> FuncOffsetTable;
  /// The set containing the functions to use when compiling a module.
  DenseSet<StringRef> FuncsToUse;
  /// Use all functions from the input profile.
  bool UseAllFuncs = true;
  virtual std::error_code verifySPMagic(uint64_t Magic) override;
  virtual std::error_code readNameTable() override;
  /// Read a string indirectly via the name table.
  virtual ErrorOr<StringRef> readStringFromTable() override;
  virtual std::error_code readHeader() override;
  std::error_code readFuncOffsetTable();

public:
  SampleProfileReaderCompactBinary(std::unique_ptr<MemoryBuffer> B,
                                   LLVMContext &C)
      : SampleProfileReaderBinary(std::move(B), C, SPF_Compact_Binary) {}

  /// \brief Return true if \p Buffer is in the format supported by this class.
  static bool hasFormat(const MemoryBuffer &Buffer);

  /// Read samples only for functions to use.
  std::error_code readImpl() override;

  /// Collect functions to be used when compiling Module \p M.
  void collectFuncsFrom(const Module &M) override;
};

using InlineCallStack = SmallVector<FunctionSamples *, 10>;

// Supported histogram types in GCC.  Currently, we only need support for
// call target histograms.
enum HistType {
  HIST_TYPE_INTERVAL,
  HIST_TYPE_POW2,
  HIST_TYPE_SINGLE_VALUE,
  HIST_TYPE_CONST_DELTA,
  HIST_TYPE_INDIR_CALL,
  HIST_TYPE_AVERAGE,
  HIST_TYPE_IOR,
  HIST_TYPE_INDIR_CALL_TOPN
};

class SampleProfileReaderGCC : public SampleProfileReader {
public:
  SampleProfileReaderGCC(std::unique_ptr<MemoryBuffer> B, LLVMContext &C)
      : SampleProfileReader(std::move(B), C, SPF_GCC),
        GcovBuffer(Buffer.get()) {}

  /// Read and validate the file header.
  std::error_code readHeader() override;

  /// Read sample profiles from the associated file.
  std::error_code readImpl() override;

  /// Return true if \p Buffer is in the format supported by this class.
  static bool hasFormat(const MemoryBuffer &Buffer);

protected:
  std::error_code readNameTable();
  std::error_code readOneFunctionProfile(const InlineCallStack &InlineStack,
                                         bool Update, uint32_t Offset);
  std::error_code readFunctionProfiles();
  std::error_code skipNextWord();
  template <typename T> ErrorOr<T> readNumber();
  ErrorOr<StringRef> readString();

  /// Read the section tag and check that it's the same as \p Expected.
  std::error_code readSectionTag(uint32_t Expected);

  /// GCOV buffer containing the profile.
  GCOVBuffer GcovBuffer;

  /// Function names in this profile.
  std::vector<std::string> Names;

  /// GCOV tags used to separate sections in the profile file.
  static const uint32_t GCOVTagAFDOFileNames = 0xaa000000;
  static const uint32_t GCOVTagAFDOFunction = 0xac000000;
};

} // end namespace sampleprof

} // end namespace llvm

#endif // LLVM_PROFILEDATA_SAMPLEPROFREADER_H