aboutsummaryrefslogtreecommitdiff
path: root/lib/AST/ASTDiagnostic.cpp
blob: e4cd2a9c1053a293a9e1d63fdab08fad51af8a58 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
//===--- ASTDiagnostic.cpp - Diagnostic Printing Hooks for AST Nodes ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a diagnostic formatting hook for AST elements.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTDiagnostic.h"

#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Type.h"
#include "llvm/Support/raw_ostream.h"

using namespace clang;

/// Determines whether we should have an a.k.a. clause when
/// pretty-printing a type.  There are three main criteria:
///
/// 1) Some types provide very minimal sugar that doesn't impede the
///    user's understanding --- for example, elaborated type
///    specifiers.  If this is all the sugar we see, we don't want an
///    a.k.a. clause.
/// 2) Some types are technically sugared but are much more familiar
///    when seen in their sugared form --- for example, va_list,
///    vector types, and the magic Objective C types.  We don't
///    want to desugar these, even if we do produce an a.k.a. clause.
/// 3) Some types may have already been desugared previously in this diagnostic.
///    if this is the case, doing another "aka" would just be clutter.
///
static bool ShouldAKA(ASTContext &Context, QualType QT,
                      const Diagnostic::ArgumentValue *PrevArgs,
                      unsigned NumPrevArgs,
                      QualType &DesugaredQT) {
  QualType InputTy = QT;
  
  bool AKA = false;
  QualifierCollector Qc;
  
  while (true) {
    const Type *Ty = Qc.strip(QT);
    
    // Don't aka just because we saw an elaborated type...
    if (isa<ElaboratedType>(Ty)) {
      QT = cast<ElaboratedType>(Ty)->desugar();
      continue;
    }
    
    // ...or a qualified name type...
    if (isa<QualifiedNameType>(Ty)) {
      QT = cast<QualifiedNameType>(Ty)->desugar();
      continue;
    }

    // ...or a substituted template type parameter.
    if (isa<SubstTemplateTypeParmType>(Ty)) {
      QT = cast<SubstTemplateTypeParmType>(Ty)->desugar();
      continue;
    }
    
    // Don't desugar template specializations. 
    if (isa<TemplateSpecializationType>(Ty))
      break;
    
    // Don't desugar magic Objective-C types.
    if (QualType(Ty,0) == Context.getObjCIdType() ||
        QualType(Ty,0) == Context.getObjCClassType() ||
        QualType(Ty,0) == Context.getObjCSelType() ||
        QualType(Ty,0) == Context.getObjCProtoType())
      break;
    
    // Don't desugar va_list.
    if (QualType(Ty,0) == Context.getBuiltinVaListType())
      break;
    
    // Otherwise, do a single-step desugar.
    QualType Underlying;
    bool IsSugar = false;
    switch (Ty->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Base)
#define TYPE(Class, Base) \
case Type::Class: { \
const Class##Type *CTy = cast<Class##Type>(Ty); \
if (CTy->isSugared()) { \
IsSugar = true; \
Underlying = CTy->desugar(); \
} \
break; \
}
#include "clang/AST/TypeNodes.def"
    }
    
    // If it wasn't sugared, we're done.
    if (!IsSugar)
      break;
    
    // If the desugared type is a vector type, we don't want to expand
    // it, it will turn into an attribute mess. People want their "vec4".
    if (isa<VectorType>(Underlying))
      break;
    
    // Don't desugar through the primary typedef of an anonymous type.
    if (isa<TagType>(Underlying) && isa<TypedefType>(QT))
      if (cast<TagType>(Underlying)->getDecl()->getTypedefForAnonDecl() ==
          cast<TypedefType>(QT)->getDecl())
        break;
    
    // Otherwise, we're tearing through something opaque; note that
    // we'll eventually need an a.k.a. clause and keep going.
    AKA = true;
    QT = Underlying;
    continue;
  }
  
  // If we never tore through opaque sugar, don't print aka.
  if (!AKA) return false;
  
  // If we did, check to see if we already desugared this type in this
  // diagnostic.  If so, don't do it again.
  for (unsigned i = 0; i != NumPrevArgs; ++i) {
    // TODO: Handle ak_declcontext case.
    if (PrevArgs[i].first == Diagnostic::ak_qualtype) {
      void *Ptr = (void*)PrevArgs[i].second;
      QualType PrevTy(QualType::getFromOpaquePtr(Ptr));
      if (PrevTy == InputTy)
        return false;
    }
  }
  
  DesugaredQT = Qc.apply(QT);
  return true;
}

/// \brief Convert the given type to a string suitable for printing as part of 
/// a diagnostic. 
///
/// \param Context the context in which the type was allocated
/// \param Ty the type to print
static std::string
ConvertTypeToDiagnosticString(ASTContext &Context, QualType Ty,
                              const Diagnostic::ArgumentValue *PrevArgs,
                              unsigned NumPrevArgs) {
  // FIXME: Playing with std::string is really slow.
  std::string S = Ty.getAsString(Context.PrintingPolicy);
  
  // Consider producing an a.k.a. clause if removing all the direct
  // sugar gives us something "significantly different".
  
  QualType DesugaredTy;
  if (ShouldAKA(Context, Ty, PrevArgs, NumPrevArgs, DesugaredTy)) {
    S = "'"+S+"' (aka '";
    S += DesugaredTy.getAsString(Context.PrintingPolicy);
    S += "')";
    return S;
  }
  
  S = "'" + S + "'";
  return S;
}

void clang::FormatASTNodeDiagnosticArgument(Diagnostic::ArgumentKind Kind, 
                                            intptr_t Val,
                                            const char *Modifier, 
                                            unsigned ModLen,
                                            const char *Argument, 
                                            unsigned ArgLen,
                                    const Diagnostic::ArgumentValue *PrevArgs,
                                            unsigned NumPrevArgs,
                                            llvm::SmallVectorImpl<char> &Output,
                                            void *Cookie) {
  ASTContext &Context = *static_cast<ASTContext*>(Cookie);
  
  std::string S;
  bool NeedQuotes = true;
  
  switch (Kind) {
    default: assert(0 && "unknown ArgumentKind");
    case Diagnostic::ak_qualtype: {
      assert(ModLen == 0 && ArgLen == 0 &&
             "Invalid modifier for QualType argument");
      
      QualType Ty(QualType::getFromOpaquePtr(reinterpret_cast<void*>(Val)));
      S = ConvertTypeToDiagnosticString(Context, Ty, PrevArgs, NumPrevArgs);
      NeedQuotes = false;
      break;
    }
    case Diagnostic::ak_declarationname: {
      DeclarationName N = DeclarationName::getFromOpaqueInteger(Val);
      S = N.getAsString();
      
      if (ModLen == 9 && !memcmp(Modifier, "objcclass", 9) && ArgLen == 0)
        S = '+' + S;
      else if (ModLen == 12 && !memcmp(Modifier, "objcinstance", 12)
                && ArgLen==0)
        S = '-' + S;
      else
        assert(ModLen == 0 && ArgLen == 0 &&
               "Invalid modifier for DeclarationName argument");
      break;
    }
    case Diagnostic::ak_nameddecl: {
      bool Qualified;
      if (ModLen == 1 && Modifier[0] == 'q' && ArgLen == 0)
        Qualified = true;
      else {
        assert(ModLen == 0 && ArgLen == 0 &&
               "Invalid modifier for NamedDecl* argument");
        Qualified = false;
      }
      reinterpret_cast<NamedDecl*>(Val)->
      getNameForDiagnostic(S, Context.PrintingPolicy, Qualified);
      break;
    }
    case Diagnostic::ak_nestednamespec: {
      llvm::raw_string_ostream OS(S);
      reinterpret_cast<NestedNameSpecifier*>(Val)->print(OS,
                                                        Context.PrintingPolicy);
      NeedQuotes = false;
      break;
    }
    case Diagnostic::ak_declcontext: {
      DeclContext *DC = reinterpret_cast<DeclContext *> (Val);
      assert(DC && "Should never have a null declaration context");
      
      if (DC->isTranslationUnit()) {
        // FIXME: Get these strings from some localized place
        if (Context.getLangOptions().CPlusPlus)
          S = "the global namespace";
        else
          S = "the global scope";
      } else if (TypeDecl *Type = dyn_cast<TypeDecl>(DC)) {
        S = ConvertTypeToDiagnosticString(Context, 
                                          Context.getTypeDeclType(Type),
                                          PrevArgs, NumPrevArgs);
      } else {
        // FIXME: Get these strings from some localized place
        NamedDecl *ND = cast<NamedDecl>(DC);
        if (isa<NamespaceDecl>(ND))
          S += "namespace ";
        else if (isa<ObjCMethodDecl>(ND))
          S += "method ";
        else if (isa<FunctionDecl>(ND))
          S += "function ";
        
        S += "'";
        ND->getNameForDiagnostic(S, Context.PrintingPolicy, true);
        S += "'";
      }
      NeedQuotes = false;
      break;
    }
  }
  
  if (NeedQuotes)
    Output.push_back('\'');
  
  Output.append(S.begin(), S.end());
  
  if (NeedQuotes)
    Output.push_back('\'');
}