aboutsummaryrefslogtreecommitdiff
path: root/lib/AST/CXXInheritance.cpp
blob: 56fb0464078f491467afd6ba6d58d1ae6a7896a5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
//===------ CXXInheritance.cpp - C++ Inheritance ----------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides routines that help analyzing C++ inheritance hierarchies.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/RecordLayout.h"
#include "llvm/ADT/SetVector.h"
#include <algorithm>

using namespace clang;

/// \brief Computes the set of declarations referenced by these base
/// paths.
void CXXBasePaths::ComputeDeclsFound() {
  assert(NumDeclsFound == 0 && !DeclsFound &&
         "Already computed the set of declarations");

  llvm::SetVector<NamedDecl *, SmallVector<NamedDecl *, 8> > Decls;
  for (paths_iterator Path = begin(), PathEnd = end(); Path != PathEnd; ++Path)
    Decls.insert(Path->Decls.front());

  NumDeclsFound = Decls.size();
  DeclsFound = llvm::make_unique<NamedDecl *[]>(NumDeclsFound);
  std::copy(Decls.begin(), Decls.end(), DeclsFound.get());
}

CXXBasePaths::decl_range CXXBasePaths::found_decls() {
  if (NumDeclsFound == 0)
    ComputeDeclsFound();

  return decl_range(decl_iterator(DeclsFound.get()),
                    decl_iterator(DeclsFound.get() + NumDeclsFound));
}

/// isAmbiguous - Determines whether the set of paths provided is
/// ambiguous, i.e., there are two or more paths that refer to
/// different base class subobjects of the same type. BaseType must be
/// an unqualified, canonical class type.
bool CXXBasePaths::isAmbiguous(CanQualType BaseType) {
  BaseType = BaseType.getUnqualifiedType();
  std::pair<bool, unsigned>& Subobjects = ClassSubobjects[BaseType];
  return Subobjects.second + (Subobjects.first? 1 : 0) > 1;
}

/// clear - Clear out all prior path information.
void CXXBasePaths::clear() {
  Paths.clear();
  ClassSubobjects.clear();
  ScratchPath.clear();
  DetectedVirtual = nullptr;
}

/// @brief Swaps the contents of this CXXBasePaths structure with the
/// contents of Other.
void CXXBasePaths::swap(CXXBasePaths &Other) {
  std::swap(Origin, Other.Origin);
  Paths.swap(Other.Paths);
  ClassSubobjects.swap(Other.ClassSubobjects);
  std::swap(FindAmbiguities, Other.FindAmbiguities);
  std::swap(RecordPaths, Other.RecordPaths);
  std::swap(DetectVirtual, Other.DetectVirtual);
  std::swap(DetectedVirtual, Other.DetectedVirtual);
}

bool CXXRecordDecl::isDerivedFrom(const CXXRecordDecl *Base) const {
  CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false,
                     /*DetectVirtual=*/false);
  return isDerivedFrom(Base, Paths);
}

bool CXXRecordDecl::isDerivedFrom(const CXXRecordDecl *Base,
                                  CXXBasePaths &Paths) const {
  if (getCanonicalDecl() == Base->getCanonicalDecl())
    return false;
  
  Paths.setOrigin(const_cast<CXXRecordDecl*>(this));

  const CXXRecordDecl *BaseDecl = Base->getCanonicalDecl();
  // FIXME: Capturing 'this' is a workaround for name lookup bugs in GCC 4.7.
  return lookupInBases(
      [BaseDecl](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
        return FindBaseClass(Specifier, Path, BaseDecl);
      },
      Paths);
}

bool CXXRecordDecl::isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const {
  if (!getNumVBases())
    return false;

  CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false,
                     /*DetectVirtual=*/false);

  if (getCanonicalDecl() == Base->getCanonicalDecl())
    return false;
  
  Paths.setOrigin(const_cast<CXXRecordDecl*>(this));

  const CXXRecordDecl *BaseDecl = Base->getCanonicalDecl();
  // FIXME: Capturing 'this' is a workaround for name lookup bugs in GCC 4.7.
  return lookupInBases(
      [BaseDecl](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
        return FindVirtualBaseClass(Specifier, Path, BaseDecl);
      },
      Paths);
}

bool CXXRecordDecl::isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const {
  const CXXRecordDecl *TargetDecl = Base->getCanonicalDecl();
  return forallBases([TargetDecl](const CXXRecordDecl *Base) {
    return Base->getCanonicalDecl() != TargetDecl;
  });
}

bool
CXXRecordDecl::isCurrentInstantiation(const DeclContext *CurContext) const {
  assert(isDependentContext());

  for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
    if (CurContext->Equals(this))
      return true;

  return false;
}

bool CXXRecordDecl::forallBases(ForallBasesCallback BaseMatches,
                                bool AllowShortCircuit) const {
  SmallVector<const CXXRecordDecl*, 8> Queue;

  const CXXRecordDecl *Record = this;
  bool AllMatches = true;
  while (true) {
    for (const auto &I : Record->bases()) {
      const RecordType *Ty = I.getType()->getAs<RecordType>();
      if (!Ty) {
        if (AllowShortCircuit) return false;
        AllMatches = false;
        continue;
      }

      CXXRecordDecl *Base = 
            cast_or_null<CXXRecordDecl>(Ty->getDecl()->getDefinition());
      if (!Base ||
          (Base->isDependentContext() &&
           !Base->isCurrentInstantiation(Record))) {
        if (AllowShortCircuit) return false;
        AllMatches = false;
        continue;
      }
      
      Queue.push_back(Base);
      if (!BaseMatches(Base)) {
        if (AllowShortCircuit) return false;
        AllMatches = false;
        continue;
      }
    }

    if (Queue.empty())
      break;
    Record = Queue.pop_back_val(); // not actually a queue.
  }

  return AllMatches;
}

bool CXXBasePaths::lookupInBases(
    ASTContext &Context, const CXXRecordDecl *Record,
    CXXRecordDecl::BaseMatchesCallback BaseMatches) {
  bool FoundPath = false;

  // The access of the path down to this record.
  AccessSpecifier AccessToHere = ScratchPath.Access;
  bool IsFirstStep = ScratchPath.empty();

  for (const auto &BaseSpec : Record->bases()) {
    // Find the record of the base class subobjects for this type.
    QualType BaseType =
        Context.getCanonicalType(BaseSpec.getType()).getUnqualifiedType();

    // C++ [temp.dep]p3:
    //   In the definition of a class template or a member of a class template,
    //   if a base class of the class template depends on a template-parameter,
    //   the base class scope is not examined during unqualified name lookup 
    //   either at the point of definition of the class template or member or 
    //   during an instantiation of the class tem- plate or member.
    if (BaseType->isDependentType())
      continue;
    
    // Determine whether we need to visit this base class at all,
    // updating the count of subobjects appropriately.
    std::pair<bool, unsigned>& Subobjects = ClassSubobjects[BaseType];
    bool VisitBase = true;
    bool SetVirtual = false;
    if (BaseSpec.isVirtual()) {
      VisitBase = !Subobjects.first;
      Subobjects.first = true;
      if (isDetectingVirtual() && DetectedVirtual == nullptr) {
        // If this is the first virtual we find, remember it. If it turns out
        // there is no base path here, we'll reset it later.
        DetectedVirtual = BaseType->getAs<RecordType>();
        SetVirtual = true;
      }
    } else
      ++Subobjects.second;
    
    if (isRecordingPaths()) {
      // Add this base specifier to the current path.
      CXXBasePathElement Element;
      Element.Base = &BaseSpec;
      Element.Class = Record;
      if (BaseSpec.isVirtual())
        Element.SubobjectNumber = 0;
      else
        Element.SubobjectNumber = Subobjects.second;
      ScratchPath.push_back(Element);

      // Calculate the "top-down" access to this base class.
      // The spec actually describes this bottom-up, but top-down is
      // equivalent because the definition works out as follows:
      // 1. Write down the access along each step in the inheritance
      //    chain, followed by the access of the decl itself.
      //    For example, in
      //      class A { public: int foo; };
      //      class B : protected A {};
      //      class C : public B {};
      //      class D : private C {};
      //    we would write:
      //      private public protected public
      // 2. If 'private' appears anywhere except far-left, access is denied.
      // 3. Otherwise, overall access is determined by the most restrictive
      //    access in the sequence.
      if (IsFirstStep)
        ScratchPath.Access = BaseSpec.getAccessSpecifier();
      else
        ScratchPath.Access = CXXRecordDecl::MergeAccess(AccessToHere, 
                                                 BaseSpec.getAccessSpecifier());
    }
    
    // Track whether there's a path involving this specific base.
    bool FoundPathThroughBase = false;
    
    if (BaseMatches(&BaseSpec, ScratchPath)) {
      // We've found a path that terminates at this base.
      FoundPath = FoundPathThroughBase = true;
      if (isRecordingPaths()) {
        // We have a path. Make a copy of it before moving on.
        Paths.push_back(ScratchPath);
      } else if (!isFindingAmbiguities()) {
        // We found a path and we don't care about ambiguities;
        // return immediately.
        return FoundPath;
      }
    } else if (VisitBase) {
      CXXRecordDecl *BaseRecord
        = cast<CXXRecordDecl>(BaseSpec.getType()->castAs<RecordType>()
                                ->getDecl());
      if (lookupInBases(Context, BaseRecord, BaseMatches)) {
        // C++ [class.member.lookup]p2:
        //   A member name f in one sub-object B hides a member name f in
        //   a sub-object A if A is a base class sub-object of B. Any
        //   declarations that are so hidden are eliminated from
        //   consideration.
        
        // There is a path to a base class that meets the criteria. If we're 
        // not collecting paths or finding ambiguities, we're done.
        FoundPath = FoundPathThroughBase = true;
        if (!isFindingAmbiguities())
          return FoundPath;
      }
    }
    
    // Pop this base specifier off the current path (if we're
    // collecting paths).
    if (isRecordingPaths()) {
      ScratchPath.pop_back();
    }

    // If we set a virtual earlier, and this isn't a path, forget it again.
    if (SetVirtual && !FoundPathThroughBase) {
      DetectedVirtual = nullptr;
    }
  }

  // Reset the scratch path access.
  ScratchPath.Access = AccessToHere;
  
  return FoundPath;
}

bool CXXRecordDecl::lookupInBases(BaseMatchesCallback BaseMatches,
                                  CXXBasePaths &Paths) const {
  // If we didn't find anything, report that.
  if (!Paths.lookupInBases(getASTContext(), this, BaseMatches))
    return false;

  // If we're not recording paths or we won't ever find ambiguities,
  // we're done.
  if (!Paths.isRecordingPaths() || !Paths.isFindingAmbiguities())
    return true;
  
  // C++ [class.member.lookup]p6:
  //   When virtual base classes are used, a hidden declaration can be
  //   reached along a path through the sub-object lattice that does
  //   not pass through the hiding declaration. This is not an
  //   ambiguity. The identical use with nonvirtual base classes is an
  //   ambiguity; in that case there is no unique instance of the name
  //   that hides all the others.
  //
  // FIXME: This is an O(N^2) algorithm, but DPG doesn't see an easy
  // way to make it any faster.
  Paths.Paths.remove_if([&Paths](const CXXBasePath &Path) {
    for (const CXXBasePathElement &PE : Path) {
      if (!PE.Base->isVirtual())
        continue;

      CXXRecordDecl *VBase = nullptr;
      if (const RecordType *Record = PE.Base->getType()->getAs<RecordType>())
        VBase = cast<CXXRecordDecl>(Record->getDecl());
      if (!VBase)
        break;

      // The declaration(s) we found along this path were found in a
      // subobject of a virtual base. Check whether this virtual
      // base is a subobject of any other path; if so, then the
      // declaration in this path are hidden by that patch.
      for (const CXXBasePath &HidingP : Paths) {
        CXXRecordDecl *HidingClass = nullptr;
        if (const RecordType *Record =
                HidingP.back().Base->getType()->getAs<RecordType>())
          HidingClass = cast<CXXRecordDecl>(Record->getDecl());
        if (!HidingClass)
          break;

        if (HidingClass->isVirtuallyDerivedFrom(VBase))
          return true;
      }
    }
    return false;
  });

  return true;
}

bool CXXRecordDecl::FindBaseClass(const CXXBaseSpecifier *Specifier, 
                                  CXXBasePath &Path,
                                  const CXXRecordDecl *BaseRecord) {
  assert(BaseRecord->getCanonicalDecl() == BaseRecord &&
         "User data for FindBaseClass is not canonical!");
  return Specifier->getType()->castAs<RecordType>()->getDecl()
            ->getCanonicalDecl() == BaseRecord;
}

bool CXXRecordDecl::FindVirtualBaseClass(const CXXBaseSpecifier *Specifier, 
                                         CXXBasePath &Path,
                                         const CXXRecordDecl *BaseRecord) {
  assert(BaseRecord->getCanonicalDecl() == BaseRecord &&
         "User data for FindBaseClass is not canonical!");
  return Specifier->isVirtual() &&
         Specifier->getType()->castAs<RecordType>()->getDecl()
            ->getCanonicalDecl() == BaseRecord;
}

bool CXXRecordDecl::FindTagMember(const CXXBaseSpecifier *Specifier, 
                                  CXXBasePath &Path,
                                  DeclarationName Name) {
  RecordDecl *BaseRecord =
    Specifier->getType()->castAs<RecordType>()->getDecl();

  for (Path.Decls = BaseRecord->lookup(Name);
       !Path.Decls.empty();
       Path.Decls = Path.Decls.slice(1)) {
    if (Path.Decls.front()->isInIdentifierNamespace(IDNS_Tag))
      return true;
  }

  return false;
}

bool CXXRecordDecl::FindOrdinaryMember(const CXXBaseSpecifier *Specifier, 
                                       CXXBasePath &Path,
                                       DeclarationName Name) {
  RecordDecl *BaseRecord =
    Specifier->getType()->castAs<RecordType>()->getDecl();
  
  const unsigned IDNS = IDNS_Ordinary | IDNS_Tag | IDNS_Member;
  for (Path.Decls = BaseRecord->lookup(Name);
       !Path.Decls.empty();
       Path.Decls = Path.Decls.slice(1)) {
    if (Path.Decls.front()->isInIdentifierNamespace(IDNS))
      return true;
  }
  
  return false;
}

bool CXXRecordDecl::FindOMPReductionMember(const CXXBaseSpecifier *Specifier,
                                           CXXBasePath &Path,
                                           DeclarationName Name) {
  RecordDecl *BaseRecord =
      Specifier->getType()->castAs<RecordType>()->getDecl();

  for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
       Path.Decls = Path.Decls.slice(1)) {
    if (Path.Decls.front()->isInIdentifierNamespace(IDNS_OMPReduction))
      return true;
  }

  return false;
}

bool CXXRecordDecl::
FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier, 
                              CXXBasePath &Path,
                              DeclarationName Name) {
  RecordDecl *BaseRecord =
    Specifier->getType()->castAs<RecordType>()->getDecl();
  
  for (Path.Decls = BaseRecord->lookup(Name);
       !Path.Decls.empty();
       Path.Decls = Path.Decls.slice(1)) {
    // FIXME: Refactor the "is it a nested-name-specifier?" check
    if (isa<TypedefNameDecl>(Path.Decls.front()) ||
        Path.Decls.front()->isInIdentifierNamespace(IDNS_Tag))
      return true;
  }
  
  return false;
}

void OverridingMethods::add(unsigned OverriddenSubobject, 
                            UniqueVirtualMethod Overriding) {
  SmallVectorImpl<UniqueVirtualMethod> &SubobjectOverrides
    = Overrides[OverriddenSubobject];
  if (std::find(SubobjectOverrides.begin(), SubobjectOverrides.end(), 
                Overriding) == SubobjectOverrides.end())
    SubobjectOverrides.push_back(Overriding);
}

void OverridingMethods::add(const OverridingMethods &Other) {
  for (const_iterator I = Other.begin(), IE = Other.end(); I != IE; ++I) {
    for (overriding_const_iterator M = I->second.begin(), 
                                MEnd = I->second.end();
         M != MEnd; 
         ++M)
      add(I->first, *M);
  }
}

void OverridingMethods::replaceAll(UniqueVirtualMethod Overriding) {
  for (iterator I = begin(), IEnd = end(); I != IEnd; ++I) {
    I->second.clear();
    I->second.push_back(Overriding);
  }
}


namespace {
  class FinalOverriderCollector {
    /// \brief The number of subobjects of a given class type that
    /// occur within the class hierarchy.
    llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCount;

    /// \brief Overriders for each virtual base subobject.
    llvm::DenseMap<const CXXRecordDecl *, CXXFinalOverriderMap *> VirtualOverriders;

    CXXFinalOverriderMap FinalOverriders;

  public:
    ~FinalOverriderCollector();

    void Collect(const CXXRecordDecl *RD, bool VirtualBase,
                 const CXXRecordDecl *InVirtualSubobject,
                 CXXFinalOverriderMap &Overriders);
  };
}

void FinalOverriderCollector::Collect(const CXXRecordDecl *RD, 
                                      bool VirtualBase,
                                      const CXXRecordDecl *InVirtualSubobject,
                                      CXXFinalOverriderMap &Overriders) {
  unsigned SubobjectNumber = 0;
  if (!VirtualBase)
    SubobjectNumber
      = ++SubobjectCount[cast<CXXRecordDecl>(RD->getCanonicalDecl())];

  for (const auto &Base : RD->bases()) {
    if (const RecordType *RT = Base.getType()->getAs<RecordType>()) {
      const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
      if (!BaseDecl->isPolymorphic())
        continue;

      if (Overriders.empty() && !Base.isVirtual()) {
        // There are no other overriders of virtual member functions,
        // so let the base class fill in our overriders for us.
        Collect(BaseDecl, false, InVirtualSubobject, Overriders);
        continue;
      }

      // Collect all of the overridders from the base class subobject
      // and merge them into the set of overridders for this class.
      // For virtual base classes, populate or use the cached virtual
      // overrides so that we do not walk the virtual base class (and
      // its base classes) more than once.
      CXXFinalOverriderMap ComputedBaseOverriders;
      CXXFinalOverriderMap *BaseOverriders = &ComputedBaseOverriders;
      if (Base.isVirtual()) {
        CXXFinalOverriderMap *&MyVirtualOverriders = VirtualOverriders[BaseDecl];
        BaseOverriders = MyVirtualOverriders;
        if (!MyVirtualOverriders) {
          MyVirtualOverriders = new CXXFinalOverriderMap;

          // Collect may cause VirtualOverriders to reallocate, invalidating the
          // MyVirtualOverriders reference. Set BaseOverriders to the right
          // value now.
          BaseOverriders = MyVirtualOverriders;

          Collect(BaseDecl, true, BaseDecl, *MyVirtualOverriders);
        }
      } else
        Collect(BaseDecl, false, InVirtualSubobject, ComputedBaseOverriders);

      // Merge the overriders from this base class into our own set of
      // overriders.
      for (CXXFinalOverriderMap::iterator OM = BaseOverriders->begin(), 
                               OMEnd = BaseOverriders->end();
           OM != OMEnd;
           ++OM) {
        const CXXMethodDecl *CanonOM
          = cast<CXXMethodDecl>(OM->first->getCanonicalDecl());
        Overriders[CanonOM].add(OM->second);
      }
    }
  }

  for (auto *M : RD->methods()) {
    // We only care about virtual methods.
    if (!M->isVirtual())
      continue;

    CXXMethodDecl *CanonM = cast<CXXMethodDecl>(M->getCanonicalDecl());

    if (CanonM->begin_overridden_methods()
                                       == CanonM->end_overridden_methods()) {
      // This is a new virtual function that does not override any
      // other virtual function. Add it to the map of virtual
      // functions for which we are tracking overridders. 

      // C++ [class.virtual]p2:
      //   For convenience we say that any virtual function overrides itself.
      Overriders[CanonM].add(SubobjectNumber,
                             UniqueVirtualMethod(CanonM, SubobjectNumber,
                                                 InVirtualSubobject));
      continue;
    }

    // This virtual method overrides other virtual methods, so it does
    // not add any new slots into the set of overriders. Instead, we
    // replace entries in the set of overriders with the new
    // overrider. To do so, we dig down to the original virtual
    // functions using data recursion and update all of the methods it
    // overrides.
    typedef llvm::iterator_range<CXXMethodDecl::method_iterator>
        OverriddenMethods;
    SmallVector<OverriddenMethods, 4> Stack;
    Stack.push_back(llvm::make_range(CanonM->begin_overridden_methods(),
                                     CanonM->end_overridden_methods()));
    while (!Stack.empty()) {
      for (const CXXMethodDecl *OM : Stack.pop_back_val()) {
        const CXXMethodDecl *CanonOM = OM->getCanonicalDecl();

        // C++ [class.virtual]p2:
        //   A virtual member function C::vf of a class object S is
        //   a final overrider unless the most derived class (1.8)
        //   of which S is a base class subobject (if any) declares
        //   or inherits another member function that overrides vf.
        //
        // Treating this object like the most derived class, we
        // replace any overrides from base classes with this
        // overriding virtual function.
        Overriders[CanonOM].replaceAll(
                               UniqueVirtualMethod(CanonM, SubobjectNumber,
                                                   InVirtualSubobject));

        if (CanonOM->begin_overridden_methods()
                                       == CanonOM->end_overridden_methods())
          continue;

        // Continue recursion to the methods that this virtual method
        // overrides.
        Stack.push_back(llvm::make_range(CanonOM->begin_overridden_methods(),
                                         CanonOM->end_overridden_methods()));
      }
    }

    // C++ [class.virtual]p2:
    //   For convenience we say that any virtual function overrides itself.
    Overriders[CanonM].add(SubobjectNumber,
                           UniqueVirtualMethod(CanonM, SubobjectNumber,
                                               InVirtualSubobject));
  }
}

FinalOverriderCollector::~FinalOverriderCollector() {
  for (llvm::DenseMap<const CXXRecordDecl *, CXXFinalOverriderMap *>::iterator
         VO = VirtualOverriders.begin(), VOEnd = VirtualOverriders.end();
       VO != VOEnd; 
       ++VO)
    delete VO->second;
}

void 
CXXRecordDecl::getFinalOverriders(CXXFinalOverriderMap &FinalOverriders) const {
  FinalOverriderCollector Collector;
  Collector.Collect(this, false, nullptr, FinalOverriders);

  // Weed out any final overriders that come from virtual base class
  // subobjects that were hidden by other subobjects along any path.
  // This is the final-overrider variant of C++ [class.member.lookup]p10.
  for (auto &OM : FinalOverriders) {
    for (auto &SO : OM.second) {
      SmallVectorImpl<UniqueVirtualMethod> &Overriding = SO.second;
      if (Overriding.size() < 2)
        continue;

      auto IsHidden = [&Overriding](const UniqueVirtualMethod &M) {
        if (!M.InVirtualSubobject)
          return false;

        // We have an overriding method in a virtual base class
        // subobject (or non-virtual base class subobject thereof);
        // determine whether there exists an other overriding method
        // in a base class subobject that hides the virtual base class
        // subobject.
        for (const UniqueVirtualMethod &OP : Overriding)
          if (&M != &OP &&
              OP.Method->getParent()->isVirtuallyDerivedFrom(
                  M.InVirtualSubobject))
            return true;
        return false;
      };

      Overriding.erase(
          std::remove_if(Overriding.begin(), Overriding.end(), IsHidden),
          Overriding.end());
    }
  }
}

static void 
AddIndirectPrimaryBases(const CXXRecordDecl *RD, ASTContext &Context,
                        CXXIndirectPrimaryBaseSet& Bases) {
  // If the record has a virtual primary base class, add it to our set.
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
  if (Layout.isPrimaryBaseVirtual())
    Bases.insert(Layout.getPrimaryBase());

  for (const auto &I : RD->bases()) {
    assert(!I.getType()->isDependentType() &&
           "Cannot get indirect primary bases for class with dependent bases.");

    const CXXRecordDecl *BaseDecl =
      cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());

    // Only bases with virtual bases participate in computing the
    // indirect primary virtual base classes.
    if (BaseDecl->getNumVBases())
      AddIndirectPrimaryBases(BaseDecl, Context, Bases);
  }

}

void 
CXXRecordDecl::getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const {
  ASTContext &Context = getASTContext();

  if (!getNumVBases())
    return;

  for (const auto &I : bases()) {
    assert(!I.getType()->isDependentType() &&
           "Cannot get indirect primary bases for class with dependent bases.");

    const CXXRecordDecl *BaseDecl =
      cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());

    // Only bases with virtual bases participate in computing the
    // indirect primary virtual base classes.
    if (BaseDecl->getNumVBases())
      AddIndirectPrimaryBases(BaseDecl, Context, Bases);
  }
}