aboutsummaryrefslogtreecommitdiff
path: root/lib/AST/DeclCXX.cpp
blob: 457f4c85a04711452ff16e13b50dc211476dcd5e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the C++ related Decl classes.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/IdentifierTable.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace clang;

//===----------------------------------------------------------------------===//
// Decl Allocation/Deallocation Method Implementations
//===----------------------------------------------------------------------===//

CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
                             SourceLocation L, IdentifierInfo *Id,
                             CXXRecordDecl *PrevDecl,
                             SourceLocation TKL)
  : RecordDecl(K, TK, DC, L, Id, PrevDecl, TKL),
    UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false),
    UserDeclaredCopyAssignment(false), UserDeclaredDestructor(false),
    Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
    Abstract(false), HasTrivialConstructor(true),
    HasTrivialCopyConstructor(true), HasTrivialCopyAssignment(true),
    HasTrivialDestructor(true), ComputedVisibleConversions(false),
    Bases(0), NumBases(0), VBases(0), NumVBases(0),
    Conversions(DC, DeclarationName()),
    VisibleConversions(DC, DeclarationName()),
    TemplateOrInstantiation() { }

CXXRecordDecl *CXXRecordDecl::Create(ASTContext &C, TagKind TK, DeclContext *DC,
                                     SourceLocation L, IdentifierInfo *Id,
                                     SourceLocation TKL,
                                     CXXRecordDecl* PrevDecl,
                                     bool DelayTypeCreation) {
  CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, L, Id,
                                           PrevDecl, TKL);

  // FIXME: DelayTypeCreation seems like such a hack
  if (!DelayTypeCreation)
    C.getTypeDeclType(R, PrevDecl);
  return R;
}

CXXRecordDecl::~CXXRecordDecl() {
}

void CXXRecordDecl::Destroy(ASTContext &C) {
  C.Deallocate(Bases);
  C.Deallocate(VBases);
  this->RecordDecl::Destroy(C);
}

void
CXXRecordDecl::setBases(ASTContext &C,
                        CXXBaseSpecifier const * const *Bases,
                        unsigned NumBases) {
  // C++ [dcl.init.aggr]p1:
  //   An aggregate is an array or a class (clause 9) with [...]
  //   no base classes [...].
  Aggregate = false;

  if (this->Bases)
    C.Deallocate(this->Bases);

  int vbaseCount = 0;
  llvm::SmallVector<const CXXBaseSpecifier*, 8> UniqueVbases;
  bool hasDirectVirtualBase = false;

  this->Bases = new(C) CXXBaseSpecifier [NumBases];
  this->NumBases = NumBases;
  for (unsigned i = 0; i < NumBases; ++i) {
    this->Bases[i] = *Bases[i];
    // Keep track of inherited vbases for this base class.
    const CXXBaseSpecifier *Base = Bases[i];
    QualType BaseType = Base->getType();
    // Skip template types.
    // FIXME. This means that this list must be rebuilt during template
    // instantiation.
    if (BaseType->isDependentType())
      continue;
    CXXRecordDecl *BaseClassDecl
      = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
    if (Base->isVirtual())
      hasDirectVirtualBase = true;
    for (CXXRecordDecl::base_class_iterator VBase =
          BaseClassDecl->vbases_begin(),
         E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
      // Add this vbase to the array of vbases for current class if it is
      // not already in the list.
      // FIXME. Note that we do a linear search as number of such classes are
      // very few.
      int i;
      for (i = 0; i < vbaseCount; ++i)
        if (UniqueVbases[i]->getType() == VBase->getType())
          break;
      if (i == vbaseCount) {
        UniqueVbases.push_back(VBase);
        ++vbaseCount;
      }
    }
  }
  if (hasDirectVirtualBase) {
    // Iterate one more time through the direct bases and add the virtual
    // base to the list of vritual bases for current class.
    for (unsigned i = 0; i < NumBases; ++i) {
      const CXXBaseSpecifier *VBase = Bases[i];
      if (!VBase->isVirtual())
        continue;
      int j;
      for (j = 0; j < vbaseCount; ++j)
        if (UniqueVbases[j]->getType() == VBase->getType())
          break;
      if (j == vbaseCount) {
        UniqueVbases.push_back(VBase);
        ++vbaseCount;
      }
    }
  }
  if (vbaseCount > 0) {
    // build AST for inhireted, direct or indirect, virtual bases.
    this->VBases = new (C) CXXBaseSpecifier [vbaseCount];
    this->NumVBases = vbaseCount;
    for (int i = 0; i < vbaseCount; i++) {
      QualType QT = UniqueVbases[i]->getType();
      CXXRecordDecl *VBaseClassDecl
        = cast<CXXRecordDecl>(QT->getAs<RecordType>()->getDecl());
      this->VBases[i] =
        CXXBaseSpecifier(VBaseClassDecl->getSourceRange(), true,
                         VBaseClassDecl->getTagKind() == RecordDecl::TK_class,
                         UniqueVbases[i]->getAccessSpecifier(), QT);
    }
  }
}

bool CXXRecordDecl::hasConstCopyConstructor(ASTContext &Context) const {
  return getCopyConstructor(Context, Qualifiers::Const) != 0;
}

CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(ASTContext &Context,
                                                      unsigned TypeQuals) const{
  QualType ClassType
    = Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this));
  DeclarationName ConstructorName
    = Context.DeclarationNames.getCXXConstructorName(
                                          Context.getCanonicalType(ClassType));
  unsigned FoundTQs;
  DeclContext::lookup_const_iterator Con, ConEnd;
  for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName);
       Con != ConEnd; ++Con) {
    // C++ [class.copy]p2:
    //   A non-template constructor for class X is a copy constructor if [...]
    if (isa<FunctionTemplateDecl>(*Con))
      continue;

    if (cast<CXXConstructorDecl>(*Con)->isCopyConstructor(Context,
                                                          FoundTQs)) {
      if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) ||
          (!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const)))
        return cast<CXXConstructorDecl>(*Con);

    }
  }
  return 0;
}

bool CXXRecordDecl::hasConstCopyAssignment(ASTContext &Context,
                                           const CXXMethodDecl *& MD) const {
  QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
    const_cast<CXXRecordDecl*>(this)));
  DeclarationName OpName =Context.DeclarationNames.getCXXOperatorName(OO_Equal);

  DeclContext::lookup_const_iterator Op, OpEnd;
  for (llvm::tie(Op, OpEnd) = this->lookup(OpName);
       Op != OpEnd; ++Op) {
    // C++ [class.copy]p9:
    //   A user-declared copy assignment operator is a non-static non-template
    //   member function of class X with exactly one parameter of type X, X&,
    //   const X&, volatile X& or const volatile X&.
    const CXXMethodDecl* Method = cast<CXXMethodDecl>(*Op);
    if (Method->isStatic())
      continue;
    if (Method->getPrimaryTemplate())
      continue;
    const FunctionProtoType *FnType =
      Method->getType()->getAs<FunctionProtoType>();
    assert(FnType && "Overloaded operator has no prototype.");
    // Don't assert on this; an invalid decl might have been left in the AST.
    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
      continue;
    bool AcceptsConst = true;
    QualType ArgType = FnType->getArgType(0);
    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) {
      ArgType = Ref->getPointeeType();
      // Is it a non-const lvalue reference?
      if (!ArgType.isConstQualified())
        AcceptsConst = false;
    }
    if (Context.getCanonicalType(ArgType).getUnqualifiedType() != ClassType)
      continue;
    MD = Method;
    // We have a single argument of type cv X or cv X&, i.e. we've found the
    // copy assignment operator. Return whether it accepts const arguments.
    return AcceptsConst;
  }
  assert(isInvalidDecl() &&
         "No copy assignment operator declared in valid code.");
  return false;
}

void
CXXRecordDecl::addedConstructor(ASTContext &Context,
                                CXXConstructorDecl *ConDecl) {
  assert(!ConDecl->isImplicit() && "addedConstructor - not for implicit decl");
  // Note that we have a user-declared constructor.
  UserDeclaredConstructor = true;

  // C++ [dcl.init.aggr]p1:
  //   An aggregate is an array or a class (clause 9) with no
  //   user-declared constructors (12.1) [...].
  Aggregate = false;

  // C++ [class]p4:
  //   A POD-struct is an aggregate class [...]
  PlainOldData = false;

  // C++ [class.ctor]p5:
  //   A constructor is trivial if it is an implicitly-declared default
  //   constructor.
  // FIXME: C++0x: don't do this for "= default" default constructors.
  HasTrivialConstructor = false;

  // Note when we have a user-declared copy constructor, which will
  // suppress the implicit declaration of a copy constructor.
  if (ConDecl->isCopyConstructor(Context)) {
    UserDeclaredCopyConstructor = true;

    // C++ [class.copy]p6:
    //   A copy constructor is trivial if it is implicitly declared.
    // FIXME: C++0x: don't do this for "= default" copy constructors.
    HasTrivialCopyConstructor = false;
  }
}

void CXXRecordDecl::addedAssignmentOperator(ASTContext &Context,
                                            CXXMethodDecl *OpDecl) {
  // We're interested specifically in copy assignment operators.
  const FunctionProtoType *FnType = OpDecl->getType()->getAs<FunctionProtoType>();
  assert(FnType && "Overloaded operator has no proto function type.");
  assert(FnType->getNumArgs() == 1 && !FnType->isVariadic());
  
  // Copy assignment operators must be non-templates.
  if (OpDecl->getPrimaryTemplate() || OpDecl->getDescribedFunctionTemplate())
    return;
  
  QualType ArgType = FnType->getArgType(0);
  if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>())
    ArgType = Ref->getPointeeType();

  ArgType = ArgType.getUnqualifiedType();
  QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
    const_cast<CXXRecordDecl*>(this)));

  if (ClassType != Context.getCanonicalType(ArgType))
    return;

  // This is a copy assignment operator.
  // Suppress the implicit declaration of a copy constructor.
  UserDeclaredCopyAssignment = true;

  // C++ [class.copy]p11:
  //   A copy assignment operator is trivial if it is implicitly declared.
  // FIXME: C++0x: don't do this for "= default" copy operators.
  HasTrivialCopyAssignment = false;

  // C++ [class]p4:
  //   A POD-struct is an aggregate class that [...] has no user-defined copy
  //   assignment operator [...].
  PlainOldData = false;
}

void
CXXRecordDecl::collectConversionFunctions(
                        llvm::SmallPtrSet<CanQualType, 8>& ConversionsTypeSet) 
{
  OverloadedFunctionDecl *TopConversions = getConversionFunctions();
  for (OverloadedFunctionDecl::function_iterator
       TFunc = TopConversions->function_begin(),
       TFuncEnd = TopConversions->function_end();
       TFunc != TFuncEnd; ++TFunc) {
    NamedDecl *TopConv = TFunc->get();
    CanQualType TConvType;
    if (FunctionTemplateDecl *TConversionTemplate =
        dyn_cast<FunctionTemplateDecl>(TopConv))
      TConvType = 
        getASTContext().getCanonicalType(
                    TConversionTemplate->getTemplatedDecl()->getResultType());
    else 
      TConvType = 
        getASTContext().getCanonicalType(
                      cast<CXXConversionDecl>(TopConv)->getConversionType());
    ConversionsTypeSet.insert(TConvType);
  }  
}

/// getNestedVisibleConversionFunctions - imports unique conversion 
/// functions from base classes into the visible conversion function
/// list of the class 'RD'. This is a private helper method.
/// TopConversionsTypeSet is the set of conversion functions of the class
/// we are interested in. HiddenConversionTypes is set of conversion functions
/// of the immediate derived class which  hides the conversion functions found 
/// in current class.
void
CXXRecordDecl::getNestedVisibleConversionFunctions(CXXRecordDecl *RD,
                const llvm::SmallPtrSet<CanQualType, 8> &TopConversionsTypeSet,                               
                const llvm::SmallPtrSet<CanQualType, 8> &HiddenConversionTypes) 
{
  bool inTopClass = (RD == this);
  QualType ClassType = getASTContext().getTypeDeclType(this);
  if (const RecordType *Record = ClassType->getAs<RecordType>()) {
    OverloadedFunctionDecl *Conversions
      = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
    
    for (OverloadedFunctionDecl::function_iterator
         Func = Conversions->function_begin(),
         FuncEnd = Conversions->function_end();
         Func != FuncEnd; ++Func) {
      NamedDecl *Conv = Func->get();
      // Only those conversions not exact match of conversions in current
      // class are candidateconversion routines.
      CanQualType ConvType;
      if (FunctionTemplateDecl *ConversionTemplate = 
            dyn_cast<FunctionTemplateDecl>(Conv))
        ConvType = 
          getASTContext().getCanonicalType(
                      ConversionTemplate->getTemplatedDecl()->getResultType());
      else
        ConvType = 
          getASTContext().getCanonicalType(
                          cast<CXXConversionDecl>(Conv)->getConversionType());
      // We only add conversion functions found in the base class if they
      // are not hidden by those found in HiddenConversionTypes which are
      // the conversion functions in its derived class.
      if (inTopClass || 
          (!TopConversionsTypeSet.count(ConvType) && 
           !HiddenConversionTypes.count(ConvType)) ) {
        if (FunctionTemplateDecl *ConversionTemplate =
              dyn_cast<FunctionTemplateDecl>(Conv))
          RD->addVisibleConversionFunction(ConversionTemplate);
        else
          RD->addVisibleConversionFunction(cast<CXXConversionDecl>(Conv));
      }
    }
  }
  
  if (getNumBases() == 0 && getNumVBases() == 0)
    return;
  
  llvm::SmallPtrSet<CanQualType, 8> ConversionFunctions;
  if (!inTopClass)
    collectConversionFunctions(ConversionFunctions);
  
  for (CXXRecordDecl::base_class_iterator VBase = vbases_begin(),
       E = vbases_end(); VBase != E; ++VBase) {
    CXXRecordDecl *VBaseClassDecl
      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
    VBaseClassDecl->getNestedVisibleConversionFunctions(RD,
                  TopConversionsTypeSet,
                  (inTopClass ? TopConversionsTypeSet : ConversionFunctions));
      
  }
  for (CXXRecordDecl::base_class_iterator Base = bases_begin(),
       E = bases_end(); Base != E; ++Base) {
    if (Base->isVirtual())
      continue;
    CXXRecordDecl *BaseClassDecl
      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
    
    BaseClassDecl->getNestedVisibleConversionFunctions(RD,
                  TopConversionsTypeSet,
                  (inTopClass ? TopConversionsTypeSet : ConversionFunctions));
    
  }
}

/// getVisibleConversionFunctions - get all conversion functions visible
/// in current class; including conversion function templates.
OverloadedFunctionDecl *
CXXRecordDecl::getVisibleConversionFunctions() {
  // If root class, all conversions are visible.
  if (bases_begin() == bases_end())
    return &Conversions;
  // If visible conversion list is already evaluated, return it.
  if (ComputedVisibleConversions)
    return &VisibleConversions;
  llvm::SmallPtrSet<CanQualType, 8> TopConversionsTypeSet;
  collectConversionFunctions(TopConversionsTypeSet);
  getNestedVisibleConversionFunctions(this, TopConversionsTypeSet,
                                      TopConversionsTypeSet);
  ComputedVisibleConversions = true;
  return &VisibleConversions;
}

void CXXRecordDecl::addVisibleConversionFunction(
                                          CXXConversionDecl *ConvDecl) {
  assert(!ConvDecl->getDescribedFunctionTemplate() &&
         "Conversion function templates should cast to FunctionTemplateDecl.");
  VisibleConversions.addOverload(ConvDecl);
}

void CXXRecordDecl::addVisibleConversionFunction(
                                          FunctionTemplateDecl *ConvDecl) {
  assert(isa<CXXConversionDecl>(ConvDecl->getTemplatedDecl()) &&
         "Function template is not a conversion function template");
  VisibleConversions.addOverload(ConvDecl);
}

void CXXRecordDecl::addConversionFunction(CXXConversionDecl *ConvDecl) {
  assert(!ConvDecl->getDescribedFunctionTemplate() &&
         "Conversion function templates should cast to FunctionTemplateDecl.");
  Conversions.addOverload(ConvDecl);
}

void CXXRecordDecl::addConversionFunction(FunctionTemplateDecl *ConvDecl) {
  assert(isa<CXXConversionDecl>(ConvDecl->getTemplatedDecl()) &&
         "Function template is not a conversion function template");
  Conversions.addOverload(ConvDecl);
}

CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
    return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
  
  return 0;
}

MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
  return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
}

void 
CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
                                             TemplateSpecializationKind TSK) {
  assert(TemplateOrInstantiation.isNull() && 
         "Previous template or instantiation?");
  assert(!isa<ClassTemplateSpecializationDecl>(this));
  TemplateOrInstantiation 
    = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
}

TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() {
  if (ClassTemplateSpecializationDecl *Spec
        = dyn_cast<ClassTemplateSpecializationDecl>(this))
    return Spec->getSpecializationKind();
  
  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
    return MSInfo->getTemplateSpecializationKind();
  
  return TSK_Undeclared;
}

void 
CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
  if (ClassTemplateSpecializationDecl *Spec
      = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
    Spec->setSpecializationKind(TSK);
    return;
  }
  
  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
    MSInfo->setTemplateSpecializationKind(TSK);
    return;
  }
  
  assert(false && "Not a class template or member class specialization");
}

CXXConstructorDecl *
CXXRecordDecl::getDefaultConstructor(ASTContext &Context) {
  QualType ClassType = Context.getTypeDeclType(this);
  DeclarationName ConstructorName
    = Context.DeclarationNames.getCXXConstructorName(
                      Context.getCanonicalType(ClassType.getUnqualifiedType()));

  DeclContext::lookup_const_iterator Con, ConEnd;
  for (llvm::tie(Con, ConEnd) = lookup(ConstructorName);
       Con != ConEnd; ++Con) {
    // FIXME: In C++0x, a constructor template can be a default constructor.
    if (isa<FunctionTemplateDecl>(*Con))
      continue;

    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
    if (Constructor->isDefaultConstructor())
      return Constructor;
  }
  return 0;
}

const CXXDestructorDecl *
CXXRecordDecl::getDestructor(ASTContext &Context) {
  QualType ClassType = Context.getTypeDeclType(this);

  DeclarationName Name
    = Context.DeclarationNames.getCXXDestructorName(
                                          Context.getCanonicalType(ClassType));

  DeclContext::lookup_iterator I, E;
  llvm::tie(I, E) = lookup(Name);
  assert(I != E && "Did not find a destructor!");

  const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I);
  assert(++I == E && "Found more than one destructor!");

  return Dtor;
}

CXXMethodDecl *
CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
                      SourceLocation L, DeclarationName N,
                      QualType T, DeclaratorInfo *DInfo,
                      bool isStatic, bool isInline) {
  return new (C) CXXMethodDecl(CXXMethod, RD, L, N, T, DInfo,
                               isStatic, isInline);
}

bool CXXMethodDecl::isUsualDeallocationFunction() const {
  if (getOverloadedOperator() != OO_Delete &&
      getOverloadedOperator() != OO_Array_Delete)
    return false;
  
  // C++ [basic.stc.dynamic.deallocation]p2:
  //   If a class T has a member deallocation function named operator delete 
  //   with exactly one parameter, then that function is a usual (non-placement)
  //   deallocation function. [...]
  if (getNumParams() == 1)
    return true;
  
  // C++ [basic.stc.dynamic.deallocation]p2:
  //   [...] If class T does not declare such an operator delete but does 
  //   declare a member deallocation function named operator delete with 
  //   exactly two parameters, the second of which has type std::size_t (18.1),
  //   then this function is a usual deallocation function.
  ASTContext &Context = getASTContext();
  if (getNumParams() != 2 ||
      !Context.hasSameType(getParamDecl(1)->getType(), Context.getSizeType()))
    return false;
                 
  // This function is a usual deallocation function if there are no 
  // single-parameter deallocation functions of the same kind.
  for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
       R.first != R.second; ++R.first) {
    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first))
      if (FD->getNumParams() == 1)
        return false;
  }
  
  return true;
}

typedef llvm::DenseMap<const CXXMethodDecl*,
                       std::vector<const CXXMethodDecl *> *>
                       OverriddenMethodsMapTy;

// FIXME: We hate static data.  This doesn't survive PCH saving/loading, and
// the vtable building code uses it at CG time.
static OverriddenMethodsMapTy *OverriddenMethods = 0;

void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
  // FIXME: The CXXMethodDecl dtor needs to remove and free the entry.

  if (!OverriddenMethods)
    OverriddenMethods = new OverriddenMethodsMapTy();

  std::vector<const CXXMethodDecl *> *&Methods = (*OverriddenMethods)[this];
  if (!Methods)
    Methods = new std::vector<const CXXMethodDecl *>;

  Methods->push_back(MD);
}

CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
  if (!OverriddenMethods)
    return 0;

  OverriddenMethodsMapTy::iterator it = OverriddenMethods->find(this);
  if (it == OverriddenMethods->end() || it->second->empty())
    return 0;

  return &(*it->second)[0];
}

CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
  if (!OverriddenMethods)
    return 0;

  OverriddenMethodsMapTy::iterator it = OverriddenMethods->find(this);
  if (it == OverriddenMethods->end() || it->second->empty())
    return 0;

  return &(*it->second)[0] + it->second->size();
}

QualType CXXMethodDecl::getThisType(ASTContext &C) const {
  // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
  // If the member function is declared const, the type of this is const X*,
  // if the member function is declared volatile, the type of this is
  // volatile X*, and if the member function is declared const volatile,
  // the type of this is const volatile X*.

  assert(isInstance() && "No 'this' for static methods!");

  QualType ClassTy;
  if (ClassTemplateDecl *TD = getParent()->getDescribedClassTemplate())
    ClassTy = TD->getInjectedClassNameType(C);
  else
    ClassTy = C.getTagDeclType(getParent());
  ClassTy = C.getQualifiedType(ClassTy,
                               Qualifiers::fromCVRMask(getTypeQualifiers()));
  return C.getPointerType(ClassTy);
}

CXXBaseOrMemberInitializer::
CXXBaseOrMemberInitializer(QualType BaseType, Expr **Args, unsigned NumArgs,
                           CXXConstructorDecl *C,
                           SourceLocation L, SourceLocation R)
  : Args(0), NumArgs(0), CtorOrAnonUnion(), IdLoc(L), RParenLoc(R) {
  BaseOrMember = reinterpret_cast<uintptr_t>(BaseType.getTypePtr());
  assert((BaseOrMember & 0x01) == 0 && "Invalid base class type pointer");
  BaseOrMember |= 0x01;

  if (NumArgs > 0) {
    this->NumArgs = NumArgs;
    // FIXME. Allocation via Context
    this->Args = new Stmt*[NumArgs];
    for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
      this->Args[Idx] = Args[Idx];
  }
  CtorOrAnonUnion = C;
}

CXXBaseOrMemberInitializer::
CXXBaseOrMemberInitializer(FieldDecl *Member, Expr **Args, unsigned NumArgs,
                           CXXConstructorDecl *C,
                           SourceLocation L, SourceLocation R)
  : Args(0), NumArgs(0), CtorOrAnonUnion(), IdLoc(L), RParenLoc(R) {
  BaseOrMember = reinterpret_cast<uintptr_t>(Member);
  assert((BaseOrMember & 0x01) == 0 && "Invalid member pointer");

  if (NumArgs > 0) {
    this->NumArgs = NumArgs;
    this->Args = new Stmt*[NumArgs];
    for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
      this->Args[Idx] = Args[Idx];
  }
  CtorOrAnonUnion = C;
}

CXXBaseOrMemberInitializer::~CXXBaseOrMemberInitializer() {
  delete [] Args;
}

CXXConstructorDecl *
CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
                           SourceLocation L, DeclarationName N,
                           QualType T, DeclaratorInfo *DInfo,
                           bool isExplicit,
                           bool isInline, bool isImplicitlyDeclared) {
  assert(N.getNameKind() == DeclarationName::CXXConstructorName &&
         "Name must refer to a constructor");
  return new (C) CXXConstructorDecl(RD, L, N, T, DInfo, isExplicit, isInline,
                                      isImplicitlyDeclared);
}

bool CXXConstructorDecl::isDefaultConstructor() const {
  // C++ [class.ctor]p5:
  //   A default constructor for a class X is a constructor of class
  //   X that can be called without an argument.
  return (getNumParams() == 0) ||
         (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
}

bool
CXXConstructorDecl::isCopyConstructor(ASTContext &Context,
                                      unsigned &TypeQuals) const {
  // C++ [class.copy]p2:
  //   A non-template constructor for class X is a copy constructor
  //   if its first parameter is of type X&, const X&, volatile X& or
  //   const volatile X&, and either there are no other parameters
  //   or else all other parameters have default arguments (8.3.6).
  if ((getNumParams() < 1) ||
      (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
      (getPrimaryTemplate() != 0) ||
      (getDescribedFunctionTemplate() != 0))
    return false;

  const ParmVarDecl *Param = getParamDecl(0);

  // Do we have a reference type? Rvalue references don't count.
  const LValueReferenceType *ParamRefType =
    Param->getType()->getAs<LValueReferenceType>();
  if (!ParamRefType)
    return false;

  // Is it a reference to our class type?
  CanQualType PointeeType
    = Context.getCanonicalType(ParamRefType->getPointeeType());
  CanQualType ClassTy 
    = Context.getCanonicalType(Context.getTagDeclType(getParent()));
  if (PointeeType.getUnqualifiedType() != ClassTy)
    return false;

  // FIXME: other qualifiers?

  // We have a copy constructor.
  TypeQuals = PointeeType.getCVRQualifiers();
  return true;
}

bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
  // C++ [class.conv.ctor]p1:
  //   A constructor declared without the function-specifier explicit
  //   that can be called with a single parameter specifies a
  //   conversion from the type of its first parameter to the type of
  //   its class. Such a constructor is called a converting
  //   constructor.
  if (isExplicit() && !AllowExplicit)
    return false;

  return (getNumParams() == 0 &&
          getType()->getAs<FunctionProtoType>()->isVariadic()) ||
         (getNumParams() == 1) ||
         (getNumParams() > 1 && getParamDecl(1)->hasDefaultArg());
}

CXXDestructorDecl *
CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
                          SourceLocation L, DeclarationName N,
                          QualType T, bool isInline,
                          bool isImplicitlyDeclared) {
  assert(N.getNameKind() == DeclarationName::CXXDestructorName &&
         "Name must refer to a destructor");
  return new (C) CXXDestructorDecl(RD, L, N, T, isInline,
                                   isImplicitlyDeclared);
}

void
CXXDestructorDecl::Destroy(ASTContext& C) {
  C.Deallocate(BaseOrMemberDestructions);
  CXXMethodDecl::Destroy(C);
}

void
CXXConstructorDecl::Destroy(ASTContext& C) {
  C.Deallocate(BaseOrMemberInitializers);
  CXXMethodDecl::Destroy(C);
}

CXXConversionDecl *
CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
                          SourceLocation L, DeclarationName N,
                          QualType T, DeclaratorInfo *DInfo,
                          bool isInline, bool isExplicit) {
  assert(N.getNameKind() == DeclarationName::CXXConversionFunctionName &&
         "Name must refer to a conversion function");
  return new (C) CXXConversionDecl(RD, L, N, T, DInfo, isInline, isExplicit);
}

OverloadedFunctionDecl *
OverloadedFunctionDecl::Create(ASTContext &C, DeclContext *DC,
                               DeclarationName N) {
  return new (C) OverloadedFunctionDecl(DC, N);
}

OverloadIterator::OverloadIterator(NamedDecl *ND) : D(0) {
  if (!ND)
    return;

  if (isa<FunctionDecl>(ND) || isa<FunctionTemplateDecl>(ND))
    D = ND;
  else if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(ND)) {
    if (Ovl->size() != 0) {
      D = ND;
      Iter = Ovl->function_begin();
    }
  }
}

void OverloadedFunctionDecl::addOverload(AnyFunctionDecl F) {
  Functions.push_back(F);
  this->setLocation(F.get()->getLocation());
}

OverloadIterator::reference OverloadIterator::operator*() const {
  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
    return FD;

  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
    return FTD;

  assert(isa<OverloadedFunctionDecl>(D));
  return *Iter;
}

OverloadIterator &OverloadIterator::operator++() {
  if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) {
    D = 0;
    return *this;
  }

  if (++Iter == cast<OverloadedFunctionDecl>(D)->function_end())
    D = 0;

  return *this;
}

bool OverloadIterator::Equals(const OverloadIterator &Other) const {
  if (!D || !Other.D)
    return D == Other.D;

  if (D != Other.D)
    return false;

  return !isa<OverloadedFunctionDecl>(D) || Iter == Other.Iter;
}

FriendDecl *FriendDecl::Create(ASTContext &C, DeclContext *DC,
                               SourceLocation L,
                               FriendUnion Friend,
                               SourceLocation FriendL) {
#ifndef NDEBUG
  if (Friend.is<NamedDecl*>()) {
    NamedDecl *D = Friend.get<NamedDecl*>();
    assert(isa<FunctionDecl>(D) ||
           isa<CXXRecordDecl>(D) ||
           isa<FunctionTemplateDecl>(D) ||
           isa<ClassTemplateDecl>(D));
    assert(D->getFriendObjectKind());
  }
#endif

  return new (C) FriendDecl(DC, L, Friend, FriendL);
}

LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
                                         DeclContext *DC,
                                         SourceLocation L,
                                         LanguageIDs Lang, bool Braces) {
  return new (C) LinkageSpecDecl(DC, L, Lang, Braces);
}

UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
                                               SourceLocation L,
                                               SourceLocation NamespaceLoc,
                                               SourceRange QualifierRange,
                                               NestedNameSpecifier *Qualifier,
                                               SourceLocation IdentLoc,
                                               NamespaceDecl *Used,
                                               DeclContext *CommonAncestor) {
  return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierRange,
                                    Qualifier, IdentLoc, Used, CommonAncestor);
}

NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
                                               SourceLocation L,
                                               SourceLocation AliasLoc,
                                               IdentifierInfo *Alias,
                                               SourceRange QualifierRange,
                                               NestedNameSpecifier *Qualifier,
                                               SourceLocation IdentLoc,
                                               NamedDecl *Namespace) {
  return new (C) NamespaceAliasDecl(DC, L, AliasLoc, Alias, QualifierRange,
                                    Qualifier, IdentLoc, Namespace);
}

UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC,
      SourceLocation L, SourceRange NNR, SourceLocation TargetNL,
      SourceLocation UL, NamedDecl* Target,
      NestedNameSpecifier* TargetNNS, bool IsTypeNameArg) {
  return new (C) UsingDecl(DC, L, NNR, TargetNL, UL, Target,
      TargetNNS, IsTypeNameArg);
}

UnresolvedUsingDecl *UnresolvedUsingDecl::Create(ASTContext &C, DeclContext *DC,
                                                 SourceLocation UsingLoc,
                                                 SourceRange TargetNNR,
                                                 NestedNameSpecifier *TargetNNS,
                                                 SourceLocation TargetNameLoc,
                                                 DeclarationName TargetName,
                                                 bool IsTypeNameArg) {
  return new (C) UnresolvedUsingDecl(DC, UsingLoc, TargetNNR, TargetNNS,
                                     TargetNameLoc, TargetName, IsTypeNameArg);
}

StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
                                           SourceLocation L, Expr *AssertExpr,
                                           StringLiteral *Message) {
  return new (C) StaticAssertDecl(DC, L, AssertExpr, Message);
}

void StaticAssertDecl::Destroy(ASTContext& C) {
  AssertExpr->Destroy(C);
  Message->Destroy(C);
  this->~StaticAssertDecl();
  C.Deallocate((void *)this);
}

StaticAssertDecl::~StaticAssertDecl() {
}

static const char *getAccessName(AccessSpecifier AS) {
  switch (AS) {
    default:
    case AS_none:
      assert("Invalid access specifier!");
      return 0;
    case AS_public:
      return "public";
    case AS_private:
      return "private";
    case AS_protected:
      return "protected";
  }
}

const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
                                           AccessSpecifier AS) {
  return DB << getAccessName(AS);
}