aboutsummaryrefslogtreecommitdiff
path: root/lib/AST/Expr.cpp
blob: a8ea752a4a7ea6c4363dac4b6411d0dee98f7975 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr class and subclasses.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace clang;

//===----------------------------------------------------------------------===//
// Primary Expressions.
//===----------------------------------------------------------------------===//

DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier, 
                         SourceRange QualifierRange,
                         NamedDecl *D, SourceLocation NameLoc,
                         bool HasExplicitTemplateArgumentList,
                         SourceLocation LAngleLoc,
                         const TemplateArgumentLoc *ExplicitTemplateArgs,
                         unsigned NumExplicitTemplateArgs,
                         SourceLocation RAngleLoc,
                         QualType T, bool TD, bool VD)
  : Expr(DeclRefExprClass, T, TD, VD),
    DecoratedD(D,
               (Qualifier? HasQualifierFlag : 0) |
               (HasExplicitTemplateArgumentList? 
                                    HasExplicitTemplateArgumentListFlag : 0)),
    Loc(NameLoc) {
  if (Qualifier) {
    NameQualifier *NQ = getNameQualifier();
    NQ->NNS = Qualifier;
    NQ->Range = QualifierRange;
  }
      
  if (HasExplicitTemplateArgumentList) {
    ExplicitTemplateArgumentList *ETemplateArgs
      = getExplicitTemplateArgumentList();
    ETemplateArgs->LAngleLoc = LAngleLoc;
    ETemplateArgs->RAngleLoc = RAngleLoc;
    ETemplateArgs->NumTemplateArgs = NumExplicitTemplateArgs;
    
    TemplateArgumentLoc *TemplateArgs = ETemplateArgs->getTemplateArgs();
    for (unsigned I = 0; I < NumExplicitTemplateArgs; ++I)
      new (TemplateArgs + I) TemplateArgumentLoc(ExplicitTemplateArgs[I]);
  }
}

DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
                                 NestedNameSpecifier *Qualifier,
                                 SourceRange QualifierRange,
                                 NamedDecl *D,
                                 SourceLocation NameLoc,
                                 QualType T, bool TD, bool VD) {
  return Create(Context, Qualifier, QualifierRange, D, NameLoc,
                false, SourceLocation(), 0, 0, SourceLocation(),
                T, TD, VD);
}

DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
                                 NestedNameSpecifier *Qualifier,
                                 SourceRange QualifierRange,
                                 NamedDecl *D,
                                 SourceLocation NameLoc,
                                 bool HasExplicitTemplateArgumentList,
                                 SourceLocation LAngleLoc,
                                 const TemplateArgumentLoc *ExplicitTemplateArgs,
                                 unsigned NumExplicitTemplateArgs,
                                 SourceLocation RAngleLoc,
                                 QualType T, bool TD, bool VD) {
  std::size_t Size = sizeof(DeclRefExpr);
  if (Qualifier != 0)
    Size += sizeof(NameQualifier);
  
  if (HasExplicitTemplateArgumentList)
    Size += sizeof(ExplicitTemplateArgumentList) +
            sizeof(TemplateArgumentLoc) * NumExplicitTemplateArgs;
  
  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
                               HasExplicitTemplateArgumentList,
                               LAngleLoc, 
                               ExplicitTemplateArgs, 
                               NumExplicitTemplateArgs,
                               RAngleLoc,
                               T, TD, VD);
}

SourceRange DeclRefExpr::getSourceRange() const {
  // FIXME: Does not handle multi-token names well, e.g., operator[].
  SourceRange R(Loc);
  
  if (hasQualifier())
    R.setBegin(getQualifierRange().getBegin());
  if (hasExplicitTemplateArgumentList())
    R.setEnd(getRAngleLoc());
  return R;
}

// FIXME: Maybe this should use DeclPrinter with a special "print predefined
// expr" policy instead.
std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentType IT,
                                        const Decl *CurrentDecl) {
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
    if (IT != PrettyFunction)
      return FD->getNameAsString();

    llvm::SmallString<256> Name;
    llvm::raw_svector_ostream Out(Name);

    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
      if (MD->isVirtual())
        Out << "virtual ";
    }

    PrintingPolicy Policy(Context.getLangOptions());
    Policy.SuppressTagKind = true;

    std::string Proto = FD->getQualifiedNameAsString(Policy);

    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
    const FunctionProtoType *FT = 0;
    if (FD->hasWrittenPrototype())
      FT = dyn_cast<FunctionProtoType>(AFT);

    Proto += "(";
    if (FT) {
      llvm::raw_string_ostream POut(Proto);
      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
        if (i) POut << ", ";
        std::string Param;
        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
        POut << Param;
      }

      if (FT->isVariadic()) {
        if (FD->getNumParams()) POut << ", ";
        POut << "...";
      }
    }
    Proto += ")";

    AFT->getResultType().getAsStringInternal(Proto, Policy);

    Out << Proto;

    Out.flush();
    return Name.str().str();
  }
  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
    llvm::SmallString<256> Name;
    llvm::raw_svector_ostream Out(Name);
    Out << (MD->isInstanceMethod() ? '-' : '+');
    Out << '[';
    Out << MD->getClassInterface()->getNameAsString();
    if (const ObjCCategoryImplDecl *CID =
        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
      Out << '(';
      Out <<  CID->getNameAsString();
      Out <<  ')';
    }
    Out <<  ' ';
    Out << MD->getSelector().getAsString();
    Out <<  ']';

    Out.flush();
    return Name.str().str();
  }
  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
    return "top level";
  }
  return "";
}

/// getValueAsApproximateDouble - This returns the value as an inaccurate
/// double.  Note that this may cause loss of precision, but is useful for
/// debugging dumps, etc.
double FloatingLiteral::getValueAsApproximateDouble() const {
  llvm::APFloat V = getValue();
  bool ignored;
  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
            &ignored);
  return V.convertToDouble();
}

StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
                                     unsigned ByteLength, bool Wide,
                                     QualType Ty,
                                     const SourceLocation *Loc,
                                     unsigned NumStrs) {
  // Allocate enough space for the StringLiteral plus an array of locations for
  // any concatenated string tokens.
  void *Mem = C.Allocate(sizeof(StringLiteral)+
                         sizeof(SourceLocation)*(NumStrs-1),
                         llvm::alignof<StringLiteral>());
  StringLiteral *SL = new (Mem) StringLiteral(Ty);

  // OPTIMIZE: could allocate this appended to the StringLiteral.
  char *AStrData = new (C, 1) char[ByteLength];
  memcpy(AStrData, StrData, ByteLength);
  SL->StrData = AStrData;
  SL->ByteLength = ByteLength;
  SL->IsWide = Wide;
  SL->TokLocs[0] = Loc[0];
  SL->NumConcatenated = NumStrs;

  if (NumStrs != 1)
    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
  return SL;
}

StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
  void *Mem = C.Allocate(sizeof(StringLiteral)+
                         sizeof(SourceLocation)*(NumStrs-1),
                         llvm::alignof<StringLiteral>());
  StringLiteral *SL = new (Mem) StringLiteral(QualType());
  SL->StrData = 0;
  SL->ByteLength = 0;
  SL->NumConcatenated = NumStrs;
  return SL;
}

void StringLiteral::DoDestroy(ASTContext &C) {
  C.Deallocate(const_cast<char*>(StrData));
  Expr::DoDestroy(C);
}

void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
  if (StrData)
    C.Deallocate(const_cast<char*>(StrData));

  char *AStrData = new (C, 1) char[Str.size()];
  memcpy(AStrData, Str.data(), Str.size());
  StrData = AStrData;
  ByteLength = Str.size();
}

/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "sizeof" or "[pre]++".
const char *UnaryOperator::getOpcodeStr(Opcode Op) {
  switch (Op) {
  default: assert(0 && "Unknown unary operator");
  case PostInc: return "++";
  case PostDec: return "--";
  case PreInc:  return "++";
  case PreDec:  return "--";
  case AddrOf:  return "&";
  case Deref:   return "*";
  case Plus:    return "+";
  case Minus:   return "-";
  case Not:     return "~";
  case LNot:    return "!";
  case Real:    return "__real";
  case Imag:    return "__imag";
  case Extension: return "__extension__";
  case OffsetOf: return "__builtin_offsetof";
  }
}

UnaryOperator::Opcode
UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
  switch (OO) {
  default: assert(false && "No unary operator for overloaded function");
  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
  case OO_Amp:        return AddrOf;
  case OO_Star:       return Deref;
  case OO_Plus:       return Plus;
  case OO_Minus:      return Minus;
  case OO_Tilde:      return Not;
  case OO_Exclaim:    return LNot;
  }
}

OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
  switch (Opc) {
  case PostInc: case PreInc: return OO_PlusPlus;
  case PostDec: case PreDec: return OO_MinusMinus;
  case AddrOf: return OO_Amp;
  case Deref: return OO_Star;
  case Plus: return OO_Plus;
  case Minus: return OO_Minus;
  case Not: return OO_Tilde;
  case LNot: return OO_Exclaim;
  default: return OO_None;
  }
}


//===----------------------------------------------------------------------===//
// Postfix Operators.
//===----------------------------------------------------------------------===//

CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
                   unsigned numargs, QualType t, SourceLocation rparenloc)
  : Expr(SC, t,
         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
    NumArgs(numargs) {

  SubExprs = new (C) Stmt*[numargs+1];
  SubExprs[FN] = fn;
  for (unsigned i = 0; i != numargs; ++i)
    SubExprs[i+ARGS_START] = args[i];

  RParenLoc = rparenloc;
}

CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
                   QualType t, SourceLocation rparenloc)
  : Expr(CallExprClass, t,
         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
    NumArgs(numargs) {

  SubExprs = new (C) Stmt*[numargs+1];
  SubExprs[FN] = fn;
  for (unsigned i = 0; i != numargs; ++i)
    SubExprs[i+ARGS_START] = args[i];

  RParenLoc = rparenloc;
}

CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
  SubExprs = new (C) Stmt*[1];
}

void CallExpr::DoDestroy(ASTContext& C) {
  DestroyChildren(C);
  if (SubExprs) C.Deallocate(SubExprs);
  this->~CallExpr();
  C.Deallocate(this);
}

FunctionDecl *CallExpr::getDirectCallee() {
  Expr *CEE = getCallee()->IgnoreParenCasts();
  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
    return dyn_cast<FunctionDecl>(DRE->getDecl());

  return 0;
}

/// setNumArgs - This changes the number of arguments present in this call.
/// Any orphaned expressions are deleted by this, and any new operands are set
/// to null.
void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
  // No change, just return.
  if (NumArgs == getNumArgs()) return;

  // If shrinking # arguments, just delete the extras and forgot them.
  if (NumArgs < getNumArgs()) {
    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
      getArg(i)->Destroy(C);
    this->NumArgs = NumArgs;
    return;
  }

  // Otherwise, we are growing the # arguments.  New an bigger argument array.
  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
  // Copy over args.
  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
    NewSubExprs[i] = SubExprs[i];
  // Null out new args.
  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
    NewSubExprs[i] = 0;

  if (SubExprs) C.Deallocate(SubExprs);
  SubExprs = NewSubExprs;
  this->NumArgs = NumArgs;
}

/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
/// not, return 0.
unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
  // All simple function calls (e.g. func()) are implicitly cast to pointer to
  // function. As a result, we try and obtain the DeclRefExpr from the
  // ImplicitCastExpr.
  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
    return 0;

  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
  if (!DRE)
    return 0;

  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
  if (!FDecl)
    return 0;

  if (!FDecl->getIdentifier())
    return 0;

  return FDecl->getBuiltinID();
}

QualType CallExpr::getCallReturnType() const {
  QualType CalleeType = getCallee()->getType();
  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
    CalleeType = FnTypePtr->getPointeeType();
  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
    CalleeType = BPT->getPointeeType();

  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
  return FnType->getResultType();
}

MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
                       SourceRange qualrange, NamedDecl *memberdecl,
                       SourceLocation l, bool has_explicit,
                       SourceLocation langle,
                       const TemplateArgumentLoc *targs, unsigned numtargs,
                       SourceLocation rangle, QualType ty)
  : Expr(MemberExprClass, ty,
         base->isTypeDependent() || (qual && qual->isDependent()),
         base->isValueDependent() || (qual && qual->isDependent())),
    Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
    HasQualifier(qual != 0), HasExplicitTemplateArgumentList(has_explicit) {
  // Initialize the qualifier, if any.
  if (HasQualifier) {
    NameQualifier *NQ = getMemberQualifier();
    NQ->NNS = qual;
    NQ->Range = qualrange;
  }

  // Initialize the explicit template argument list, if any.
  if (HasExplicitTemplateArgumentList) {
    ExplicitTemplateArgumentList *ETemplateArgs
      = getExplicitTemplateArgumentList();
    ETemplateArgs->LAngleLoc = langle;
    ETemplateArgs->RAngleLoc = rangle;
    ETemplateArgs->NumTemplateArgs = numtargs;

    TemplateArgumentLoc *TemplateArgs = ETemplateArgs->getTemplateArgs();
    for (unsigned I = 0; I < numtargs; ++I)
      new (TemplateArgs + I) TemplateArgumentLoc(targs[I]);
  }
}

MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
                               NestedNameSpecifier *qual,
                               SourceRange qualrange,
                               NamedDecl *memberdecl,
                               SourceLocation l,
                               bool has_explicit,
                               SourceLocation langle,
                               const TemplateArgumentLoc *targs,
                               unsigned numtargs,
                               SourceLocation rangle,
                               QualType ty) {
  std::size_t Size = sizeof(MemberExpr);
  if (qual != 0)
    Size += sizeof(NameQualifier);

  if (has_explicit)
    Size += sizeof(ExplicitTemplateArgumentList) +
    sizeof(TemplateArgumentLoc) * numtargs;

  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
  return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l,
                              has_explicit, langle, targs, numtargs, rangle,
                              ty);
}

const char *CastExpr::getCastKindName() const {
  switch (getCastKind()) {
  case CastExpr::CK_Unknown:
    return "Unknown";
  case CastExpr::CK_BitCast:
    return "BitCast";
  case CastExpr::CK_NoOp:
    return "NoOp";
  case CastExpr::CK_DerivedToBase:
    return "DerivedToBase";
  case CastExpr::CK_Dynamic:
    return "Dynamic";
  case CastExpr::CK_ToUnion:
    return "ToUnion";
  case CastExpr::CK_ArrayToPointerDecay:
    return "ArrayToPointerDecay";
  case CastExpr::CK_FunctionToPointerDecay:
    return "FunctionToPointerDecay";
  case CastExpr::CK_NullToMemberPointer:
    return "NullToMemberPointer";
  case CastExpr::CK_BaseToDerivedMemberPointer:
    return "BaseToDerivedMemberPointer";
  case CastExpr::CK_DerivedToBaseMemberPointer:
    return "DerivedToBaseMemberPointer";
  case CastExpr::CK_UserDefinedConversion:
    return "UserDefinedConversion";
  case CastExpr::CK_ConstructorConversion:
    return "ConstructorConversion";
  case CastExpr::CK_IntegralToPointer:
    return "IntegralToPointer";
  case CastExpr::CK_PointerToIntegral:
    return "PointerToIntegral";
  case CastExpr::CK_ToVoid:
    return "ToVoid";
  case CastExpr::CK_VectorSplat:
    return "VectorSplat";
  case CastExpr::CK_IntegralCast:
    return "IntegralCast";
  case CastExpr::CK_IntegralToFloating:
    return "IntegralToFloating";
  case CastExpr::CK_FloatingToIntegral:
    return "FloatingToIntegral";
  case CastExpr::CK_FloatingCast:
    return "FloatingCast";
  }

  assert(0 && "Unhandled cast kind!");
  return 0;
}

/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "<<=".
const char *BinaryOperator::getOpcodeStr(Opcode Op) {
  switch (Op) {
  case PtrMemD:   return ".*";
  case PtrMemI:   return "->*";
  case Mul:       return "*";
  case Div:       return "/";
  case Rem:       return "%";
  case Add:       return "+";
  case Sub:       return "-";
  case Shl:       return "<<";
  case Shr:       return ">>";
  case LT:        return "<";
  case GT:        return ">";
  case LE:        return "<=";
  case GE:        return ">=";
  case EQ:        return "==";
  case NE:        return "!=";
  case And:       return "&";
  case Xor:       return "^";
  case Or:        return "|";
  case LAnd:      return "&&";
  case LOr:       return "||";
  case Assign:    return "=";
  case MulAssign: return "*=";
  case DivAssign: return "/=";
  case RemAssign: return "%=";
  case AddAssign: return "+=";
  case SubAssign: return "-=";
  case ShlAssign: return "<<=";
  case ShrAssign: return ">>=";
  case AndAssign: return "&=";
  case XorAssign: return "^=";
  case OrAssign:  return "|=";
  case Comma:     return ",";
  }

  return "";
}

BinaryOperator::Opcode
BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
  switch (OO) {
  default: assert(false && "Not an overloadable binary operator");
  case OO_Plus: return Add;
  case OO_Minus: return Sub;
  case OO_Star: return Mul;
  case OO_Slash: return Div;
  case OO_Percent: return Rem;
  case OO_Caret: return Xor;
  case OO_Amp: return And;
  case OO_Pipe: return Or;
  case OO_Equal: return Assign;
  case OO_Less: return LT;
  case OO_Greater: return GT;
  case OO_PlusEqual: return AddAssign;
  case OO_MinusEqual: return SubAssign;
  case OO_StarEqual: return MulAssign;
  case OO_SlashEqual: return DivAssign;
  case OO_PercentEqual: return RemAssign;
  case OO_CaretEqual: return XorAssign;
  case OO_AmpEqual: return AndAssign;
  case OO_PipeEqual: return OrAssign;
  case OO_LessLess: return Shl;
  case OO_GreaterGreater: return Shr;
  case OO_LessLessEqual: return ShlAssign;
  case OO_GreaterGreaterEqual: return ShrAssign;
  case OO_EqualEqual: return EQ;
  case OO_ExclaimEqual: return NE;
  case OO_LessEqual: return LE;
  case OO_GreaterEqual: return GE;
  case OO_AmpAmp: return LAnd;
  case OO_PipePipe: return LOr;
  case OO_Comma: return Comma;
  case OO_ArrowStar: return PtrMemI;
  }
}

OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
  static const OverloadedOperatorKind OverOps[] = {
    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
    OO_Star, OO_Slash, OO_Percent,
    OO_Plus, OO_Minus,
    OO_LessLess, OO_GreaterGreater,
    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
    OO_EqualEqual, OO_ExclaimEqual,
    OO_Amp,
    OO_Caret,
    OO_Pipe,
    OO_AmpAmp,
    OO_PipePipe,
    OO_Equal, OO_StarEqual,
    OO_SlashEqual, OO_PercentEqual,
    OO_PlusEqual, OO_MinusEqual,
    OO_LessLessEqual, OO_GreaterGreaterEqual,
    OO_AmpEqual, OO_CaretEqual,
    OO_PipeEqual,
    OO_Comma
  };
  return OverOps[Opc];
}

InitListExpr::InitListExpr(SourceLocation lbraceloc,
                           Expr **initExprs, unsigned numInits,
                           SourceLocation rbraceloc)
  : Expr(InitListExprClass, QualType(),
         hasAnyTypeDependentArguments(initExprs, numInits),
         hasAnyValueDependentArguments(initExprs, numInits)),
    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
    UnionFieldInit(0), HadArrayRangeDesignator(false) {

  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
}

void InitListExpr::reserveInits(unsigned NumInits) {
  if (NumInits > InitExprs.size())
    InitExprs.reserve(NumInits);
}

void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
       Idx < LastIdx; ++Idx)
    InitExprs[Idx]->Destroy(Context);
  InitExprs.resize(NumInits, 0);
}

Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
  if (Init >= InitExprs.size()) {
    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
    InitExprs.back() = expr;
    return 0;
  }

  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
  InitExprs[Init] = expr;
  return Result;
}

/// getFunctionType - Return the underlying function type for this block.
///
const FunctionType *BlockExpr::getFunctionType() const {
  return getType()->getAs<BlockPointerType>()->
                    getPointeeType()->getAs<FunctionType>();
}

SourceLocation BlockExpr::getCaretLocation() const {
  return TheBlock->getCaretLocation();
}
const Stmt *BlockExpr::getBody() const {
  return TheBlock->getBody();
}
Stmt *BlockExpr::getBody() {
  return TheBlock->getBody();
}


//===----------------------------------------------------------------------===//
// Generic Expression Routines
//===----------------------------------------------------------------------===//

/// isUnusedResultAWarning - Return true if this immediate expression should
/// be warned about if the result is unused.  If so, fill in Loc and Ranges
/// with location to warn on and the source range[s] to report with the
/// warning.
bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
                                  SourceRange &R2, ASTContext &Ctx) const {
  // Don't warn if the expr is type dependent. The type could end up
  // instantiating to void.
  if (isTypeDependent())
    return false;

  switch (getStmtClass()) {
  default:
    Loc = getExprLoc();
    R1 = getSourceRange();
    return true;
  case ParenExprClass:
    return cast<ParenExpr>(this)->getSubExpr()->
      isUnusedResultAWarning(Loc, R1, R2, Ctx);
  case UnaryOperatorClass: {
    const UnaryOperator *UO = cast<UnaryOperator>(this);

    switch (UO->getOpcode()) {
    default: break;
    case UnaryOperator::PostInc:
    case UnaryOperator::PostDec:
    case UnaryOperator::PreInc:
    case UnaryOperator::PreDec:                 // ++/--
      return false;  // Not a warning.
    case UnaryOperator::Deref:
      // Dereferencing a volatile pointer is a side-effect.
      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
        return false;
      break;
    case UnaryOperator::Real:
    case UnaryOperator::Imag:
      // accessing a piece of a volatile complex is a side-effect.
      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
          .isVolatileQualified())
        return false;
      break;
    case UnaryOperator::Extension:
      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
    }
    Loc = UO->getOperatorLoc();
    R1 = UO->getSubExpr()->getSourceRange();
    return true;
  }
  case BinaryOperatorClass: {
    const BinaryOperator *BO = cast<BinaryOperator>(this);
    // Consider comma to have side effects if the LHS or RHS does.
    if (BO->getOpcode() == BinaryOperator::Comma)
      return (BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
              BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));

    if (BO->isAssignmentOp())
      return false;
    Loc = BO->getOperatorLoc();
    R1 = BO->getLHS()->getSourceRange();
    R2 = BO->getRHS()->getSourceRange();
    return true;
  }
  case CompoundAssignOperatorClass:
    return false;

  case ConditionalOperatorClass: {
    // The condition must be evaluated, but if either the LHS or RHS is a
    // warning, warn about them.
    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
    if (Exp->getLHS() &&
        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
      return true;
    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
  }

  case MemberExprClass:
    // If the base pointer or element is to a volatile pointer/field, accessing
    // it is a side effect.
    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
      return false;
    Loc = cast<MemberExpr>(this)->getMemberLoc();
    R1 = SourceRange(Loc, Loc);
    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
    return true;

  case ArraySubscriptExprClass:
    // If the base pointer or element is to a volatile pointer/field, accessing
    // it is a side effect.
    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
      return false;
    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
    return true;

  case CallExprClass:
  case CXXOperatorCallExprClass:
  case CXXMemberCallExprClass: {
    // If this is a direct call, get the callee.
    const CallExpr *CE = cast<CallExpr>(this);
    if (const FunctionDecl *FD = CE->getDirectCallee()) {
      // If the callee has attribute pure, const, or warn_unused_result, warn
      // about it. void foo() { strlen("bar"); } should warn.
      //
      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
      // updated to match for QoI.
      if (FD->getAttr<WarnUnusedResultAttr>() ||
          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
        Loc = CE->getCallee()->getLocStart();
        R1 = CE->getCallee()->getSourceRange();

        if (unsigned NumArgs = CE->getNumArgs())
          R2 = SourceRange(CE->getArg(0)->getLocStart(),
                           CE->getArg(NumArgs-1)->getLocEnd());
        return true;
      }
    }
    return false;
  }
  case ObjCMessageExprClass:
    return false;

  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
#if 0
    const ObjCImplicitSetterGetterRefExpr *Ref =
      cast<ObjCImplicitSetterGetterRefExpr>(this);
    // FIXME: We really want the location of the '.' here.
    Loc = Ref->getLocation();
    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
    if (Ref->getBase())
      R2 = Ref->getBase()->getSourceRange();
#else
    Loc = getExprLoc();
    R1 = getSourceRange();
#endif
    return true;
  }
  case StmtExprClass: {
    // Statement exprs don't logically have side effects themselves, but are
    // sometimes used in macros in ways that give them a type that is unused.
    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
    // however, if the result of the stmt expr is dead, we don't want to emit a
    // warning.
    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
    if (!CS->body_empty())
      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);

    Loc = cast<StmtExpr>(this)->getLParenLoc();
    R1 = getSourceRange();
    return true;
  }
  case CStyleCastExprClass:
    // If this is an explicit cast to void, allow it.  People do this when they
    // think they know what they're doing :).
    if (getType()->isVoidType())
      return false;
    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
    return true;
  case CXXFunctionalCastExprClass:
    // If this is a cast to void, check the operand.  Otherwise, the result of
    // the cast is unused.
    if (getType()->isVoidType())
      return (cast<CastExpr>(this)->getSubExpr()
              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
    return true;

  case ImplicitCastExprClass:
    // Check the operand, since implicit casts are inserted by Sema
    return (cast<ImplicitCastExpr>(this)
            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));

  case CXXDefaultArgExprClass:
    return (cast<CXXDefaultArgExpr>(this)
            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));

  case CXXNewExprClass:
    // FIXME: In theory, there might be new expressions that don't have side
    // effects (e.g. a placement new with an uninitialized POD).
  case CXXDeleteExprClass:
    return false;
  case CXXBindTemporaryExprClass:
    return (cast<CXXBindTemporaryExpr>(this)
            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
  case CXXExprWithTemporariesClass:
    return (cast<CXXExprWithTemporaries>(this)
            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
  }
}

/// DeclCanBeLvalue - Determine whether the given declaration can be
/// an lvalue. This is a helper routine for isLvalue.
static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
  // C++ [temp.param]p6:
  //   A non-type non-reference template-parameter is not an lvalue.
  if (const NonTypeTemplateParmDecl *NTTParm
        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
    return NTTParm->getType()->isReferenceType();

  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
    // C++ 3.10p2: An lvalue refers to an object or function.
    (Ctx.getLangOptions().CPlusPlus &&
     (isa<FunctionDecl>(Decl) || isa<OverloadedFunctionDecl>(Decl) ||
      isa<FunctionTemplateDecl>(Decl)));
}

/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
/// incomplete type other than void. Nonarray expressions that can be lvalues:
///  - name, where name must be a variable
///  - e[i]
///  - (e), where e must be an lvalue
///  - e.name, where e must be an lvalue
///  - e->name
///  - *e, the type of e cannot be a function type
///  - string-constant
///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
///  - reference type [C++ [expr]]
///
Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
  assert(!TR->isReferenceType() && "Expressions can't have reference type.");

  isLvalueResult Res = isLvalueInternal(Ctx);
  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
    return Res;

  // first, check the type (C99 6.3.2.1). Expressions with function
  // type in C are not lvalues, but they can be lvalues in C++.
  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
    return LV_NotObjectType;

  // Allow qualified void which is an incomplete type other than void (yuck).
  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
    return LV_IncompleteVoidType;

  return LV_Valid;
}

// Check whether the expression can be sanely treated like an l-value
Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
  switch (getStmtClass()) {
  case StringLiteralClass:  // C99 6.5.1p4
  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
    return LV_Valid;
  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
    // For vectors, make sure base is an lvalue (i.e. not a function call).
    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
    return LV_Valid;
  case DeclRefExprClass: { // C99 6.5.1p2
    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
    if (DeclCanBeLvalue(RefdDecl, Ctx))
      return LV_Valid;
    break;
  }
  case BlockDeclRefExprClass: {
    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
    if (isa<VarDecl>(BDR->getDecl()))
      return LV_Valid;
    break;
  }
  case MemberExprClass: {
    const MemberExpr *m = cast<MemberExpr>(this);
    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
      NamedDecl *Member = m->getMemberDecl();
      // C++ [expr.ref]p4:
      //   If E2 is declared to have type "reference to T", then E1.E2
      //   is an lvalue.
      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
        if (Value->getType()->isReferenceType())
          return LV_Valid;

      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
        return LV_Valid;

      //   -- If E2 is a non-static data member [...]. If E1 is an
      //      lvalue, then E1.E2 is an lvalue.
      if (isa<FieldDecl>(Member))
        return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);

      //   -- If it refers to a static member function [...], then
      //      E1.E2 is an lvalue.
      //   -- Otherwise, if E1.E2 refers to a non-static member
      //      function [...], then E1.E2 is not an lvalue.
      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
        return Method->isStatic()? LV_Valid : LV_MemberFunction;

      //   -- If E2 is a member enumerator [...], the expression E1.E2
      //      is not an lvalue.
      if (isa<EnumConstantDecl>(Member))
        return LV_InvalidExpression;

        // Not an lvalue.
      return LV_InvalidExpression;
    }

    // C99 6.5.2.3p4
    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
  }
  case UnaryOperatorClass:
    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
      return LV_Valid; // C99 6.5.3p4

    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.

    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
      return LV_Valid;
    break;
  case ImplicitCastExprClass:
    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
                                                       : LV_InvalidExpression;
  case ParenExprClass: // C99 6.5.1p5
    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
  case BinaryOperatorClass:
  case CompoundAssignOperatorClass: {
    const BinaryOperator *BinOp = cast<BinaryOperator>(this);

    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
        BinOp->getOpcode() == BinaryOperator::Comma)
      return BinOp->getRHS()->isLvalue(Ctx);

    // C++ [expr.mptr.oper]p6
    // The result of a .* expression is an lvalue only if its first operand is 
    // an lvalue and its second operand is a pointer to data member. 
    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
        !BinOp->getType()->isFunctionType())
      return BinOp->getLHS()->isLvalue(Ctx);

    // The result of an ->* expression is an lvalue only if its second operand 
    // is a pointer to data member.
    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
        !BinOp->getType()->isFunctionType()) {
      QualType Ty = BinOp->getRHS()->getType();
      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
        return LV_Valid;
    }
    
    if (!BinOp->isAssignmentOp())
      return LV_InvalidExpression;

    if (Ctx.getLangOptions().CPlusPlus)
      // C++ [expr.ass]p1:
      //   The result of an assignment operation [...] is an lvalue.
      return LV_Valid;


    // C99 6.5.16:
    //   An assignment expression [...] is not an lvalue.
    return LV_InvalidExpression;
  }
  case CallExprClass:
  case CXXOperatorCallExprClass:
  case CXXMemberCallExprClass: {
    // C++0x [expr.call]p10
    //   A function call is an lvalue if and only if the result type
    //   is an lvalue reference.
    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
    if (ReturnType->isLValueReferenceType())
      return LV_Valid;

    break;
  }
  case CompoundLiteralExprClass: // C99 6.5.2.5p5
    return LV_Valid;
  case ChooseExprClass:
    // __builtin_choose_expr is an lvalue if the selected operand is.
    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
  case ExtVectorElementExprClass:
    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
      return LV_DuplicateVectorComponents;
    return LV_Valid;
  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
    return LV_Valid;
  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
    return LV_Valid;
  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
    return LV_Valid;
  case PredefinedExprClass:
    return LV_Valid;
  case CXXDefaultArgExprClass:
    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
  case CXXConditionDeclExprClass:
    return LV_Valid;
  case CStyleCastExprClass:
  case CXXFunctionalCastExprClass:
  case CXXStaticCastExprClass:
  case CXXDynamicCastExprClass:
  case CXXReinterpretCastExprClass:
  case CXXConstCastExprClass:
    // The result of an explicit cast is an lvalue if the type we are
    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
          isLValueReferenceType())
      return LV_Valid;
    break;
  case CXXTypeidExprClass:
    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
    return LV_Valid;
  case CXXBindTemporaryExprClass:
    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
      isLvalueInternal(Ctx);
  case ConditionalOperatorClass: {
    // Complicated handling is only for C++.
    if (!Ctx.getLangOptions().CPlusPlus)
      return LV_InvalidExpression;

    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
    // everywhere there's an object converted to an rvalue. Also, any other
    // casts should be wrapped by ImplicitCastExprs. There's just the special
    // case involving throws to work out.
    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
    Expr *True = Cond->getTrueExpr();
    Expr *False = Cond->getFalseExpr();
    // C++0x 5.16p2
    //   If either the second or the third operand has type (cv) void, [...]
    //   the result [...] is an rvalue.
    if (True->getType()->isVoidType() || False->getType()->isVoidType())
      return LV_InvalidExpression;

    // Both sides must be lvalues for the result to be an lvalue.
    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
      return LV_InvalidExpression;

    // That's it.
    return LV_Valid;
  }

  case TemplateIdRefExprClass: {
    const TemplateIdRefExpr *TID = cast<TemplateIdRefExpr>(this);
    TemplateName Template = TID->getTemplateName();
    NamedDecl *ND = Template.getAsTemplateDecl();
    if (!ND)
      ND = Template.getAsOverloadedFunctionDecl();
    if (ND && DeclCanBeLvalue(ND, Ctx))
      return LV_Valid;
    
    break;
  } 
    
  default:
    break;
  }
  return LV_InvalidExpression;
}

/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
/// does not have an incomplete type, does not have a const-qualified type, and
/// if it is a structure or union, does not have any member (including,
/// recursively, any member or element of all contained aggregates or unions)
/// with a const-qualified type.
Expr::isModifiableLvalueResult
Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
  isLvalueResult lvalResult = isLvalue(Ctx);

  switch (lvalResult) {
  case LV_Valid:
    // C++ 3.10p11: Functions cannot be modified, but pointers to
    // functions can be modifiable.
    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
      return MLV_NotObjectType;
    break;

  case LV_NotObjectType: return MLV_NotObjectType;
  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
  case LV_InvalidExpression:
    // If the top level is a C-style cast, and the subexpression is a valid
    // lvalue, then this is probably a use of the old-school "cast as lvalue"
    // GCC extension.  We don't support it, but we want to produce good
    // diagnostics when it happens so that the user knows why.
    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
        if (Loc)
          *Loc = CE->getLParenLoc();
        return MLV_LValueCast;
      }
    }
    return MLV_InvalidExpression;
  case LV_MemberFunction: return MLV_MemberFunction;
  }

  // The following is illegal:
  //   void takeclosure(void (^C)(void));
  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
  //
  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
      return MLV_NotBlockQualified;
  }

  // Assigning to an 'implicit' property?
  if (const ObjCImplicitSetterGetterRefExpr* Expr =
        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
    if (Expr->getSetterMethod() == 0)
      return MLV_NoSetterProperty;
  }

  QualType CT = Ctx.getCanonicalType(getType());

  if (CT.isConstQualified())
    return MLV_ConstQualified;
  if (CT->isArrayType())
    return MLV_ArrayType;
  if (CT->isIncompleteType())
    return MLV_IncompleteType;

  if (const RecordType *r = CT->getAs<RecordType>()) {
    if (r->hasConstFields())
      return MLV_ConstQualified;
  }

  return MLV_Valid;
}

/// isOBJCGCCandidate - Check if an expression is objc gc'able.
/// returns true, if it is; false otherwise.
bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
  switch (getStmtClass()) {
  default:
    return false;
  case ObjCIvarRefExprClass:
    return true;
  case Expr::UnaryOperatorClass:
    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
  case ParenExprClass:
    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
  case ImplicitCastExprClass:
    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
  case CStyleCastExprClass:
    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
  case DeclRefExprClass: {
    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
      if (VD->hasGlobalStorage())
        return true;
      QualType T = VD->getType();
      // dereferencing to a  pointer is always a gc'able candidate,
      // unless it is __weak.
      return T->isPointerType() &&
             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
    }
    return false;
  }
  case MemberExprClass: {
    const MemberExpr *M = cast<MemberExpr>(this);
    return M->getBase()->isOBJCGCCandidate(Ctx);
  }
  case ArraySubscriptExprClass:
    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
  }
}
Expr* Expr::IgnoreParens() {
  Expr* E = this;
  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
    E = P->getSubExpr();

  return E;
}

/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
/// or CastExprs or ImplicitCastExprs, returning their operand.
Expr *Expr::IgnoreParenCasts() {
  Expr *E = this;
  while (true) {
    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
      E = P->getSubExpr();
    else if (CastExpr *P = dyn_cast<CastExpr>(E))
      E = P->getSubExpr();
    else
      return E;
  }
}

/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
/// value (including ptr->int casts of the same size).  Strip off any
/// ParenExpr or CastExprs, returning their operand.
Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
  Expr *E = this;
  while (true) {
    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
      E = P->getSubExpr();
      continue;
    }

    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
      // ptr<->int casts of the same width.  We also ignore all identify casts.
      Expr *SE = P->getSubExpr();

      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
        E = SE;
        continue;
      }

      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
        E = SE;
        continue;
      }
    }

    return E;
  }
}


/// hasAnyTypeDependentArguments - Determines if any of the expressions
/// in Exprs is type-dependent.
bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
  for (unsigned I = 0; I < NumExprs; ++I)
    if (Exprs[I]->isTypeDependent())
      return true;

  return false;
}

/// hasAnyValueDependentArguments - Determines if any of the expressions
/// in Exprs is value-dependent.
bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
  for (unsigned I = 0; I < NumExprs; ++I)
    if (Exprs[I]->isValueDependent())
      return true;

  return false;
}

bool Expr::isConstantInitializer(ASTContext &Ctx) const {
  // This function is attempting whether an expression is an initializer
  // which can be evaluated at compile-time.  isEvaluatable handles most
  // of the cases, but it can't deal with some initializer-specific
  // expressions, and it can't deal with aggregates; we deal with those here,
  // and fall back to isEvaluatable for the other cases.

  // FIXME: This function assumes the variable being assigned to
  // isn't a reference type!

  switch (getStmtClass()) {
  default: break;
  case StringLiteralClass:
  case ObjCStringLiteralClass:
  case ObjCEncodeExprClass:
    return true;
  case CompoundLiteralExprClass: {
    // This handles gcc's extension that allows global initializers like
    // "struct x {int x;} x = (struct x) {};".
    // FIXME: This accepts other cases it shouldn't!
    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
    return Exp->isConstantInitializer(Ctx);
  }
  case InitListExprClass: {
    // FIXME: This doesn't deal with fields with reference types correctly.
    // FIXME: This incorrectly allows pointers cast to integers to be assigned
    // to bitfields.
    const InitListExpr *Exp = cast<InitListExpr>(this);
    unsigned numInits = Exp->getNumInits();
    for (unsigned i = 0; i < numInits; i++) {
      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
        return false;
    }
    return true;
  }
  case ImplicitValueInitExprClass:
    return true;
  case ParenExprClass:
    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
  case UnaryOperatorClass: {
    const UnaryOperator* Exp = cast<UnaryOperator>(this);
    if (Exp->getOpcode() == UnaryOperator::Extension)
      return Exp->getSubExpr()->isConstantInitializer(Ctx);
    break;
  }
  case BinaryOperatorClass: {
    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
    // but this handles the common case.
    const BinaryOperator *Exp = cast<BinaryOperator>(this);
    if (Exp->getOpcode() == BinaryOperator::Sub &&
        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
      return true;
    break;
  }
  case ImplicitCastExprClass:
  case CStyleCastExprClass:
    // Handle casts with a destination that's a struct or union; this
    // deals with both the gcc no-op struct cast extension and the
    // cast-to-union extension.
    if (getType()->isRecordType())
      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
      
    // Integer->integer casts can be handled here, which is important for
    // things like (int)(&&x-&&y).  Scary but true.
    if (getType()->isIntegerType() &&
        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
      
    break;
  }
  return isEvaluatable(Ctx);
}

/// isIntegerConstantExpr - this recursive routine will test if an expression is
/// an integer constant expression.

/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
/// comma, etc
///
/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
/// cast+dereference.

// CheckICE - This function does the fundamental ICE checking: the returned
// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
// Note that to reduce code duplication, this helper does no evaluation
// itself; the caller checks whether the expression is evaluatable, and
// in the rare cases where CheckICE actually cares about the evaluated
// value, it calls into Evalute.
//
// Meanings of Val:
// 0: This expression is an ICE if it can be evaluated by Evaluate.
// 1: This expression is not an ICE, but if it isn't evaluated, it's
//    a legal subexpression for an ICE. This return value is used to handle
//    the comma operator in C99 mode.
// 2: This expression is not an ICE, and is not a legal subexpression for one.

struct ICEDiag {
  unsigned Val;
  SourceLocation Loc;

  public:
  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
  ICEDiag() : Val(0) {}
};

ICEDiag NoDiag() { return ICEDiag(); }

static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
  Expr::EvalResult EVResult;
  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
      !EVResult.Val.isInt()) {
    return ICEDiag(2, E->getLocStart());
  }
  return NoDiag();
}

static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
  if (!E->getType()->isIntegralType()) {
    return ICEDiag(2, E->getLocStart());
  }

  switch (E->getStmtClass()) {
#define STMT(Node, Base) case Expr::Node##Class:
#define EXPR(Node, Base)
#include "clang/AST/StmtNodes.def"
  case Expr::PredefinedExprClass:
  case Expr::FloatingLiteralClass:
  case Expr::ImaginaryLiteralClass:
  case Expr::StringLiteralClass:
  case Expr::ArraySubscriptExprClass:
  case Expr::MemberExprClass:
  case Expr::CompoundAssignOperatorClass:
  case Expr::CompoundLiteralExprClass:
  case Expr::ExtVectorElementExprClass:
  case Expr::InitListExprClass:
  case Expr::DesignatedInitExprClass:
  case Expr::ImplicitValueInitExprClass:
  case Expr::ParenListExprClass:
  case Expr::VAArgExprClass:
  case Expr::AddrLabelExprClass:
  case Expr::StmtExprClass:
  case Expr::CXXMemberCallExprClass:
  case Expr::CXXDynamicCastExprClass:
  case Expr::CXXTypeidExprClass:
  case Expr::CXXNullPtrLiteralExprClass:
  case Expr::CXXThisExprClass:
  case Expr::CXXThrowExprClass:
  case Expr::CXXConditionDeclExprClass: // FIXME: is this correct?
  case Expr::CXXNewExprClass:
  case Expr::CXXDeleteExprClass:
  case Expr::CXXPseudoDestructorExprClass:
  case Expr::UnresolvedFunctionNameExprClass:
  case Expr::UnresolvedDeclRefExprClass:
  case Expr::TemplateIdRefExprClass:
  case Expr::CXXConstructExprClass:
  case Expr::CXXBindTemporaryExprClass:
  case Expr::CXXExprWithTemporariesClass:
  case Expr::CXXTemporaryObjectExprClass:
  case Expr::CXXUnresolvedConstructExprClass:
  case Expr::CXXUnresolvedMemberExprClass:
  case Expr::ObjCStringLiteralClass:
  case Expr::ObjCEncodeExprClass:
  case Expr::ObjCMessageExprClass:
  case Expr::ObjCSelectorExprClass:
  case Expr::ObjCProtocolExprClass:
  case Expr::ObjCIvarRefExprClass:
  case Expr::ObjCPropertyRefExprClass:
  case Expr::ObjCImplicitSetterGetterRefExprClass:
  case Expr::ObjCSuperExprClass:
  case Expr::ObjCIsaExprClass:
  case Expr::ShuffleVectorExprClass:
  case Expr::BlockExprClass:
  case Expr::BlockDeclRefExprClass:
  case Expr::NoStmtClass:
  case Expr::ExprClass:
    return ICEDiag(2, E->getLocStart());

  case Expr::GNUNullExprClass:
    // GCC considers the GNU __null value to be an integral constant expression.
    return NoDiag();

  case Expr::ParenExprClass:
    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
  case Expr::IntegerLiteralClass:
  case Expr::CharacterLiteralClass:
  case Expr::CXXBoolLiteralExprClass:
  case Expr::CXXZeroInitValueExprClass:
  case Expr::TypesCompatibleExprClass:
  case Expr::UnaryTypeTraitExprClass:
    return NoDiag();
  case Expr::CallExprClass:
  case Expr::CXXOperatorCallExprClass: {
    const CallExpr *CE = cast<CallExpr>(E);
    if (CE->isBuiltinCall(Ctx))
      return CheckEvalInICE(E, Ctx);
    return ICEDiag(2, E->getLocStart());
  }
  case Expr::DeclRefExprClass:
    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
      return NoDiag();
    if (Ctx.getLangOptions().CPlusPlus &&
        E->getType().getCVRQualifiers() == Qualifiers::Const) {
      // C++ 7.1.5.1p2
      //   A variable of non-volatile const-qualified integral or enumeration
      //   type initialized by an ICE can be used in ICEs.
      if (const VarDecl *Dcl =
              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
        if (Quals.hasVolatile() || !Quals.hasConst())
          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
        
        // Look for the definition of this variable, which will actually have
        // an initializer.
        const VarDecl *Def = 0;
        const Expr *Init = Dcl->getDefinition(Def);
        if (Init) {
          if (Def->isInitKnownICE()) {
            // We have already checked whether this subexpression is an
            // integral constant expression.
            if (Def->isInitICE())
              return NoDiag();
            else
              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
          }

          // C++ [class.static.data]p4:
          //   If a static data member is of const integral or const 
          //   enumeration type, its declaration in the class definition can
          //   specify a constant-initializer which shall be an integral 
          //   constant expression (5.19). In that case, the member can appear
          //   in integral constant expressions.
          if (Def->isOutOfLine()) {
            Dcl->setInitKnownICE(Ctx, false);
            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
          }
          
          ICEDiag Result = CheckICE(Init, Ctx);
          // Cache the result of the ICE test.
          Dcl->setInitKnownICE(Ctx, Result.Val == 0);
          return Result;
        }
      }
    }
    return ICEDiag(2, E->getLocStart());
  case Expr::UnaryOperatorClass: {
    const UnaryOperator *Exp = cast<UnaryOperator>(E);
    switch (Exp->getOpcode()) {
    case UnaryOperator::PostInc:
    case UnaryOperator::PostDec:
    case UnaryOperator::PreInc:
    case UnaryOperator::PreDec:
    case UnaryOperator::AddrOf:
    case UnaryOperator::Deref:
      return ICEDiag(2, E->getLocStart());

    case UnaryOperator::Extension:
    case UnaryOperator::LNot:
    case UnaryOperator::Plus:
    case UnaryOperator::Minus:
    case UnaryOperator::Not:
    case UnaryOperator::Real:
    case UnaryOperator::Imag:
      return CheckICE(Exp->getSubExpr(), Ctx);
    case UnaryOperator::OffsetOf:
      // Note that per C99, offsetof must be an ICE. And AFAIK, using
      // Evaluate matches the proposed gcc behavior for cases like
      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
      // compliance: we should warn earlier for offsetof expressions with
      // array subscripts that aren't ICEs, and if the array subscripts
      // are ICEs, the value of the offsetof must be an integer constant.
      return CheckEvalInICE(E, Ctx);
    }
  }
  case Expr::SizeOfAlignOfExprClass: {
    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
      return ICEDiag(2, E->getLocStart());
    return NoDiag();
  }
  case Expr::BinaryOperatorClass: {
    const BinaryOperator *Exp = cast<BinaryOperator>(E);
    switch (Exp->getOpcode()) {
    case BinaryOperator::PtrMemD:
    case BinaryOperator::PtrMemI:
    case BinaryOperator::Assign:
    case BinaryOperator::MulAssign:
    case BinaryOperator::DivAssign:
    case BinaryOperator::RemAssign:
    case BinaryOperator::AddAssign:
    case BinaryOperator::SubAssign:
    case BinaryOperator::ShlAssign:
    case BinaryOperator::ShrAssign:
    case BinaryOperator::AndAssign:
    case BinaryOperator::XorAssign:
    case BinaryOperator::OrAssign:
      return ICEDiag(2, E->getLocStart());

    case BinaryOperator::Mul:
    case BinaryOperator::Div:
    case BinaryOperator::Rem:
    case BinaryOperator::Add:
    case BinaryOperator::Sub:
    case BinaryOperator::Shl:
    case BinaryOperator::Shr:
    case BinaryOperator::LT:
    case BinaryOperator::GT:
    case BinaryOperator::LE:
    case BinaryOperator::GE:
    case BinaryOperator::EQ:
    case BinaryOperator::NE:
    case BinaryOperator::And:
    case BinaryOperator::Xor:
    case BinaryOperator::Or:
    case BinaryOperator::Comma: {
      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
      if (Exp->getOpcode() == BinaryOperator::Div ||
          Exp->getOpcode() == BinaryOperator::Rem) {
        // Evaluate gives an error for undefined Div/Rem, so make sure
        // we don't evaluate one.
        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
          if (REval == 0)
            return ICEDiag(1, E->getLocStart());
          if (REval.isSigned() && REval.isAllOnesValue()) {
            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
            if (LEval.isMinSignedValue())
              return ICEDiag(1, E->getLocStart());
          }
        }
      }
      if (Exp->getOpcode() == BinaryOperator::Comma) {
        if (Ctx.getLangOptions().C99) {
          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
          // if it isn't evaluated.
          if (LHSResult.Val == 0 && RHSResult.Val == 0)
            return ICEDiag(1, E->getLocStart());
        } else {
          // In both C89 and C++, commas in ICEs are illegal.
          return ICEDiag(2, E->getLocStart());
        }
      }
      if (LHSResult.Val >= RHSResult.Val)
        return LHSResult;
      return RHSResult;
    }
    case BinaryOperator::LAnd:
    case BinaryOperator::LOr: {
      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
        // Rare case where the RHS has a comma "side-effect"; we need
        // to actually check the condition to see whether the side
        // with the comma is evaluated.
        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
          return RHSResult;
        return NoDiag();
      }

      if (LHSResult.Val >= RHSResult.Val)
        return LHSResult;
      return RHSResult;
    }
    }
  }
  case Expr::CastExprClass:
  case Expr::ImplicitCastExprClass:
  case Expr::ExplicitCastExprClass:
  case Expr::CStyleCastExprClass:
  case Expr::CXXFunctionalCastExprClass:
  case Expr::CXXNamedCastExprClass:
  case Expr::CXXStaticCastExprClass:
  case Expr::CXXReinterpretCastExprClass:
  case Expr::CXXConstCastExprClass: {
    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
    if (SubExpr->getType()->isIntegralType())
      return CheckICE(SubExpr, Ctx);
    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
      return NoDiag();
    return ICEDiag(2, E->getLocStart());
  }
  case Expr::ConditionalOperatorClass: {
    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
    // If the condition (ignoring parens) is a __builtin_constant_p call,
    // then only the true side is actually considered in an integer constant
    // expression, and it is fully evaluated.  This is an important GNU
    // extension.  See GCC PR38377 for discussion.
    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
        Expr::EvalResult EVResult;
        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
            !EVResult.Val.isInt()) {
          return ICEDiag(2, E->getLocStart());
        }
        return NoDiag();
      }
    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
    if (CondResult.Val == 2)
      return CondResult;
    if (TrueResult.Val == 2)
      return TrueResult;
    if (FalseResult.Val == 2)
      return FalseResult;
    if (CondResult.Val == 1)
      return CondResult;
    if (TrueResult.Val == 0 && FalseResult.Val == 0)
      return NoDiag();
    // Rare case where the diagnostics depend on which side is evaluated
    // Note that if we get here, CondResult is 0, and at least one of
    // TrueResult and FalseResult is non-zero.
    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
      return FalseResult;
    }
    return TrueResult;
  }
  case Expr::CXXDefaultArgExprClass:
    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
  case Expr::ChooseExprClass: {
    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
  }
  }

  // Silence a GCC warning
  return ICEDiag(2, E->getLocStart());
}

bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
                                 SourceLocation *Loc, bool isEvaluated) const {
  ICEDiag d = CheckICE(this, Ctx);
  if (d.Val != 0) {
    if (Loc) *Loc = d.Loc;
    return false;
  }
  EvalResult EvalResult;
  if (!Evaluate(EvalResult, Ctx))
    llvm::llvm_unreachable("ICE cannot be evaluated!");
  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
  Result = EvalResult.Val.getInt();
  return true;
}

/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
/// integer constant expression with the value zero, or if this is one that is
/// cast to void*.
bool Expr::isNullPointerConstant(ASTContext &Ctx,
                                 NullPointerConstantValueDependence NPC) const {
  if (isValueDependent()) {
    switch (NPC) {
    case NPC_NeverValueDependent:
      assert(false && "Unexpected value dependent expression!");
      // If the unthinkable happens, fall through to the safest alternative.
        
    case NPC_ValueDependentIsNull:
      return isTypeDependent() || getType()->isIntegralType();
        
    case NPC_ValueDependentIsNotNull:
      return false;
    }
  }

  // Strip off a cast to void*, if it exists. Except in C++.
  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
    if (!Ctx.getLangOptions().CPlusPlus) {
      // Check that it is a cast to void*.
      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
        QualType Pointee = PT->getPointeeType();
        if (!Pointee.hasQualifiers() &&
            Pointee->isVoidType() &&                              // to void*
            CE->getSubExpr()->getType()->isIntegerType())         // from int.
          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
      }
    }
  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
    // Ignore the ImplicitCastExpr type entirely.
    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
    // Accept ((void*)0) as a null pointer constant, as many other
    // implementations do.
    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (const CXXDefaultArgExpr *DefaultArg
               = dyn_cast<CXXDefaultArgExpr>(this)) {
    // See through default argument expressions
    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
  } else if (isa<GNUNullExpr>(this)) {
    // The GNU __null extension is always a null pointer constant.
    return true;
  }

  // C++0x nullptr_t is always a null pointer constant.
  if (getType()->isNullPtrType())
    return true;

  // This expression must be an integer type.
  if (!getType()->isIntegerType() || 
      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
    return false;

  // If we have an integer constant expression, we need to *evaluate* it and
  // test for the value 0.
  llvm::APSInt Result;
  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
}

FieldDecl *Expr::getBitField() {
  Expr *E = this->IgnoreParens();

  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
      if (Field->isBitField())
        return Field;

  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
    if (BinOp->isAssignmentOp() && BinOp->getLHS())
      return BinOp->getLHS()->getBitField();

  return 0;
}

/// isArrow - Return true if the base expression is a pointer to vector,
/// return false if the base expression is a vector.
bool ExtVectorElementExpr::isArrow() const {
  return getBase()->getType()->isPointerType();
}

unsigned ExtVectorElementExpr::getNumElements() const {
  if (const VectorType *VT = getType()->getAs<VectorType>())
    return VT->getNumElements();
  return 1;
}

/// containsDuplicateElements - Return true if any element access is repeated.
bool ExtVectorElementExpr::containsDuplicateElements() const {
  // FIXME: Refactor this code to an accessor on the AST node which returns the
  // "type" of component access, and share with code below and in Sema.
  llvm::StringRef Comp = Accessor->getName();

  // Halving swizzles do not contain duplicate elements.
  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
    return false;

  // Advance past s-char prefix on hex swizzles.
  if (Comp[0] == 's' || Comp[0] == 'S')
    Comp = Comp.substr(1);

  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
        return true;

  return false;
}

/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
void ExtVectorElementExpr::getEncodedElementAccess(
                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
  llvm::StringRef Comp = Accessor->getName();
  if (Comp[0] == 's' || Comp[0] == 'S')
    Comp = Comp.substr(1);

  bool isHi =   Comp == "hi";
  bool isLo =   Comp == "lo";
  bool isEven = Comp == "even";
  bool isOdd  = Comp == "odd";

  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
    uint64_t Index;

    if (isHi)
      Index = e + i;
    else if (isLo)
      Index = i;
    else if (isEven)
      Index = 2 * i;
    else if (isOdd)
      Index = 2 * i + 1;
    else
      Index = ExtVectorType::getAccessorIdx(Comp[i]);

    Elts.push_back(Index);
  }
}

// constructor for instance messages.
ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
                QualType retType, ObjCMethodDecl *mproto,
                SourceLocation LBrac, SourceLocation RBrac,
                Expr **ArgExprs, unsigned nargs)
  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
    MethodProto(mproto) {
  NumArgs = nargs;
  SubExprs = new Stmt*[NumArgs+1];
  SubExprs[RECEIVER] = receiver;
  if (NumArgs) {
    for (unsigned i = 0; i != NumArgs; ++i)
      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
  }
  LBracloc = LBrac;
  RBracloc = RBrac;
}

// constructor for class messages.
// FIXME: clsName should be typed to ObjCInterfaceType
ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
                QualType retType, ObjCMethodDecl *mproto,
                SourceLocation LBrac, SourceLocation RBrac,
                Expr **ArgExprs, unsigned nargs)
  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
    MethodProto(mproto) {
  NumArgs = nargs;
  SubExprs = new Stmt*[NumArgs+1];
  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
  if (NumArgs) {
    for (unsigned i = 0; i != NumArgs; ++i)
      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
  }
  LBracloc = LBrac;
  RBracloc = RBrac;
}

// constructor for class messages.
ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
                                 QualType retType, ObjCMethodDecl *mproto,
                                 SourceLocation LBrac, SourceLocation RBrac,
                                 Expr **ArgExprs, unsigned nargs)
: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
MethodProto(mproto) {
  NumArgs = nargs;
  SubExprs = new Stmt*[NumArgs+1];
  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
  if (NumArgs) {
    for (unsigned i = 0; i != NumArgs; ++i)
      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
  }
  LBracloc = LBrac;
  RBracloc = RBrac;
}

ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
  switch (x & Flags) {
    default:
      assert(false && "Invalid ObjCMessageExpr.");
    case IsInstMeth:
      return ClassInfo(0, 0);
    case IsClsMethDeclUnknown:
      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
    case IsClsMethDeclKnown: {
      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
      return ClassInfo(D, D->getIdentifier());
    }
  }
}

void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
  if (CI.first == 0 && CI.second == 0)
    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
  else if (CI.first == 0)
    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
  else
    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
}


bool ChooseExpr::isConditionTrue(ASTContext &C) const {
  return getCond()->EvaluateAsInt(C) != 0;
}

void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
                                 unsigned NumExprs) {
  if (SubExprs) C.Deallocate(SubExprs);

  SubExprs = new (C) Stmt* [NumExprs];
  this->NumExprs = NumExprs;
  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
}

void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
  DestroyChildren(C);
  if (SubExprs) C.Deallocate(SubExprs);
  this->~ShuffleVectorExpr();
  C.Deallocate(this);
}

void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
  // Override default behavior of traversing children. If this has a type
  // operand and the type is a variable-length array, the child iteration
  // will iterate over the size expression. However, this expression belongs
  // to the type, not to this, so we don't want to delete it.
  // We still want to delete this expression.
  if (isArgumentType()) {
    this->~SizeOfAlignOfExpr();
    C.Deallocate(this);
  }
  else
    Expr::DoDestroy(C);
}

//===----------------------------------------------------------------------===//
//  DesignatedInitExpr
//===----------------------------------------------------------------------===//

IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
  assert(Kind == FieldDesignator && "Only valid on a field designator");
  if (Field.NameOrField & 0x01)
    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
  else
    return getField()->getIdentifier();
}

DesignatedInitExpr::DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
                                       const Designator *Designators,
                                       SourceLocation EqualOrColonLoc,
                                       bool GNUSyntax,
                                       Expr **IndexExprs,
                                       unsigned NumIndexExprs,
                                       Expr *Init)
  : Expr(DesignatedInitExprClass, Ty,
         Init->isTypeDependent(), Init->isValueDependent()),
    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
  this->Designators = new Designator[NumDesignators];

  // Record the initializer itself.
  child_iterator Child = child_begin();
  *Child++ = Init;

  // Copy the designators and their subexpressions, computing
  // value-dependence along the way.
  unsigned IndexIdx = 0;
  for (unsigned I = 0; I != NumDesignators; ++I) {
    this->Designators[I] = Designators[I];

    if (this->Designators[I].isArrayDesignator()) {
      // Compute type- and value-dependence.
      Expr *Index = IndexExprs[IndexIdx];
      ValueDependent = ValueDependent ||
        Index->isTypeDependent() || Index->isValueDependent();

      // Copy the index expressions into permanent storage.
      *Child++ = IndexExprs[IndexIdx++];
    } else if (this->Designators[I].isArrayRangeDesignator()) {
      // Compute type- and value-dependence.
      Expr *Start = IndexExprs[IndexIdx];
      Expr *End = IndexExprs[IndexIdx + 1];
      ValueDependent = ValueDependent ||
        Start->isTypeDependent() || Start->isValueDependent() ||
        End->isTypeDependent() || End->isValueDependent();

      // Copy the start/end expressions into permanent storage.
      *Child++ = IndexExprs[IndexIdx++];
      *Child++ = IndexExprs[IndexIdx++];
    }
  }

  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
}

DesignatedInitExpr *
DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
                           unsigned NumDesignators,
                           Expr **IndexExprs, unsigned NumIndexExprs,
                           SourceLocation ColonOrEqualLoc,
                           bool UsesColonSyntax, Expr *Init) {
  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
  return new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, Designators,
                                      ColonOrEqualLoc, UsesColonSyntax,
                                      IndexExprs, NumIndexExprs, Init);
}

DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
                                                    unsigned NumIndexExprs) {
  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
}

void DesignatedInitExpr::setDesignators(const Designator *Desigs,
                                        unsigned NumDesigs) {
  if (Designators)
    delete [] Designators;

  Designators = new Designator[NumDesigs];
  NumDesignators = NumDesigs;
  for (unsigned I = 0; I != NumDesigs; ++I)
    Designators[I] = Desigs[I];
}

SourceRange DesignatedInitExpr::getSourceRange() const {
  SourceLocation StartLoc;
  Designator &First =
    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
  if (First.isFieldDesignator()) {
    if (GNUSyntax)
      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
    else
      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
  } else
    StartLoc =
      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
}

Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
  char* Ptr = static_cast<char*>(static_cast<void *>(this));
  Ptr += sizeof(DesignatedInitExpr);
  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
}

Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
  assert(D.Kind == Designator::ArrayRangeDesignator &&
         "Requires array range designator");
  char* Ptr = static_cast<char*>(static_cast<void *>(this));
  Ptr += sizeof(DesignatedInitExpr);
  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
}

Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
  assert(D.Kind == Designator::ArrayRangeDesignator &&
         "Requires array range designator");
  char* Ptr = static_cast<char*>(static_cast<void *>(this));
  Ptr += sizeof(DesignatedInitExpr);
  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
}

/// \brief Replaces the designator at index @p Idx with the series
/// of designators in [First, Last).
void DesignatedInitExpr::ExpandDesignator(unsigned Idx,
                                          const Designator *First,
                                          const Designator *Last) {
  unsigned NumNewDesignators = Last - First;
  if (NumNewDesignators == 0) {
    std::copy_backward(Designators + Idx + 1,
                       Designators + NumDesignators,
                       Designators + Idx);
    --NumNewDesignators;
    return;
  } else if (NumNewDesignators == 1) {
    Designators[Idx] = *First;
    return;
  }

  Designator *NewDesignators
    = new Designator[NumDesignators - 1 + NumNewDesignators];
  std::copy(Designators, Designators + Idx, NewDesignators);
  std::copy(First, Last, NewDesignators + Idx);
  std::copy(Designators + Idx + 1, Designators + NumDesignators,
            NewDesignators + Idx + NumNewDesignators);
  delete [] Designators;
  Designators = NewDesignators;
  NumDesignators = NumDesignators - 1 + NumNewDesignators;
}

void DesignatedInitExpr::DoDestroy(ASTContext &C) {
  delete [] Designators;
  Expr::DoDestroy(C);
}

ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
                             Expr **exprs, unsigned nexprs,
                             SourceLocation rparenloc)
: Expr(ParenListExprClass, QualType(),
       hasAnyTypeDependentArguments(exprs, nexprs),
       hasAnyValueDependentArguments(exprs, nexprs)),
  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {

  Exprs = new (C) Stmt*[nexprs];
  for (unsigned i = 0; i != nexprs; ++i)
    Exprs[i] = exprs[i];
}

void ParenListExpr::DoDestroy(ASTContext& C) {
  DestroyChildren(C);
  if (Exprs) C.Deallocate(Exprs);
  this->~ParenListExpr();
  C.Deallocate(this);
}

//===----------------------------------------------------------------------===//
//  ExprIterator.
//===----------------------------------------------------------------------===//

Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
const Expr* ConstExprIterator::operator[](size_t idx) const {
  return cast<Expr>(I[idx]);
}
const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }

//===----------------------------------------------------------------------===//
//  Child Iterators for iterating over subexpressions/substatements
//===----------------------------------------------------------------------===//

// DeclRefExpr
Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }

// ObjCIvarRefExpr
Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }

// ObjCPropertyRefExpr
Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }

// ObjCImplicitSetterGetterRefExpr
Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
  return &Base;
}
Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
  return &Base+1;
}

// ObjCSuperExpr
Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }

// ObjCIsaExpr
Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }

// PredefinedExpr
Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }

// IntegerLiteral
Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }

// CharacterLiteral
Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }

// FloatingLiteral
Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }

// ImaginaryLiteral
Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }

// StringLiteral
Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }

// ParenExpr
Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }

// UnaryOperator
Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }

// SizeOfAlignOfExpr
Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
  // If this is of a type and the type is a VLA type (and not a typedef), the
  // size expression of the VLA needs to be treated as an executable expression.
  // Why isn't this weirdness documented better in StmtIterator?
  if (isArgumentType()) {
    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
                                   getArgumentType().getTypePtr()))
      return child_iterator(T);
    return child_iterator();
  }
  return child_iterator(&Argument.Ex);
}
Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
  if (isArgumentType())
    return child_iterator();
  return child_iterator(&Argument.Ex + 1);
}

// ArraySubscriptExpr
Stmt::child_iterator ArraySubscriptExpr::child_begin() {
  return &SubExprs[0];
}
Stmt::child_iterator ArraySubscriptExpr::child_end() {
  return &SubExprs[0]+END_EXPR;
}

// CallExpr
Stmt::child_iterator CallExpr::child_begin() {
  return &SubExprs[0];
}
Stmt::child_iterator CallExpr::child_end() {
  return &SubExprs[0]+NumArgs+ARGS_START;
}

// MemberExpr
Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }

// ExtVectorElementExpr
Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }

// CompoundLiteralExpr
Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }

// CastExpr
Stmt::child_iterator CastExpr::child_begin() { return &Op; }
Stmt::child_iterator CastExpr::child_end() { return &Op+1; }

// BinaryOperator
Stmt::child_iterator BinaryOperator::child_begin() {
  return &SubExprs[0];
}
Stmt::child_iterator BinaryOperator::child_end() {
  return &SubExprs[0]+END_EXPR;
}

// ConditionalOperator
Stmt::child_iterator ConditionalOperator::child_begin() {
  return &SubExprs[0];
}
Stmt::child_iterator ConditionalOperator::child_end() {
  return &SubExprs[0]+END_EXPR;
}

// AddrLabelExpr
Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }

// StmtExpr
Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }

// TypesCompatibleExpr
Stmt::child_iterator TypesCompatibleExpr::child_begin() {
  return child_iterator();
}

Stmt::child_iterator TypesCompatibleExpr::child_end() {
  return child_iterator();
}

// ChooseExpr
Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }

// GNUNullExpr
Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }

// ShuffleVectorExpr
Stmt::child_iterator ShuffleVectorExpr::child_begin() {
  return &SubExprs[0];
}
Stmt::child_iterator ShuffleVectorExpr::child_end() {
  return &SubExprs[0]+NumExprs;
}

// VAArgExpr
Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }

// InitListExpr
Stmt::child_iterator InitListExpr::child_begin() {
  return InitExprs.size() ? &InitExprs[0] : 0;
}
Stmt::child_iterator InitListExpr::child_end() {
  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
}

// DesignatedInitExpr
Stmt::child_iterator DesignatedInitExpr::child_begin() {
  char* Ptr = static_cast<char*>(static_cast<void *>(this));
  Ptr += sizeof(DesignatedInitExpr);
  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
}
Stmt::child_iterator DesignatedInitExpr::child_end() {
  return child_iterator(&*child_begin() + NumSubExprs);
}

// ImplicitValueInitExpr
Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
  return child_iterator();
}

Stmt::child_iterator ImplicitValueInitExpr::child_end() {
  return child_iterator();
}

// ParenListExpr
Stmt::child_iterator ParenListExpr::child_begin() {
  return &Exprs[0];
}
Stmt::child_iterator ParenListExpr::child_end() {
  return &Exprs[0]+NumExprs;
}

// ObjCStringLiteral
Stmt::child_iterator ObjCStringLiteral::child_begin() {
  return &String;
}
Stmt::child_iterator ObjCStringLiteral::child_end() {
  return &String+1;
}

// ObjCEncodeExpr
Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }

// ObjCSelectorExpr
Stmt::child_iterator ObjCSelectorExpr::child_begin() {
  return child_iterator();
}
Stmt::child_iterator ObjCSelectorExpr::child_end() {
  return child_iterator();
}

// ObjCProtocolExpr
Stmt::child_iterator ObjCProtocolExpr::child_begin() {
  return child_iterator();
}
Stmt::child_iterator ObjCProtocolExpr::child_end() {
  return child_iterator();
}

// ObjCMessageExpr
Stmt::child_iterator ObjCMessageExpr::child_begin() {
  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
}
Stmt::child_iterator ObjCMessageExpr::child_end() {
  return &SubExprs[0]+ARGS_START+getNumArgs();
}

// Blocks
Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }

Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }