aboutsummaryrefslogtreecommitdiff
path: root/lib/AST/Type.cpp
blob: 27a277ddbcb00fc0d1a6228e783027ca7a2f92d7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
//===--- Type.cpp - Type representation and manipulation ------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements type-related functionality.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/ASTContext.h"
#include "clang/AST/Type.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/PrettyPrinter.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;

bool QualType::isConstant(QualType T, ASTContext &Ctx) {
  if (T.isConstQualified())
    return true;

  if (const ArrayType *AT = Ctx.getAsArrayType(T))
    return AT->getElementType().isConstant(Ctx);

  return false;
}

void Type::Destroy(ASTContext& C) {
  this->~Type();
  C.Deallocate(this);
}

void VariableArrayType::Destroy(ASTContext& C) {
  if (SizeExpr)
    SizeExpr->Destroy(C);
  this->~VariableArrayType();
  C.Deallocate(this);
}

void DependentSizedArrayType::Destroy(ASTContext& C) {
  // FIXME: Resource contention like in ConstantArrayWithExprType ?
  // May crash, depending on platform or a particular build.
  // SizeExpr->Destroy(C);
  this->~DependentSizedArrayType();
  C.Deallocate(this);
}

void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
                                      ASTContext &Context,
                                      QualType ET,
                                      ArraySizeModifier SizeMod,
                                      unsigned TypeQuals,
                                      Expr *E) {
  ID.AddPointer(ET.getAsOpaquePtr());
  ID.AddInteger(SizeMod);
  ID.AddInteger(TypeQuals);
  E->Profile(ID, Context, true);
}

void
DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
                                     ASTContext &Context,
                                     QualType ElementType, Expr *SizeExpr) {
  ID.AddPointer(ElementType.getAsOpaquePtr());
  SizeExpr->Profile(ID, Context, true);
}

void DependentSizedExtVectorType::Destroy(ASTContext& C) {
  // FIXME: Deallocate size expression, once we're cloning properly.
//  if (SizeExpr)
//    SizeExpr->Destroy(C);
  this->~DependentSizedExtVectorType();
  C.Deallocate(this);
}

/// getArrayElementTypeNoTypeQual - If this is an array type, return the
/// element type of the array, potentially with type qualifiers missing.
/// This method should never be used when type qualifiers are meaningful.
const Type *Type::getArrayElementTypeNoTypeQual() const {
  // If this is directly an array type, return it.
  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
    return ATy->getElementType().getTypePtr();

  // If the canonical form of this type isn't the right kind, reject it.
  if (!isa<ArrayType>(CanonicalType))
    return 0;

  // If this is a typedef for an array type, strip the typedef off without
  // losing all typedef information.
  return cast<ArrayType>(getUnqualifiedDesugaredType())
    ->getElementType().getTypePtr();
}

/// \brief Retrieve the unqualified variant of the given type, removing as
/// little sugar as possible.
///
/// This routine looks through various kinds of sugar to find the 
/// least-desuraged type that is unqualified. For example, given:
///
/// \code
/// typedef int Integer;
/// typedef const Integer CInteger;
/// typedef CInteger DifferenceType;
/// \endcode
///
/// Executing \c getUnqualifiedTypeSlow() on the type \c DifferenceType will
/// desugar until we hit the type \c Integer, which has no qualifiers on it.
QualType QualType::getUnqualifiedTypeSlow() const {
  QualType Cur = *this;
  while (true) {
    if (!Cur.hasQualifiers())
      return Cur;
    
    const Type *CurTy = Cur.getTypePtr();
    switch (CurTy->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Parent)
#define TYPE(Class, Parent)                                  \
    case Type::Class: {                                      \
      const Class##Type *Ty = cast<Class##Type>(CurTy);      \
      if (!Ty->isSugared())                                  \
        return Cur.getLocalUnqualifiedType();                \
      Cur = Ty->desugar();                                   \
      break;                                                 \
    }
#include "clang/AST/TypeNodes.def"
    }
  }
  
  return Cur.getUnqualifiedType();
}

/// getDesugaredType - Return the specified type with any "sugar" removed from
/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
/// the type is already concrete, it returns it unmodified.  This is similar
/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
/// concrete.
QualType QualType::getDesugaredType(QualType T) {
  QualifierCollector Qs;

  QualType Cur = T;
  while (true) {
    const Type *CurTy = Qs.strip(Cur);
    switch (CurTy->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Parent)
#define TYPE(Class, Parent) \
    case Type::Class: { \
      const Class##Type *Ty = cast<Class##Type>(CurTy); \
      if (!Ty->isSugared()) \
        return Qs.apply(Cur); \
      Cur = Ty->desugar(); \
      break; \
    }
#include "clang/AST/TypeNodes.def"
    }
  }
}

/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
/// sugar off the given type.  This should produce an object of the
/// same dynamic type as the canonical type.
const Type *Type::getUnqualifiedDesugaredType() const {
  const Type *Cur = this;

  while (true) {
    switch (Cur->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Parent)
#define TYPE(Class, Parent) \
    case Class: { \
      const Class##Type *Ty = cast<Class##Type>(Cur); \
      if (!Ty->isSugared()) return Cur; \
      Cur = Ty->desugar().getTypePtr(); \
      break; \
    }
#include "clang/AST/TypeNodes.def"
    }
  }
}

/// isVoidType - Helper method to determine if this is the 'void' type.
bool Type::isVoidType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() == BuiltinType::Void;
  return false;
}

bool Type::isObjectType() const {
  if (isa<FunctionType>(CanonicalType) || isa<ReferenceType>(CanonicalType) ||
      isa<IncompleteArrayType>(CanonicalType) || isVoidType())
    return false;
  return true;
}

bool Type::isDerivedType() const {
  switch (CanonicalType->getTypeClass()) {
  case Pointer:
  case VariableArray:
  case ConstantArray:
  case IncompleteArray:
  case FunctionProto:
  case FunctionNoProto:
  case LValueReference:
  case RValueReference:
  case Record:
    return true;
  default:
    return false;
  }
}

bool Type::isClassType() const {
  if (const RecordType *RT = getAs<RecordType>())
    return RT->getDecl()->isClass();
  return false;
}
bool Type::isStructureType() const {
  if (const RecordType *RT = getAs<RecordType>())
    return RT->getDecl()->isStruct();
  return false;
}
bool Type::isVoidPointerType() const {
  if (const PointerType *PT = getAs<PointerType>())
    return PT->getPointeeType()->isVoidType();
  return false;
}

bool Type::isUnionType() const {
  if (const RecordType *RT = getAs<RecordType>())
    return RT->getDecl()->isUnion();
  return false;
}

bool Type::isComplexType() const {
  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
    return CT->getElementType()->isFloatingType();
  return false;
}

bool Type::isComplexIntegerType() const {
  // Check for GCC complex integer extension.
  return getAsComplexIntegerType();
}

const ComplexType *Type::getAsComplexIntegerType() const {
  if (const ComplexType *Complex = getAs<ComplexType>())
    if (Complex->getElementType()->isIntegerType())
      return Complex;
  return 0;
}

QualType Type::getPointeeType() const {
  if (const PointerType *PT = getAs<PointerType>())
    return PT->getPointeeType();
  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
    return OPT->getPointeeType();
  if (const BlockPointerType *BPT = getAs<BlockPointerType>())
    return BPT->getPointeeType();
  if (const ReferenceType *RT = getAs<ReferenceType>())
    return RT->getPointeeType();
  return QualType();
}

/// isVariablyModifiedType (C99 6.7.5p3) - Return true for variable length
/// array types and types that contain variable array types in their
/// declarator
bool Type::isVariablyModifiedType() const {
  // A VLA is a variably modified type.
  if (isVariableArrayType())
    return true;

  // An array can contain a variably modified type
  if (const Type *T = getArrayElementTypeNoTypeQual())
    return T->isVariablyModifiedType();

  // A pointer can point to a variably modified type.
  // Also, C++ references and member pointers can point to a variably modified
  // type, where VLAs appear as an extension to C++, and should be treated
  // correctly.
  if (const PointerType *PT = getAs<PointerType>())
    return PT->getPointeeType()->isVariablyModifiedType();
  if (const ReferenceType *RT = getAs<ReferenceType>())
    return RT->getPointeeType()->isVariablyModifiedType();
  if (const MemberPointerType *PT = getAs<MemberPointerType>())
    return PT->getPointeeType()->isVariablyModifiedType();

  // A function can return a variably modified type
  // This one isn't completely obvious, but it follows from the
  // definition in C99 6.7.5p3. Because of this rule, it's
  // illegal to declare a function returning a variably modified type.
  if (const FunctionType *FT = getAs<FunctionType>())
    return FT->getResultType()->isVariablyModifiedType();

  return false;
}

const RecordType *Type::getAsStructureType() const {
  // If this is directly a structure type, return it.
  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
    if (RT->getDecl()->isStruct())
      return RT;
  }

  // If the canonical form of this type isn't the right kind, reject it.
  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
    if (!RT->getDecl()->isStruct())
      return 0;

    // If this is a typedef for a structure type, strip the typedef off without
    // losing all typedef information.
    return cast<RecordType>(getUnqualifiedDesugaredType());
  }
  return 0;
}

const RecordType *Type::getAsUnionType() const {
  // If this is directly a union type, return it.
  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
    if (RT->getDecl()->isUnion())
      return RT;
  }

  // If the canonical form of this type isn't the right kind, reject it.
  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
    if (!RT->getDecl()->isUnion())
      return 0;

    // If this is a typedef for a union type, strip the typedef off without
    // losing all typedef information.
    return cast<RecordType>(getUnqualifiedDesugaredType());
  }

  return 0;
}

ObjCInterfaceType::ObjCInterfaceType(QualType Canonical,
                                     ObjCInterfaceDecl *D,
                                     ObjCProtocolDecl **Protos, unsigned NumP) :
  Type(ObjCInterface, Canonical, /*Dependent=*/false),
  Decl(D), NumProtocols(NumP)
{
  if (NumProtocols)
    memcpy(reinterpret_cast<ObjCProtocolDecl**>(this + 1), Protos, 
           NumProtocols * sizeof(*Protos));
}

void ObjCInterfaceType::Destroy(ASTContext& C) {
  this->~ObjCInterfaceType();
  C.Deallocate(this);
}

const ObjCInterfaceType *Type::getAsObjCQualifiedInterfaceType() const {
  // There is no sugar for ObjCInterfaceType's, just return the canonical
  // type pointer if it is the right class.  There is no typedef information to
  // return and these cannot be Address-space qualified.
  if (const ObjCInterfaceType *OIT = getAs<ObjCInterfaceType>())
    if (OIT->getNumProtocols())
      return OIT;
  return 0;
}

bool Type::isObjCQualifiedInterfaceType() const {
  return getAsObjCQualifiedInterfaceType() != 0;
}

ObjCObjectPointerType::ObjCObjectPointerType(QualType Canonical, QualType T,
                                             ObjCProtocolDecl **Protos,
                                             unsigned NumP) :
  Type(ObjCObjectPointer, Canonical, /*Dependent=*/false),
  PointeeType(T), NumProtocols(NumP)
{
  if (NumProtocols)
    memcpy(reinterpret_cast<ObjCProtocolDecl **>(this + 1), Protos, 
           NumProtocols * sizeof(*Protos));
}

void ObjCObjectPointerType::Destroy(ASTContext& C) {
  this->~ObjCObjectPointerType();
  C.Deallocate(this);
}

const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
  // type pointer if it is the right class.
  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
    if (OPT->isObjCQualifiedIdType())
      return OPT;
  }
  return 0;
}

const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
    if (OPT->getInterfaceType())
      return OPT;
  }
  return 0;
}

const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
  if (const PointerType *PT = getAs<PointerType>())
    if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
      return dyn_cast<CXXRecordDecl>(RT->getDecl());
  return 0;
}

bool Type::isIntegerType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() >= BuiltinType::Bool &&
           BT->getKind() <= BuiltinType::Int128;
  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
    // Incomplete enum types are not treated as integer types.
    // FIXME: In C++, enum types are never integer types.
    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
      return true;
  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
    return VT->getElementType()->isIntegerType();
  return false;
}

bool Type::isIntegralType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() >= BuiltinType::Bool &&
    BT->getKind() <= BuiltinType::Int128;
  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
      return true;  // Complete enum types are integral.
                    // FIXME: In C++, enum types are never integral.
  return false;
}

bool Type::isEnumeralType() const {
  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
    return TT->getDecl()->isEnum();
  return false;
}

bool Type::isBooleanType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() == BuiltinType::Bool;
  return false;
}

bool Type::isCharType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() == BuiltinType::Char_U ||
           BT->getKind() == BuiltinType::UChar ||
           BT->getKind() == BuiltinType::Char_S ||
           BT->getKind() == BuiltinType::SChar;
  return false;
}

bool Type::isWideCharType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() == BuiltinType::WChar;
  return false;
}

/// \brief Determine whether this type is any of the built-in character
/// types.
bool Type::isAnyCharacterType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return (BT->getKind() >= BuiltinType::Char_U &&
            BT->getKind() <= BuiltinType::Char32) ||
           (BT->getKind() >= BuiltinType::Char_S &&
            BT->getKind() <= BuiltinType::WChar);
  
  return false;
}

/// isSignedIntegerType - Return true if this is an integer type that is
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
/// an enum decl which has a signed representation, or a vector of signed
/// integer element type.
bool Type::isSignedIntegerType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
    return BT->getKind() >= BuiltinType::Char_S &&
           BT->getKind() <= BuiltinType::Int128;
  }

  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    return ET->getDecl()->getIntegerType()->isSignedIntegerType();

  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
    return VT->getElementType()->isSignedIntegerType();
  return false;
}

/// isUnsignedIntegerType - Return true if this is an integer type that is
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
/// decl which has an unsigned representation, or a vector of unsigned integer
/// element type.
bool Type::isUnsignedIntegerType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
    return BT->getKind() >= BuiltinType::Bool &&
           BT->getKind() <= BuiltinType::UInt128;
  }

  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();

  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
    return VT->getElementType()->isUnsignedIntegerType();
  return false;
}

bool Type::isFloatingType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() >= BuiltinType::Float &&
           BT->getKind() <= BuiltinType::LongDouble;
  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
    return CT->getElementType()->isFloatingType();
  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
    return VT->getElementType()->isFloatingType();
  return false;
}

bool Type::isRealFloatingType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->isFloatingPoint();
  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
    return VT->getElementType()->isRealFloatingType();
  return false;
}

bool Type::isRealType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() >= BuiltinType::Bool &&
           BT->getKind() <= BuiltinType::LongDouble;
  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
    return TT->getDecl()->isEnum() && TT->getDecl()->isDefinition();
  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
    return VT->getElementType()->isRealType();
  return false;
}

bool Type::isArithmeticType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() >= BuiltinType::Bool &&
           BT->getKind() <= BuiltinType::LongDouble;
  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
    // If a body isn't seen by the time we get here, return false.
    return ET->getDecl()->isDefinition();
  return isa<ComplexType>(CanonicalType) || isa<VectorType>(CanonicalType);
}

bool Type::isScalarType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() != BuiltinType::Void;
  if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
    // Enums are scalar types, but only if they are defined.  Incomplete enums
    // are not treated as scalar types.
    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
      return true;
    return false;
  }
  return isa<PointerType>(CanonicalType) ||
         isa<BlockPointerType>(CanonicalType) ||
         isa<MemberPointerType>(CanonicalType) ||
         isa<ComplexType>(CanonicalType) ||
         isa<ObjCObjectPointerType>(CanonicalType);
}

/// \brief Determines whether the type is a C++ aggregate type or C
/// aggregate or union type.
///
/// An aggregate type is an array or a class type (struct, union, or
/// class) that has no user-declared constructors, no private or
/// protected non-static data members, no base classes, and no virtual
/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
/// includes union types.
bool Type::isAggregateType() const {
  if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
      return ClassDecl->isAggregate();

    return true;
  }

  return isa<ArrayType>(CanonicalType);
}

/// isConstantSizeType - Return true if this is not a variable sized type,
/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
/// incomplete types or dependent types.
bool Type::isConstantSizeType() const {
  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
  assert(!isDependentType() && "This doesn't make sense for dependent types");
  // The VAT must have a size, as it is known to be complete.
  return !isa<VariableArrayType>(CanonicalType);
}

/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
/// - a type that can describe objects, but which lacks information needed to
/// determine its size.
bool Type::isIncompleteType() const {
  switch (CanonicalType->getTypeClass()) {
  default: return false;
  case Builtin:
    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
    // be completed.
    return isVoidType();
  case Record:
  case Enum:
    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
    // forward declaration, but not a full definition (C99 6.2.5p22).
    return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
  case ConstantArray:
    // An array is incomplete if its element type is incomplete
    // (C++ [dcl.array]p1).
    // We don't handle variable arrays (they're not allowed in C++) or
    // dependent-sized arrays (dependent types are never treated as incomplete).
    return cast<ArrayType>(CanonicalType)->getElementType()->isIncompleteType();
  case IncompleteArray:
    // An array of unknown size is an incomplete type (C99 6.2.5p22).
    return true;
  case ObjCInterface:
    // ObjC interfaces are incomplete if they are @class, not @interface.
    return cast<ObjCInterfaceType>(this)->getDecl()->isForwardDecl();
  }
}

/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10)
bool Type::isPODType() const {
  // The compiler shouldn't query this for incomplete types, but the user might.
  // We return false for that case.
  if (isIncompleteType())
    return false;

  switch (CanonicalType->getTypeClass()) {
    // Everything not explicitly mentioned is not POD.
  default: return false;
  case VariableArray:
  case ConstantArray:
    // IncompleteArray is caught by isIncompleteType() above.
    return cast<ArrayType>(CanonicalType)->getElementType()->isPODType();

  case Builtin:
  case Complex:
  case Pointer:
  case MemberPointer:
  case Vector:
  case ExtVector:
  case ObjCObjectPointer:
  case BlockPointer:
    return true;

  case Enum:
    return true;

  case Record:
    if (CXXRecordDecl *ClassDecl
          = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
      return ClassDecl->isPOD();

    // C struct/union is POD.
    return true;
  }
}

bool Type::isLiteralType() const {
  if (isIncompleteType())
    return false;

  // C++0x [basic.types]p10:
  //   A type is a literal type if it is:
  switch (CanonicalType->getTypeClass()) {
    // We're whitelisting
  default: return false;

    //   -- a scalar type
  case Builtin:
  case Complex:
  case Pointer:
  case MemberPointer:
  case Vector:
  case ExtVector:
  case ObjCObjectPointer:
  case Enum:
    return true;

    //   -- a class type with ...
  case Record:
    // FIXME: Do the tests
    return false;

    //   -- an array of literal type
    // Extension: variable arrays cannot be literal types, since they're
    // runtime-sized.
  case ConstantArray:
    return cast<ArrayType>(CanonicalType)->getElementType()->isLiteralType();
  }
}

bool Type::isPromotableIntegerType() const {
  if (const BuiltinType *BT = getAs<BuiltinType>())
    switch (BT->getKind()) {
    case BuiltinType::Bool:
    case BuiltinType::Char_S:
    case BuiltinType::Char_U:
    case BuiltinType::SChar:
    case BuiltinType::UChar:
    case BuiltinType::Short:
    case BuiltinType::UShort:
      return true;
    default:
      return false;
    }

  // Enumerated types are promotable to their compatible integer types
  // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
  if (const EnumType *ET = getAs<EnumType>()){
    if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull())
      return false;
    
    const BuiltinType *BT
      = ET->getDecl()->getPromotionType()->getAs<BuiltinType>();
    return BT->getKind() == BuiltinType::Int
           || BT->getKind() == BuiltinType::UInt;
  }
  
  return false;
}

bool Type::isNullPtrType() const {
  if (const BuiltinType *BT = getAs<BuiltinType>())
    return BT->getKind() == BuiltinType::NullPtr;
  return false;
}

bool Type::isSpecifierType() const {
  // Note that this intentionally does not use the canonical type.
  switch (getTypeClass()) {
  case Builtin:
  case Record:
  case Enum:
  case Typedef:
  case Complex:
  case TypeOfExpr:
  case TypeOf:
  case TemplateTypeParm:
  case SubstTemplateTypeParm:
  case TemplateSpecialization:
  case QualifiedName:
  case DependentName:
  case ObjCInterface:
  case ObjCObjectPointer:
  case Elaborated:
    return true;
  default:
    return false;
  }
}

bool Type::isElaboratedTypeSpecifier() const {
  if (getTypeClass() == Elaborated)
    return true;
  
  if (const DependentNameType *Dependent = dyn_cast<DependentNameType>(this)) {
    switch (Dependent->getKeyword()) {
    case ETK_None:
    case ETK_Typename:
      return false;
        
    case ETK_Class:
    case ETK_Struct:
    case ETK_Union:
    case ETK_Enum:
      return true;
    }
  }
  
  return false;
}

const char *Type::getTypeClassName() const {
  switch (TC) {
  default: assert(0 && "Type class not in TypeNodes.def!");
#define ABSTRACT_TYPE(Derived, Base)
#define TYPE(Derived, Base) case Derived: return #Derived;
#include "clang/AST/TypeNodes.def"
  }
}

const char *BuiltinType::getName(const LangOptions &LO) const {
  switch (getKind()) {
  default: assert(0 && "Unknown builtin type!");
  case Void:              return "void";
  case Bool:              return LO.Bool ? "bool" : "_Bool";
  case Char_S:            return "char";
  case Char_U:            return "char";
  case SChar:             return "signed char";
  case Short:             return "short";
  case Int:               return "int";
  case Long:              return "long";
  case LongLong:          return "long long";
  case Int128:            return "__int128_t";
  case UChar:             return "unsigned char";
  case UShort:            return "unsigned short";
  case UInt:              return "unsigned int";
  case ULong:             return "unsigned long";
  case ULongLong:         return "unsigned long long";
  case UInt128:           return "__uint128_t";
  case Float:             return "float";
  case Double:            return "double";
  case LongDouble:        return "long double";
  case WChar:             return "wchar_t";
  case Char16:            return "char16_t";
  case Char32:            return "char32_t";
  case NullPtr:           return "nullptr_t";
  case Overload:          return "<overloaded function type>";
  case Dependent:         return "<dependent type>";
  case UndeducedAuto:     return "auto";
  case ObjCId:            return "id";
  case ObjCClass:         return "Class";
  case ObjCSel:         return "SEL";
  }
}

llvm::StringRef FunctionType::getNameForCallConv(CallingConv CC) {
  switch (CC) {
  case CC_Default: llvm_unreachable("no name for default cc");
  default: return "";

  case CC_C: return "cdecl";
  case CC_X86StdCall: return "stdcall";
  case CC_X86FastCall: return "fastcall";
  }
}

void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
                                arg_type_iterator ArgTys,
                                unsigned NumArgs, bool isVariadic,
                                unsigned TypeQuals, bool hasExceptionSpec,
                                bool anyExceptionSpec, unsigned NumExceptions,
                                exception_iterator Exs,
                                const FunctionType::ExtInfo &Info) {
  ID.AddPointer(Result.getAsOpaquePtr());
  for (unsigned i = 0; i != NumArgs; ++i)
    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
  ID.AddInteger(isVariadic);
  ID.AddInteger(TypeQuals);
  ID.AddInteger(hasExceptionSpec);
  if (hasExceptionSpec) {
    ID.AddInteger(anyExceptionSpec);
    for (unsigned i = 0; i != NumExceptions; ++i)
      ID.AddPointer(Exs[i].getAsOpaquePtr());
  }
  ID.AddInteger(Info.getNoReturn());
  ID.AddInteger(Info.getRegParm());
  ID.AddInteger(Info.getCC());
}

void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID) {
  Profile(ID, getResultType(), arg_type_begin(), NumArgs, isVariadic(),
          getTypeQuals(), hasExceptionSpec(), hasAnyExceptionSpec(),
          getNumExceptions(), exception_begin(),
          getExtInfo());
}

void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID,
                                    QualType OIT, 
                                    ObjCProtocolDecl * const *protocols,
                                    unsigned NumProtocols) {
  ID.AddPointer(OIT.getAsOpaquePtr());
  for (unsigned i = 0; i != NumProtocols; i++)
    ID.AddPointer(protocols[i]);
}

void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID) {
  Profile(ID, getPointeeType(), qual_begin(), getNumProtocols());
}

/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
/// potentially looking through *all* consequtive typedefs.  This returns the
/// sum of the type qualifiers, so if you have:
///   typedef const int A;
///   typedef volatile A B;
/// looking through the typedefs for B will give you "const volatile A".
///
QualType TypedefType::LookThroughTypedefs() const {
  // Usually, there is only a single level of typedefs, be fast in that case.
  QualType FirstType = getDecl()->getUnderlyingType();
  if (!isa<TypedefType>(FirstType))
    return FirstType;

  // Otherwise, do the fully general loop.
  QualifierCollector Qs;

  QualType CurType;
  const TypedefType *TDT = this;
  do {
    CurType = TDT->getDecl()->getUnderlyingType();
    TDT = dyn_cast<TypedefType>(Qs.strip(CurType));
  } while (TDT);

  return Qs.apply(CurType);
}

QualType TypedefType::desugar() const {
  return getDecl()->getUnderlyingType();
}

TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
  : Type(TypeOfExpr, can, E->isTypeDependent()), TOExpr(E) {
}

QualType TypeOfExprType::desugar() const {
  return getUnderlyingExpr()->getType();
}

void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
                                      ASTContext &Context, Expr *E) {
  E->Profile(ID, Context, true);
}

DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
  : Type(Decltype, can, E->isTypeDependent()), E(E),
  UnderlyingType(underlyingType) {
}

DependentDecltypeType::DependentDecltypeType(ASTContext &Context, Expr *E)
  : DecltypeType(E, Context.DependentTy), Context(Context) { }

void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
                                    ASTContext &Context, Expr *E) {
  E->Profile(ID, Context, true);
}

TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
  : Type(TC, can, D->isDependentType()),
    decl(const_cast<TagDecl*>(D), 0) {}

bool RecordType::classof(const TagType *TT) {
  return isa<RecordDecl>(TT->getDecl());
}

bool EnumType::classof(const TagType *TT) {
  return isa<EnumDecl>(TT->getDecl());
}

static bool isDependent(const TemplateArgument &Arg) {
  switch (Arg.getKind()) {
  case TemplateArgument::Null:
    assert(false && "Should not have a NULL template argument");
    return false;

  case TemplateArgument::Type:
    return Arg.getAsType()->isDependentType();

  case TemplateArgument::Template:
    return Arg.getAsTemplate().isDependent();
      
  case TemplateArgument::Declaration:
  case TemplateArgument::Integral:
    // Never dependent
    return false;

  case TemplateArgument::Expression:
    return (Arg.getAsExpr()->isTypeDependent() ||
            Arg.getAsExpr()->isValueDependent());

  case TemplateArgument::Pack:
    assert(0 && "FIXME: Implement!");
    return false;
  }

  return false;
}

bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgumentListInfo &Args) {
  return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size());
}

bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N) {
  for (unsigned i = 0; i != N; ++i)
    if (isDependent(Args[i].getArgument()))
      return true;
  return false;
}

bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N) {
  for (unsigned i = 0; i != N; ++i)
    if (isDependent(Args[i]))
      return true;
  return false;
}

TemplateSpecializationType::
TemplateSpecializationType(ASTContext &Context, TemplateName T,
                           const TemplateArgument *Args,
                           unsigned NumArgs, QualType Canon)
  : Type(TemplateSpecialization,
         Canon.isNull()? QualType(this, 0) : Canon,
         T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)),
    Context(Context),
    Template(T), NumArgs(NumArgs) {
  assert((!Canon.isNull() ||
          T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)) &&
         "No canonical type for non-dependent class template specialization");

  TemplateArgument *TemplateArgs
    = reinterpret_cast<TemplateArgument *>(this + 1);
  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
    new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
}

void TemplateSpecializationType::Destroy(ASTContext& C) {
  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
    // FIXME: Not all expressions get cloned, so we can't yet perform
    // this destruction.
    //    if (Expr *E = getArg(Arg).getAsExpr())
    //      E->Destroy(C);
  }
}

TemplateSpecializationType::iterator
TemplateSpecializationType::end() const {
  return begin() + getNumArgs();
}

const TemplateArgument &
TemplateSpecializationType::getArg(unsigned Idx) const {
  assert(Idx < getNumArgs() && "Template argument out of range");
  return getArgs()[Idx];
}

void
TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
                                    TemplateName T,
                                    const TemplateArgument *Args,
                                    unsigned NumArgs,
                                    ASTContext &Context) {
  T.Profile(ID);
  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
    Args[Idx].Profile(ID, Context);
}

QualType QualifierCollector::apply(QualType QT) const {
  if (!hasNonFastQualifiers())
    return QT.withFastQualifiers(getFastQualifiers());

  assert(Context && "extended qualifiers but no context!");
  return Context->getQualifiedType(QT, *this);
}

QualType QualifierCollector::apply(const Type *T) const {
  if (!hasNonFastQualifiers())
    return QualType(T, getFastQualifiers());

  assert(Context && "extended qualifiers but no context!");
  return Context->getQualifiedType(T, *this);
}

void ObjCInterfaceType::Profile(llvm::FoldingSetNodeID &ID,
                                         const ObjCInterfaceDecl *Decl,
                                         ObjCProtocolDecl * const *protocols,
                                         unsigned NumProtocols) {
  ID.AddPointer(Decl);
  for (unsigned i = 0; i != NumProtocols; i++)
    ID.AddPointer(protocols[i]);
}

void ObjCInterfaceType::Profile(llvm::FoldingSetNodeID &ID) {
  Profile(ID, getDecl(), qual_begin(), getNumProtocols());
}

Linkage Type::getLinkage() const { 
  // C++ [basic.link]p8:
  //   Names not covered by these rules have no linkage.
  if (this != CanonicalType.getTypePtr())
    return CanonicalType->getLinkage();

  return NoLinkage; 
}

Linkage BuiltinType::getLinkage() const {
  // C++ [basic.link]p8:
  //   A type is said to have linkage if and only if:
  //     - it is a fundamental type (3.9.1); or
  return ExternalLinkage;
}

Linkage TagType::getLinkage() const {
  // C++ [basic.link]p8:
  //     - it is a class or enumeration type that is named (or has a name for
  //       linkage purposes (7.1.3)) and the name has linkage; or
  //     -  it is a specialization of a class template (14); or
  return getDecl()->getLinkage();
}

// C++ [basic.link]p8:
//   - it is a compound type (3.9.2) other than a class or enumeration, 
//     compounded exclusively from types that have linkage; or
Linkage ComplexType::getLinkage() const {
  return ElementType->getLinkage();
}

Linkage PointerType::getLinkage() const {
  return PointeeType->getLinkage();
}

Linkage BlockPointerType::getLinkage() const {
  return PointeeType->getLinkage();
}

Linkage ReferenceType::getLinkage() const {
  return PointeeType->getLinkage();
}

Linkage MemberPointerType::getLinkage() const {
  return minLinkage(Class->getLinkage(), PointeeType->getLinkage());
}

Linkage ArrayType::getLinkage() const {
  return ElementType->getLinkage();
}

Linkage VectorType::getLinkage() const {
  return ElementType->getLinkage();
}

Linkage FunctionNoProtoType::getLinkage() const {
  return getResultType()->getLinkage();
}

Linkage FunctionProtoType::getLinkage() const {
  Linkage L = getResultType()->getLinkage();
  for (arg_type_iterator A = arg_type_begin(), AEnd = arg_type_end();
       A != AEnd; ++A)
    L = minLinkage(L, (*A)->getLinkage());

  return L;
}

Linkage ObjCInterfaceType::getLinkage() const {
  return ExternalLinkage;
}

Linkage ObjCObjectPointerType::getLinkage() const {
  return ExternalLinkage;
}