aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/BasicAliasAnalysis.cpp
blob: 09582cf9a71d05738306198588101c7ea712880f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the primary stateless implementation of the
// Alias Analysis interface that implements identities (two different
// globals cannot alias, etc), but does no stateful analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>

#define DEBUG_TYPE "basicaa"

using namespace llvm;

/// Enable analysis of recursive PHI nodes.
static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
                                          cl::init(false));
/// SearchLimitReached / SearchTimes shows how often the limit of
/// to decompose GEPs is reached. It will affect the precision
/// of basic alias analysis.
STATISTIC(SearchLimitReached, "Number of times the limit to "
                              "decompose GEPs is reached");
STATISTIC(SearchTimes, "Number of times a GEP is decomposed");

/// Cutoff after which to stop analysing a set of phi nodes potentially involved
/// in a cycle. Because we are analysing 'through' phi nodes, we need to be
/// careful with value equivalence. We use reachability to make sure a value
/// cannot be involved in a cycle.
const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;

// The max limit of the search depth in DecomposeGEPExpression() and
// GetUnderlyingObject(), both functions need to use the same search
// depth otherwise the algorithm in aliasGEP will assert.
static const unsigned MaxLookupSearchDepth = 6;

bool BasicAAResult::invalidate(Function &F, const PreservedAnalyses &PA,
                               FunctionAnalysisManager::Invalidator &Inv) {
  // We don't care if this analysis itself is preserved, it has no state. But
  // we need to check that the analyses it depends on have been. Note that we
  // may be created without handles to some analyses and in that case don't
  // depend on them.
  if (Inv.invalidate<AssumptionAnalysis>(F, PA) ||
      (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)) ||
      (LI && Inv.invalidate<LoopAnalysis>(F, PA)))
    return true;

  // Otherwise this analysis result remains valid.
  return false;
}

//===----------------------------------------------------------------------===//
// Useful predicates
//===----------------------------------------------------------------------===//

/// Returns true if the pointer is to a function-local object that never
/// escapes from the function.
static bool isNonEscapingLocalObject(const Value *V) {
  // If this is a local allocation, check to see if it escapes.
  if (isa<AllocaInst>(V) || isNoAliasCall(V))
    // Set StoreCaptures to True so that we can assume in our callers that the
    // pointer is not the result of a load instruction. Currently
    // PointerMayBeCaptured doesn't have any special analysis for the
    // StoreCaptures=false case; if it did, our callers could be refined to be
    // more precise.
    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);

  // If this is an argument that corresponds to a byval or noalias argument,
  // then it has not escaped before entering the function.  Check if it escapes
  // inside the function.
  if (const Argument *A = dyn_cast<Argument>(V))
    if (A->hasByValAttr() || A->hasNoAliasAttr())
      // Note even if the argument is marked nocapture, we still need to check
      // for copies made inside the function. The nocapture attribute only
      // specifies that there are no copies made that outlive the function.
      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);

  return false;
}

/// Returns true if the pointer is one which would have been considered an
/// escape by isNonEscapingLocalObject.
static bool isEscapeSource(const Value *V) {
  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
    return true;

  // The load case works because isNonEscapingLocalObject considers all
  // stores to be escapes (it passes true for the StoreCaptures argument
  // to PointerMayBeCaptured).
  if (isa<LoadInst>(V))
    return true;

  return false;
}

/// Returns the size of the object specified by V or UnknownSize if unknown.
static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
                              const TargetLibraryInfo &TLI,
                              bool RoundToAlign = false) {
  uint64_t Size;
  ObjectSizeOpts Opts;
  Opts.RoundToAlign = RoundToAlign;
  if (getObjectSize(V, Size, DL, &TLI, Opts))
    return Size;
  return MemoryLocation::UnknownSize;
}

/// Returns true if we can prove that the object specified by V is smaller than
/// Size.
static bool isObjectSmallerThan(const Value *V, uint64_t Size,
                                const DataLayout &DL,
                                const TargetLibraryInfo &TLI) {
  // Note that the meanings of the "object" are slightly different in the
  // following contexts:
  //    c1: llvm::getObjectSize()
  //    c2: llvm.objectsize() intrinsic
  //    c3: isObjectSmallerThan()
  // c1 and c2 share the same meaning; however, the meaning of "object" in c3
  // refers to the "entire object".
  //
  //  Consider this example:
  //     char *p = (char*)malloc(100)
  //     char *q = p+80;
  //
  //  In the context of c1 and c2, the "object" pointed by q refers to the
  // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
  //
  //  However, in the context of c3, the "object" refers to the chunk of memory
  // being allocated. So, the "object" has 100 bytes, and q points to the middle
  // the "object". In case q is passed to isObjectSmallerThan() as the 1st
  // parameter, before the llvm::getObjectSize() is called to get the size of
  // entire object, we should:
  //    - either rewind the pointer q to the base-address of the object in
  //      question (in this case rewind to p), or
  //    - just give up. It is up to caller to make sure the pointer is pointing
  //      to the base address the object.
  //
  // We go for 2nd option for simplicity.
  if (!isIdentifiedObject(V))
    return false;

  // This function needs to use the aligned object size because we allow
  // reads a bit past the end given sufficient alignment.
  uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);

  return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
}

/// Returns true if we can prove that the object specified by V has size Size.
static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
                         const TargetLibraryInfo &TLI) {
  uint64_t ObjectSize = getObjectSize(V, DL, TLI);
  return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
}

//===----------------------------------------------------------------------===//
// GetElementPtr Instruction Decomposition and Analysis
//===----------------------------------------------------------------------===//

/// Analyzes the specified value as a linear expression: "A*V + B", where A and
/// B are constant integers.
///
/// Returns the scale and offset values as APInts and return V as a Value*, and
/// return whether we looked through any sign or zero extends.  The incoming
/// Value is known to have IntegerType, and it may already be sign or zero
/// extended.
///
/// Note that this looks through extends, so the high bits may not be
/// represented in the result.
/*static*/ const Value *BasicAAResult::GetLinearExpression(
    const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
    unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
    AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
  assert(V->getType()->isIntegerTy() && "Not an integer value");

  // Limit our recursion depth.
  if (Depth == 6) {
    Scale = 1;
    Offset = 0;
    return V;
  }

  if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
    // If it's a constant, just convert it to an offset and remove the variable.
    // If we've been called recursively, the Offset bit width will be greater
    // than the constant's (the Offset's always as wide as the outermost call),
    // so we'll zext here and process any extension in the isa<SExtInst> &
    // isa<ZExtInst> cases below.
    Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
    assert(Scale == 0 && "Constant values don't have a scale");
    return V;
  }

  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {

      // If we've been called recursively, then Offset and Scale will be wider
      // than the BOp operands. We'll always zext it here as we'll process sign
      // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
      APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());

      switch (BOp->getOpcode()) {
      default:
        // We don't understand this instruction, so we can't decompose it any
        // further.
        Scale = 1;
        Offset = 0;
        return V;
      case Instruction::Or:
        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
        // analyze it.
        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
                               BOp, DT)) {
          Scale = 1;
          Offset = 0;
          return V;
        }
        LLVM_FALLTHROUGH;
      case Instruction::Add:
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
        Offset += RHS;
        break;
      case Instruction::Sub:
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
        Offset -= RHS;
        break;
      case Instruction::Mul:
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
        Offset *= RHS;
        Scale *= RHS;
        break;
      case Instruction::Shl:
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
        Offset <<= RHS.getLimitedValue();
        Scale <<= RHS.getLimitedValue();
        // the semantics of nsw and nuw for left shifts don't match those of
        // multiplications, so we won't propagate them.
        NSW = NUW = false;
        return V;
      }

      if (isa<OverflowingBinaryOperator>(BOp)) {
        NUW &= BOp->hasNoUnsignedWrap();
        NSW &= BOp->hasNoSignedWrap();
      }
      return V;
    }
  }

  // Since GEP indices are sign extended anyway, we don't care about the high
  // bits of a sign or zero extended value - just scales and offsets.  The
  // extensions have to be consistent though.
  if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
    Value *CastOp = cast<CastInst>(V)->getOperand(0);
    unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
    unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
    const Value *Result =
        GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
                            Depth + 1, AC, DT, NSW, NUW);

    // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
    // by just incrementing the number of bits we've extended by.
    unsigned ExtendedBy = NewWidth - SmallWidth;

    if (isa<SExtInst>(V) && ZExtBits == 0) {
      // sext(sext(%x, a), b) == sext(%x, a + b)

      if (NSW) {
        // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
        // into sext(%x) + sext(c). We'll sext the Offset ourselves:
        unsigned OldWidth = Offset.getBitWidth();
        Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
      } else {
        // We may have signed-wrapped, so don't decompose sext(%x + c) into
        // sext(%x) + sext(c)
        Scale = 1;
        Offset = 0;
        Result = CastOp;
        ZExtBits = OldZExtBits;
        SExtBits = OldSExtBits;
      }
      SExtBits += ExtendedBy;
    } else {
      // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)

      if (!NUW) {
        // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
        // zext(%x) + zext(c)
        Scale = 1;
        Offset = 0;
        Result = CastOp;
        ZExtBits = OldZExtBits;
        SExtBits = OldSExtBits;
      }
      ZExtBits += ExtendedBy;
    }

    return Result;
  }

  Scale = 1;
  Offset = 0;
  return V;
}

/// To ensure a pointer offset fits in an integer of size PointerSize
/// (in bits) when that size is smaller than 64. This is an issue in
/// particular for 32b programs with negative indices that rely on two's
/// complement wrap-arounds for precise alias information.
static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
  assert(PointerSize <= 64 && "Invalid PointerSize!");
  unsigned ShiftBits = 64 - PointerSize;
  return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
}

/// If V is a symbolic pointer expression, decompose it into a base pointer
/// with a constant offset and a number of scaled symbolic offsets.
///
/// The scaled symbolic offsets (represented by pairs of a Value* and a scale
/// in the VarIndices vector) are Value*'s that are known to be scaled by the
/// specified amount, but which may have other unrepresented high bits. As
/// such, the gep cannot necessarily be reconstructed from its decomposed form.
///
/// When DataLayout is around, this function is capable of analyzing everything
/// that GetUnderlyingObject can look through. To be able to do that
/// GetUnderlyingObject and DecomposeGEPExpression must use the same search
/// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
/// through pointer casts.
bool BasicAAResult::DecomposeGEPExpression(const Value *V,
       DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
       DominatorTree *DT) {
  // Limit recursion depth to limit compile time in crazy cases.
  unsigned MaxLookup = MaxLookupSearchDepth;
  SearchTimes++;

  Decomposed.StructOffset = 0;
  Decomposed.OtherOffset = 0;
  Decomposed.VarIndices.clear();
  do {
    // See if this is a bitcast or GEP.
    const Operator *Op = dyn_cast<Operator>(V);
    if (!Op) {
      // The only non-operator case we can handle are GlobalAliases.
      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
        if (!GA->isInterposable()) {
          V = GA->getAliasee();
          continue;
        }
      }
      Decomposed.Base = V;
      return false;
    }

    if (Op->getOpcode() == Instruction::BitCast ||
        Op->getOpcode() == Instruction::AddrSpaceCast) {
      V = Op->getOperand(0);
      continue;
    }

    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
    if (!GEPOp) {
      if (auto CS = ImmutableCallSite(V))
        if (const Value *RV = CS.getReturnedArgOperand()) {
          V = RV;
          continue;
        }

      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
      // can come up with something. This matches what GetUnderlyingObject does.
      if (const Instruction *I = dyn_cast<Instruction>(V))
        // TODO: Get a DominatorTree and AssumptionCache and use them here
        // (these are both now available in this function, but this should be
        // updated when GetUnderlyingObject is updated). TLI should be
        // provided also.
        if (const Value *Simplified =
                SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
          V = Simplified;
          continue;
        }

      Decomposed.Base = V;
      return false;
    }

    // Don't attempt to analyze GEPs over unsized objects.
    if (!GEPOp->getSourceElementType()->isSized()) {
      Decomposed.Base = V;
      return false;
    }

    unsigned AS = GEPOp->getPointerAddressSpace();
    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
    gep_type_iterator GTI = gep_type_begin(GEPOp);
    unsigned PointerSize = DL.getPointerSizeInBits(AS);
    // Assume all GEP operands are constants until proven otherwise.
    bool GepHasConstantOffset = true;
    for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
         I != E; ++I, ++GTI) {
      const Value *Index = *I;
      // Compute the (potentially symbolic) offset in bytes for this index.
      if (StructType *STy = GTI.getStructTypeOrNull()) {
        // For a struct, add the member offset.
        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
        if (FieldNo == 0)
          continue;

        Decomposed.StructOffset +=
          DL.getStructLayout(STy)->getElementOffset(FieldNo);
        continue;
      }

      // For an array/pointer, add the element offset, explicitly scaled.
      if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
        if (CIdx->isZero())
          continue;
        Decomposed.OtherOffset +=
          DL.getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue();
        continue;
      }

      GepHasConstantOffset = false;

      uint64_t Scale = DL.getTypeAllocSize(GTI.getIndexedType());
      unsigned ZExtBits = 0, SExtBits = 0;

      // If the integer type is smaller than the pointer size, it is implicitly
      // sign extended to pointer size.
      unsigned Width = Index->getType()->getIntegerBitWidth();
      if (PointerSize > Width)
        SExtBits += PointerSize - Width;

      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
      bool NSW = true, NUW = true;
      Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
                                  SExtBits, DL, 0, AC, DT, NSW, NUW);

      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
      Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale;
      Scale *= IndexScale.getSExtValue();

      // If we already had an occurrence of this index variable, merge this
      // scale into it.  For example, we want to handle:
      //   A[x][x] -> x*16 + x*4 -> x*20
      // This also ensures that 'x' only appears in the index list once.
      for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
        if (Decomposed.VarIndices[i].V == Index &&
            Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
            Decomposed.VarIndices[i].SExtBits == SExtBits) {
          Scale += Decomposed.VarIndices[i].Scale;
          Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
          break;
        }
      }

      // Make sure that we have a scale that makes sense for this target's
      // pointer size.
      Scale = adjustToPointerSize(Scale, PointerSize);

      if (Scale) {
        VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
                                  static_cast<int64_t>(Scale)};
        Decomposed.VarIndices.push_back(Entry);
      }
    }

    // Take care of wrap-arounds
    if (GepHasConstantOffset) {
      Decomposed.StructOffset =
          adjustToPointerSize(Decomposed.StructOffset, PointerSize);
      Decomposed.OtherOffset =
          adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
    }

    // Analyze the base pointer next.
    V = GEPOp->getOperand(0);
  } while (--MaxLookup);

  // If the chain of expressions is too deep, just return early.
  Decomposed.Base = V;
  SearchLimitReached++;
  return true;
}

/// Returns whether the given pointer value points to memory that is local to
/// the function, with global constants being considered local to all
/// functions.
bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
                                           bool OrLocal) {
  assert(Visited.empty() && "Visited must be cleared after use!");

  unsigned MaxLookup = 8;
  SmallVector<const Value *, 16> Worklist;
  Worklist.push_back(Loc.Ptr);
  do {
    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
    if (!Visited.insert(V).second) {
      Visited.clear();
      return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    }

    // An alloca instruction defines local memory.
    if (OrLocal && isa<AllocaInst>(V))
      continue;

    // A global constant counts as local memory for our purposes.
    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
      // global to be marked constant in some modules and non-constant in
      // others.  GV may even be a declaration, not a definition.
      if (!GV->isConstant()) {
        Visited.clear();
        return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
      }
      continue;
    }

    // If both select values point to local memory, then so does the select.
    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
      Worklist.push_back(SI->getTrueValue());
      Worklist.push_back(SI->getFalseValue());
      continue;
    }

    // If all values incoming to a phi node point to local memory, then so does
    // the phi.
    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
      // Don't bother inspecting phi nodes with many operands.
      if (PN->getNumIncomingValues() > MaxLookup) {
        Visited.clear();
        return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
      }
      for (Value *IncValue : PN->incoming_values())
        Worklist.push_back(IncValue);
      continue;
    }

    // Otherwise be conservative.
    Visited.clear();
    return AAResultBase::pointsToConstantMemory(Loc, OrLocal);

  } while (!Worklist.empty() && --MaxLookup);

  Visited.clear();
  return Worklist.empty();
}

/// Returns the behavior when calling the given call site.
FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
  if (CS.doesNotAccessMemory())
    // Can't do better than this.
    return FMRB_DoesNotAccessMemory;

  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;

  // If the callsite knows it only reads memory, don't return worse
  // than that.
  if (CS.onlyReadsMemory())
    Min = FMRB_OnlyReadsMemory;
  else if (CS.doesNotReadMemory())
    Min = FMRB_DoesNotReadMemory;

  if (CS.onlyAccessesArgMemory())
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);

  // If CS has operand bundles then aliasing attributes from the function it
  // calls do not directly apply to the CallSite.  This can be made more
  // precise in the future.
  if (!CS.hasOperandBundles())
    if (const Function *F = CS.getCalledFunction())
      Min =
          FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));

  return Min;
}

/// Returns the behavior when calling the given function. For use when the call
/// site is not known.
FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
  // If the function declares it doesn't access memory, we can't do better.
  if (F->doesNotAccessMemory())
    return FMRB_DoesNotAccessMemory;

  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;

  // If the function declares it only reads memory, go with that.
  if (F->onlyReadsMemory())
    Min = FMRB_OnlyReadsMemory;
  else if (F->doesNotReadMemory())
    Min = FMRB_DoesNotReadMemory;

  if (F->onlyAccessesArgMemory())
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
  else if (F->onlyAccessesInaccessibleMemory())
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
  else if (F->onlyAccessesInaccessibleMemOrArgMem())
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);

  return Min;
}

/// Returns true if this is a writeonly (i.e Mod only) parameter.
static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
                             const TargetLibraryInfo &TLI) {
  if (CS.paramHasAttr(ArgIdx, Attribute::WriteOnly))
    return true;

  // We can bound the aliasing properties of memset_pattern16 just as we can
  // for memcpy/memset.  This is particularly important because the
  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
  // whenever possible.
  // FIXME Consider handling this in InferFunctionAttr.cpp together with other
  // attributes.
  LibFunc F;
  if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) &&
      F == LibFunc_memset_pattern16 && TLI.has(F))
    if (ArgIdx == 0)
      return true;

  // TODO: memset_pattern4, memset_pattern8
  // TODO: _chk variants
  // TODO: strcmp, strcpy

  return false;
}

ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
                                           unsigned ArgIdx) {

  // Checking for known builtin intrinsics and target library functions.
  if (isWriteOnlyParam(CS, ArgIdx, TLI))
    return MRI_Mod;

  if (CS.paramHasAttr(ArgIdx, Attribute::ReadOnly))
    return MRI_Ref;

  if (CS.paramHasAttr(ArgIdx, Attribute::ReadNone))
    return MRI_NoModRef;

  return AAResultBase::getArgModRefInfo(CS, ArgIdx);
}

static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) {
  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
  return II && II->getIntrinsicID() == IID;
}

#ifndef NDEBUG
static const Function *getParent(const Value *V) {
  if (const Instruction *inst = dyn_cast<Instruction>(V))
    return inst->getParent()->getParent();

  if (const Argument *arg = dyn_cast<Argument>(V))
    return arg->getParent();

  return nullptr;
}

static bool notDifferentParent(const Value *O1, const Value *O2) {

  const Function *F1 = getParent(O1);
  const Function *F2 = getParent(O2);

  return !F1 || !F2 || F1 == F2;
}
#endif

AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
                                 const MemoryLocation &LocB) {
  assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
         "BasicAliasAnalysis doesn't support interprocedural queries.");

  // If we have a directly cached entry for these locations, we have recursed
  // through this once, so just return the cached results. Notably, when this
  // happens, we don't clear the cache.
  auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
  if (CacheIt != AliasCache.end())
    return CacheIt->second;

  AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
                                 LocB.Size, LocB.AATags);
  // AliasCache rarely has more than 1 or 2 elements, always use
  // shrink_and_clear so it quickly returns to the inline capacity of the
  // SmallDenseMap if it ever grows larger.
  // FIXME: This should really be shrink_to_inline_capacity_and_clear().
  AliasCache.shrink_and_clear();
  VisitedPhiBBs.clear();
  return Alias;
}

/// Checks to see if the specified callsite can clobber the specified memory
/// object.
///
/// Since we only look at local properties of this function, we really can't
/// say much about this query.  We do, however, use simple "address taken"
/// analysis on local objects.
ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
                                        const MemoryLocation &Loc) {
  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
         "AliasAnalysis query involving multiple functions!");

  const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);

  // If this is a tail call and Loc.Ptr points to a stack location, we know that
  // the tail call cannot access or modify the local stack.
  // We cannot exclude byval arguments here; these belong to the caller of
  // the current function not to the current function, and a tail callee
  // may reference them.
  if (isa<AllocaInst>(Object))
    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
      if (CI->isTailCall())
        return MRI_NoModRef;

  // If the pointer is to a locally allocated object that does not escape,
  // then the call can not mod/ref the pointer unless the call takes the pointer
  // as an argument, and itself doesn't capture it.
  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
      isNonEscapingLocalObject(Object)) {

    // Optimistically assume that call doesn't touch Object and check this
    // assumption in the following loop.
    ModRefInfo Result = MRI_NoModRef;

    unsigned OperandNo = 0;
    for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
         CI != CE; ++CI, ++OperandNo) {
      // Only look at the no-capture or byval pointer arguments.  If this
      // pointer were passed to arguments that were neither of these, then it
      // couldn't be no-capture.
      if (!(*CI)->getType()->isPointerTy() ||
          (!CS.doesNotCapture(OperandNo) &&
           OperandNo < CS.getNumArgOperands() && !CS.isByValArgument(OperandNo)))
        continue;

      // Call doesn't access memory through this operand, so we don't care
      // if it aliases with Object.
      if (CS.doesNotAccessMemory(OperandNo))
        continue;

      // If this is a no-capture pointer argument, see if we can tell that it
      // is impossible to alias the pointer we're checking.
      AliasResult AR =
          getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));

      // Operand doesnt alias 'Object', continue looking for other aliases
      if (AR == NoAlias)
        continue;
      // Operand aliases 'Object', but call doesn't modify it. Strengthen
      // initial assumption and keep looking in case if there are more aliases.
      if (CS.onlyReadsMemory(OperandNo)) {
        Result = static_cast<ModRefInfo>(Result | MRI_Ref);
        continue;
      }
      // Operand aliases 'Object' but call only writes into it.
      if (CS.doesNotReadMemory(OperandNo)) {
        Result = static_cast<ModRefInfo>(Result | MRI_Mod);
        continue;
      }
      // This operand aliases 'Object' and call reads and writes into it.
      Result = MRI_ModRef;
      break;
    }

    // Early return if we improved mod ref information
    if (Result != MRI_ModRef)
      return Result;
  }

  // If the CallSite is to malloc or calloc, we can assume that it doesn't
  // modify any IR visible value.  This is only valid because we assume these
  // routines do not read values visible in the IR.  TODO: Consider special
  // casing realloc and strdup routines which access only their arguments as
  // well.  Or alternatively, replace all of this with inaccessiblememonly once
  // that's implemented fully. 
  auto *Inst = CS.getInstruction();
  if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI)) {
    // Be conservative if the accessed pointer may alias the allocation -
    // fallback to the generic handling below.
    if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias)
      return MRI_NoModRef;
  }

  // The semantics of memcpy intrinsics forbid overlap between their respective
  // operands, i.e., source and destination of any given memcpy must no-alias.
  // If Loc must-aliases either one of these two locations, then it necessarily
  // no-aliases the other.
  if (auto *Inst = dyn_cast<MemCpyInst>(CS.getInstruction())) {
    AliasResult SrcAA, DestAA;

    if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst),
                                          Loc)) == MustAlias)
      // Loc is exactly the memcpy source thus disjoint from memcpy dest.
      return MRI_Ref;
    if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst),
                                           Loc)) == MustAlias)
      // The converse case.
      return MRI_Mod;

    // It's also possible for Loc to alias both src and dest, or neither.
    ModRefInfo rv = MRI_NoModRef;
    if (SrcAA != NoAlias)
      rv = static_cast<ModRefInfo>(rv | MRI_Ref);
    if (DestAA != NoAlias)
      rv = static_cast<ModRefInfo>(rv | MRI_Mod);
    return rv;
  }

  // While the assume intrinsic is marked as arbitrarily writing so that
  // proper control dependencies will be maintained, it never aliases any
  // particular memory location.
  if (isIntrinsicCall(CS, Intrinsic::assume))
    return MRI_NoModRef;

  // Like assumes, guard intrinsics are also marked as arbitrarily writing so
  // that proper control dependencies are maintained but they never mods any
  // particular memory location.
  //
  // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
  // heap state at the point the guard is issued needs to be consistent in case
  // the guard invokes the "deopt" continuation.
  if (isIntrinsicCall(CS, Intrinsic::experimental_guard))
    return MRI_Ref;

  // Like assumes, invariant.start intrinsics were also marked as arbitrarily
  // writing so that proper control dependencies are maintained but they never
  // mod any particular memory location visible to the IR.
  // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
  // intrinsic is now modeled as reading memory. This prevents hoisting the
  // invariant.start intrinsic over stores. Consider:
  // *ptr = 40;
  // *ptr = 50;
  // invariant_start(ptr)
  // int val = *ptr;
  // print(val);
  //
  // This cannot be transformed to:
  //
  // *ptr = 40;
  // invariant_start(ptr)
  // *ptr = 50;
  // int val = *ptr;
  // print(val);
  //
  // The transformation will cause the second store to be ignored (based on
  // rules of invariant.start)  and print 40, while the first program always
  // prints 50.
  if (isIntrinsicCall(CS, Intrinsic::invariant_start))
    return MRI_Ref;

  // The AAResultBase base class has some smarts, lets use them.
  return AAResultBase::getModRefInfo(CS, Loc);
}

ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
                                        ImmutableCallSite CS2) {
  // While the assume intrinsic is marked as arbitrarily writing so that
  // proper control dependencies will be maintained, it never aliases any
  // particular memory location.
  if (isIntrinsicCall(CS1, Intrinsic::assume) ||
      isIntrinsicCall(CS2, Intrinsic::assume))
    return MRI_NoModRef;

  // Like assumes, guard intrinsics are also marked as arbitrarily writing so
  // that proper control dependencies are maintained but they never mod any
  // particular memory location.
  //
  // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
  // heap state at the point the guard is issued needs to be consistent in case
  // the guard invokes the "deopt" continuation.

  // NB! This function is *not* commutative, so we specical case two
  // possibilities for guard intrinsics.

  if (isIntrinsicCall(CS1, Intrinsic::experimental_guard))
    return getModRefBehavior(CS2) & MRI_Mod ? MRI_Ref : MRI_NoModRef;

  if (isIntrinsicCall(CS2, Intrinsic::experimental_guard))
    return getModRefBehavior(CS1) & MRI_Mod ? MRI_Mod : MRI_NoModRef;

  // The AAResultBase base class has some smarts, lets use them.
  return AAResultBase::getModRefInfo(CS1, CS2);
}

/// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
/// both having the exact same pointer operand.
static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
                                            uint64_t V1Size,
                                            const GEPOperator *GEP2,
                                            uint64_t V2Size,
                                            const DataLayout &DL) {

  assert(GEP1->getPointerOperand()->stripPointerCasts() ==
         GEP2->getPointerOperand()->stripPointerCasts() &&
         GEP1->getPointerOperand()->getType() ==
         GEP2->getPointerOperand()->getType() &&
         "Expected GEPs with the same pointer operand");

  // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
  // such that the struct field accesses provably cannot alias.
  // We also need at least two indices (the pointer, and the struct field).
  if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
      GEP1->getNumIndices() < 2)
    return MayAlias;

  // If we don't know the size of the accesses through both GEPs, we can't
  // determine whether the struct fields accessed can't alias.
  if (V1Size == MemoryLocation::UnknownSize ||
      V2Size == MemoryLocation::UnknownSize)
    return MayAlias;

  ConstantInt *C1 =
      dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
  ConstantInt *C2 =
      dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));

  // If the last (struct) indices are constants and are equal, the other indices
  // might be also be dynamically equal, so the GEPs can alias.
  if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue())
    return MayAlias;

  // Find the last-indexed type of the GEP, i.e., the type you'd get if
  // you stripped the last index.
  // On the way, look at each indexed type.  If there's something other
  // than an array, different indices can lead to different final types.
  SmallVector<Value *, 8> IntermediateIndices;

  // Insert the first index; we don't need to check the type indexed
  // through it as it only drops the pointer indirection.
  assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
  IntermediateIndices.push_back(GEP1->getOperand(1));

  // Insert all the remaining indices but the last one.
  // Also, check that they all index through arrays.
  for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
    if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
            GEP1->getSourceElementType(), IntermediateIndices)))
      return MayAlias;
    IntermediateIndices.push_back(GEP1->getOperand(i + 1));
  }

  auto *Ty = GetElementPtrInst::getIndexedType(
    GEP1->getSourceElementType(), IntermediateIndices);
  StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);

  if (isa<SequentialType>(Ty)) {
    // We know that:
    // - both GEPs begin indexing from the exact same pointer;
    // - the last indices in both GEPs are constants, indexing into a sequential
    //   type (array or pointer);
    // - both GEPs only index through arrays prior to that.
    //
    // Because array indices greater than the number of elements are valid in
    // GEPs, unless we know the intermediate indices are identical between
    // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
    // partially overlap. We also need to check that the loaded size matches
    // the element size, otherwise we could still have overlap.
    const uint64_t ElementSize =
        DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
    if (V1Size != ElementSize || V2Size != ElementSize)
      return MayAlias;

    for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
      if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
        return MayAlias;

    // Now we know that the array/pointer that GEP1 indexes into and that
    // that GEP2 indexes into must either precisely overlap or be disjoint.
    // Because they cannot partially overlap and because fields in an array
    // cannot overlap, if we can prove the final indices are different between
    // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
    
    // If the last indices are constants, we've already checked they don't
    // equal each other so we can exit early.
    if (C1 && C2)
      return NoAlias;
    if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1),
                        GEP2->getOperand(GEP2->getNumOperands() - 1),
                        DL))
      return NoAlias;
    return MayAlias;
  } else if (!LastIndexedStruct || !C1 || !C2) {
    return MayAlias;
  }

  // We know that:
  // - both GEPs begin indexing from the exact same pointer;
  // - the last indices in both GEPs are constants, indexing into a struct;
  // - said indices are different, hence, the pointed-to fields are different;
  // - both GEPs only index through arrays prior to that.
  //
  // This lets us determine that the struct that GEP1 indexes into and the
  // struct that GEP2 indexes into must either precisely overlap or be
  // completely disjoint.  Because they cannot partially overlap, indexing into
  // different non-overlapping fields of the struct will never alias.

  // Therefore, the only remaining thing needed to show that both GEPs can't
  // alias is that the fields are not overlapping.
  const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
  const uint64_t StructSize = SL->getSizeInBytes();
  const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
  const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());

  auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
                                      uint64_t V2Off, uint64_t V2Size) {
    return V1Off < V2Off && V1Off + V1Size <= V2Off &&
           ((V2Off + V2Size <= StructSize) ||
            (V2Off + V2Size - StructSize <= V1Off));
  };

  if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
      EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
    return NoAlias;

  return MayAlias;
}

// If a we have (a) a GEP and (b) a pointer based on an alloca, and the
// beginning of the object the GEP points would have a negative offset with
// repsect to the alloca, that means the GEP can not alias pointer (b).
// Note that the pointer based on the alloca may not be a GEP. For
// example, it may be the alloca itself.
// The same applies if (b) is based on a GlobalVariable. Note that just being
// based on isIdentifiedObject() is not enough - we need an identified object
// that does not permit access to negative offsets. For example, a negative
// offset from a noalias argument or call can be inbounds w.r.t the actual
// underlying object.
//
// For example, consider:
//
//   struct { int f0, int f1, ...} foo;
//   foo alloca;
//   foo* random = bar(alloca);
//   int *f0 = &alloca.f0
//   int *f1 = &random->f1;
//
// Which is lowered, approximately, to:
//
//  %alloca = alloca %struct.foo
//  %random = call %struct.foo* @random(%struct.foo* %alloca)
//  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
//  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
//
// Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
// by %alloca. Since the %f1 GEP is inbounds, that means %random must also
// point into the same object. But since %f0 points to the beginning of %alloca,
// the highest %f1 can be is (%alloca + 3). This means %random can not be higher
// than (%alloca - 1), and so is not inbounds, a contradiction.
bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
      const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 
      uint64_t ObjectAccessSize) {
  // If the object access size is unknown, or the GEP isn't inbounds, bail.
  if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds())
    return false;

  // We need the object to be an alloca or a globalvariable, and want to know
  // the offset of the pointer from the object precisely, so no variable
  // indices are allowed.
  if (!(isa<AllocaInst>(DecompObject.Base) ||
        isa<GlobalVariable>(DecompObject.Base)) ||
      !DecompObject.VarIndices.empty())
    return false;

  int64_t ObjectBaseOffset = DecompObject.StructOffset +
                             DecompObject.OtherOffset;

  // If the GEP has no variable indices, we know the precise offset
  // from the base, then use it. If the GEP has variable indices, we're in
  // a bit more trouble: we can't count on the constant offsets that come
  // from non-struct sources, since these can be "rewound" by a negative
  // variable offset. So use only offsets that came from structs.
  int64_t GEPBaseOffset = DecompGEP.StructOffset;
  if (DecompGEP.VarIndices.empty())
    GEPBaseOffset += DecompGEP.OtherOffset;

  return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize);
}

/// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
/// another pointer.
///
/// We know that V1 is a GEP, but we don't know anything about V2.
/// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
/// V2.
AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
                                    const AAMDNodes &V1AAInfo, const Value *V2,
                                    uint64_t V2Size, const AAMDNodes &V2AAInfo,
                                    const Value *UnderlyingV1,
                                    const Value *UnderlyingV2) {
  DecomposedGEP DecompGEP1, DecompGEP2;
  bool GEP1MaxLookupReached =
    DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
  bool GEP2MaxLookupReached =
    DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);

  int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
  int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;

  assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
         "DecomposeGEPExpression returned a result different from "
         "GetUnderlyingObject");

  // If the GEP's offset relative to its base is such that the base would
  // fall below the start of the object underlying V2, then the GEP and V2
  // cannot alias.
  if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
      isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
    return NoAlias;
  // If we have two gep instructions with must-alias or not-alias'ing base
  // pointers, figure out if the indexes to the GEP tell us anything about the
  // derived pointer.
  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
    // Check for the GEP base being at a negative offset, this time in the other
    // direction.
    if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
        isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
      return NoAlias;
    // Do the base pointers alias?
    AliasResult BaseAlias =
        aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
                   UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());

    // Check for geps of non-aliasing underlying pointers where the offsets are
    // identical.
    if ((BaseAlias == MayAlias) && V1Size == V2Size) {
      // Do the base pointers alias assuming type and size.
      AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
                                                UnderlyingV2, V2Size, V2AAInfo);
      if (PreciseBaseAlias == NoAlias) {
        // See if the computed offset from the common pointer tells us about the
        // relation of the resulting pointer.
        // If the max search depth is reached the result is undefined
        if (GEP2MaxLookupReached || GEP1MaxLookupReached)
          return MayAlias;

        // Same offsets.
        if (GEP1BaseOffset == GEP2BaseOffset &&
            DecompGEP1.VarIndices == DecompGEP2.VarIndices)
          return NoAlias;
      }
    }

    // If we get a No or May, then return it immediately, no amount of analysis
    // will improve this situation.
    if (BaseAlias != MustAlias)
      return BaseAlias;

    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
    // exactly, see if the computed offset from the common pointer tells us
    // about the relation of the resulting pointer.
    // If we know the two GEPs are based off of the exact same pointer (and not
    // just the same underlying object), see if that tells us anything about
    // the resulting pointers.
    if (GEP1->getPointerOperand()->stripPointerCasts() ==
        GEP2->getPointerOperand()->stripPointerCasts() &&
        GEP1->getPointerOperand()->getType() ==
        GEP2->getPointerOperand()->getType()) {
      AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
      // If we couldn't find anything interesting, don't abandon just yet.
      if (R != MayAlias)
        return R;
    }

    // If the max search depth is reached, the result is undefined
    if (GEP2MaxLookupReached || GEP1MaxLookupReached)
      return MayAlias;

    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
    // symbolic difference.
    GEP1BaseOffset -= GEP2BaseOffset;
    GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);

  } else {
    // Check to see if these two pointers are related by the getelementptr
    // instruction.  If one pointer is a GEP with a non-zero index of the other
    // pointer, we know they cannot alias.

    // If both accesses are unknown size, we can't do anything useful here.
    if (V1Size == MemoryLocation::UnknownSize &&
        V2Size == MemoryLocation::UnknownSize)
      return MayAlias;

    AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
                               AAMDNodes(), V2, MemoryLocation::UnknownSize,
                               V2AAInfo, nullptr, UnderlyingV2);
    if (R != MustAlias)
      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
      // If V2 is known not to alias GEP base pointer, then the two values
      // cannot alias per GEP semantics: "Any memory access must be done through
      // a pointer value associated with an address range of the memory access,
      // otherwise the behavior is undefined.".
      return R;

    // If the max search depth is reached the result is undefined
    if (GEP1MaxLookupReached)
      return MayAlias;
  }

  // In the two GEP Case, if there is no difference in the offsets of the
  // computed pointers, the resultant pointers are a must alias.  This
  // happens when we have two lexically identical GEP's (for example).
  //
  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
  // must aliases the GEP, the end result is a must alias also.
  if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
    return MustAlias;

  // If there is a constant difference between the pointers, but the difference
  // is less than the size of the associated memory object, then we know
  // that the objects are partially overlapping.  If the difference is
  // greater, we know they do not overlap.
  if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
    if (GEP1BaseOffset >= 0) {
      if (V2Size != MemoryLocation::UnknownSize) {
        if ((uint64_t)GEP1BaseOffset < V2Size)
          return PartialAlias;
        return NoAlias;
      }
    } else {
      // We have the situation where:
      // +                +
      // | BaseOffset     |
      // ---------------->|
      // |-->V1Size       |-------> V2Size
      // GEP1             V2
      // We need to know that V2Size is not unknown, otherwise we might have
      // stripped a gep with negative index ('gep <ptr>, -1, ...).
      if (V1Size != MemoryLocation::UnknownSize &&
          V2Size != MemoryLocation::UnknownSize) {
        if (-(uint64_t)GEP1BaseOffset < V1Size)
          return PartialAlias;
        return NoAlias;
      }
    }
  }

  if (!DecompGEP1.VarIndices.empty()) {
    uint64_t Modulo = 0;
    bool AllPositive = true;
    for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {

      // Try to distinguish something like &A[i][1] against &A[42][0].
      // Grab the least significant bit set in any of the scales. We
      // don't need std::abs here (even if the scale's negative) as we'll
      // be ^'ing Modulo with itself later.
      Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale;

      if (AllPositive) {
        // If the Value could change between cycles, then any reasoning about
        // the Value this cycle may not hold in the next cycle. We'll just
        // give up if we can't determine conditions that hold for every cycle:
        const Value *V = DecompGEP1.VarIndices[i].V;

        bool SignKnownZero, SignKnownOne;
        ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL,
                       0, &AC, nullptr, DT);

        // Zero-extension widens the variable, and so forces the sign
        // bit to zero.
        bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
        SignKnownZero |= IsZExt;
        SignKnownOne &= !IsZExt;

        // If the variable begins with a zero then we know it's
        // positive, regardless of whether the value is signed or
        // unsigned.
        int64_t Scale = DecompGEP1.VarIndices[i].Scale;
        AllPositive =
            (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
      }
    }

    Modulo = Modulo ^ (Modulo & (Modulo - 1));

    // We can compute the difference between the two addresses
    // mod Modulo. Check whether that difference guarantees that the
    // two locations do not alias.
    uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
    if (V1Size != MemoryLocation::UnknownSize &&
        V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
        V1Size <= Modulo - ModOffset)
      return NoAlias;

    // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
    // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
    // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
    if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
      return NoAlias;

    if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
                                GEP1BaseOffset, &AC, DT))
      return NoAlias;
  }

  // Statically, we can see that the base objects are the same, but the
  // pointers have dynamic offsets which we can't resolve. And none of our
  // little tricks above worked.
  //
  // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
  // practical effect of this is protecting TBAA in the case of dynamic
  // indices into arrays of unions or malloc'd memory.
  return PartialAlias;
}

static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
  // If the results agree, take it.
  if (A == B)
    return A;
  // A mix of PartialAlias and MustAlias is PartialAlias.
  if ((A == PartialAlias && B == MustAlias) ||
      (B == PartialAlias && A == MustAlias))
    return PartialAlias;
  // Otherwise, we don't know anything.
  return MayAlias;
}

/// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
/// against another.
AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
                                       const AAMDNodes &SIAAInfo,
                                       const Value *V2, uint64_t V2Size,
                                       const AAMDNodes &V2AAInfo,
                                       const Value *UnderV2) {
  // If the values are Selects with the same condition, we can do a more precise
  // check: just check for aliases between the values on corresponding arms.
  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
    if (SI->getCondition() == SI2->getCondition()) {
      AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
                                     SI2->getTrueValue(), V2Size, V2AAInfo);
      if (Alias == MayAlias)
        return MayAlias;
      AliasResult ThisAlias =
          aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
                     SI2->getFalseValue(), V2Size, V2AAInfo);
      return MergeAliasResults(ThisAlias, Alias);
    }

  // If both arms of the Select node NoAlias or MustAlias V2, then returns
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
  AliasResult Alias =
      aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
                 SISize, SIAAInfo, UnderV2);
  if (Alias == MayAlias)
    return MayAlias;

  AliasResult ThisAlias =
      aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo,
                 UnderV2);
  return MergeAliasResults(ThisAlias, Alias);
}

/// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
/// another.
AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
                                    const AAMDNodes &PNAAInfo, const Value *V2,
                                    uint64_t V2Size, const AAMDNodes &V2AAInfo,
                                    const Value *UnderV2) {
  // Track phi nodes we have visited. We use this information when we determine
  // value equivalence.
  VisitedPhiBBs.insert(PN->getParent());

  // If the values are PHIs in the same block, we can do a more precise
  // as well as efficient check: just check for aliases between the values
  // on corresponding edges.
  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
    if (PN2->getParent() == PN->getParent()) {
      LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
                   MemoryLocation(V2, V2Size, V2AAInfo));
      if (PN > V2)
        std::swap(Locs.first, Locs.second);
      // Analyse the PHIs' inputs under the assumption that the PHIs are
      // NoAlias.
      // If the PHIs are May/MustAlias there must be (recursively) an input
      // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
      // there must be an operation on the PHIs within the PHIs' value cycle
      // that causes a MayAlias.
      // Pretend the phis do not alias.
      AliasResult Alias = NoAlias;
      assert(AliasCache.count(Locs) &&
             "There must exist an entry for the phi node");
      AliasResult OrigAliasResult = AliasCache[Locs];
      AliasCache[Locs] = NoAlias;

      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        AliasResult ThisAlias =
            aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
                       PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
                       V2Size, V2AAInfo);
        Alias = MergeAliasResults(ThisAlias, Alias);
        if (Alias == MayAlias)
          break;
      }

      // Reset if speculation failed.
      if (Alias != NoAlias)
        AliasCache[Locs] = OrigAliasResult;

      return Alias;
    }

  SmallPtrSet<Value *, 4> UniqueSrc;
  SmallVector<Value *, 4> V1Srcs;
  bool isRecursive = false;
  for (Value *PV1 : PN->incoming_values()) {
    if (isa<PHINode>(PV1))
      // If any of the source itself is a PHI, return MayAlias conservatively
      // to avoid compile time explosion. The worst possible case is if both
      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
      // and 'n' are the number of PHI sources.
      return MayAlias;

    if (EnableRecPhiAnalysis)
      if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
        // Check whether the incoming value is a GEP that advances the pointer
        // result of this PHI node (e.g. in a loop). If this is the case, we
        // would recurse and always get a MayAlias. Handle this case specially
        // below.
        if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
            isa<ConstantInt>(PV1GEP->idx_begin())) {
          isRecursive = true;
          continue;
        }
      }

    if (UniqueSrc.insert(PV1).second)
      V1Srcs.push_back(PV1);
  }

  // If this PHI node is recursive, set the size of the accessed memory to
  // unknown to represent all the possible values the GEP could advance the
  // pointer to.
  if (isRecursive)
    PNSize = MemoryLocation::UnknownSize;

  AliasResult Alias =
      aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0],
                 PNSize, PNAAInfo, UnderV2);

  // Early exit if the check of the first PHI source against V2 is MayAlias.
  // Other results are not possible.
  if (Alias == MayAlias)
    return MayAlias;

  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
    Value *V = V1Srcs[i];

    AliasResult ThisAlias =
        aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2);
    Alias = MergeAliasResults(ThisAlias, Alias);
    if (Alias == MayAlias)
      break;
  }

  return Alias;
}

/// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
/// array references.
AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
                                      AAMDNodes V1AAInfo, const Value *V2,
                                      uint64_t V2Size, AAMDNodes V2AAInfo, 
                                      const Value *O1, const Value *O2) {
  // If either of the memory references is empty, it doesn't matter what the
  // pointer values are.
  if (V1Size == 0 || V2Size == 0)
    return NoAlias;

  // Strip off any casts if they exist.
  V1 = V1->stripPointerCasts();
  V2 = V2->stripPointerCasts();

  // If V1 or V2 is undef, the result is NoAlias because we can always pick a
  // value for undef that aliases nothing in the program.
  if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
    return NoAlias;

  // Are we checking for alias of the same value?
  // Because we look 'through' phi nodes, we could look at "Value" pointers from
  // different iterations. We must therefore make sure that this is not the
  // case. The function isValueEqualInPotentialCycles ensures that this cannot
  // happen by looking at the visited phi nodes and making sure they cannot
  // reach the value.
  if (isValueEqualInPotentialCycles(V1, V2))
    return MustAlias;

  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
    return NoAlias; // Scalars cannot alias each other

  // Figure out what objects these things are pointing to if we can.
  if (O1 == nullptr)
    O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);

  if (O2 == nullptr)
    O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);

  // Null values in the default address space don't point to any object, so they
  // don't alias any other pointer.
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
    if (CPN->getType()->getAddressSpace() == 0)
      return NoAlias;
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
    if (CPN->getType()->getAddressSpace() == 0)
      return NoAlias;

  if (O1 != O2) {
    // If V1/V2 point to two different objects, we know that we have no alias.
    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
      return NoAlias;

    // Constant pointers can't alias with non-const isIdentifiedObject objects.
    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
      return NoAlias;

    // Function arguments can't alias with things that are known to be
    // unambigously identified at the function level.
    if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
        (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
      return NoAlias;

    // Most objects can't alias null.
    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
      return NoAlias;

    // If one pointer is the result of a call/invoke or load and the other is a
    // non-escaping local object within the same function, then we know the
    // object couldn't escape to a point where the call could return it.
    //
    // Note that if the pointers are in different functions, there are a
    // variety of complications. A call with a nocapture argument may still
    // temporary store the nocapture argument's value in a temporary memory
    // location if that memory location doesn't escape. Or it may pass a
    // nocapture value to other functions as long as they don't capture it.
    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
      return NoAlias;
    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
      return NoAlias;
  }

  // If the size of one access is larger than the entire object on the other
  // side, then we know such behavior is undefined and can assume no alias.
  if ((V1Size != MemoryLocation::UnknownSize &&
       isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
      (V2Size != MemoryLocation::UnknownSize &&
       isObjectSmallerThan(O1, V2Size, DL, TLI)))
    return NoAlias;

  // Check the cache before climbing up use-def chains. This also terminates
  // otherwise infinitely recursive queries.
  LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
               MemoryLocation(V2, V2Size, V2AAInfo));
  if (V1 > V2)
    std::swap(Locs.first, Locs.second);
  std::pair<AliasCacheTy::iterator, bool> Pair =
      AliasCache.insert(std::make_pair(Locs, MayAlias));
  if (!Pair.second)
    return Pair.first->second;

  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
  // GEP can't simplify, we don't even look at the PHI cases.
  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
    std::swap(V1, V2);
    std::swap(V1Size, V2Size);
    std::swap(O1, O2);
    std::swap(V1AAInfo, V2AAInfo);
  }
  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
    AliasResult Result =
        aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
    if (Result != MayAlias)
      return AliasCache[Locs] = Result;
  }

  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
    std::swap(V1, V2);
    std::swap(O1, O2);
    std::swap(V1Size, V2Size);
    std::swap(V1AAInfo, V2AAInfo);
  }
  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
    AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
                                  V2, V2Size, V2AAInfo, O2);
    if (Result != MayAlias)
      return AliasCache[Locs] = Result;
  }

  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
    std::swap(V1, V2);
    std::swap(O1, O2);
    std::swap(V1Size, V2Size);
    std::swap(V1AAInfo, V2AAInfo);
  }
  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
    AliasResult Result =
        aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2);
    if (Result != MayAlias)
      return AliasCache[Locs] = Result;
  }

  // If both pointers are pointing into the same object and one of them
  // accesses the entire object, then the accesses must overlap in some way.
  if (O1 == O2)
    if ((V1Size != MemoryLocation::UnknownSize &&
         isObjectSize(O1, V1Size, DL, TLI)) ||
        (V2Size != MemoryLocation::UnknownSize &&
         isObjectSize(O2, V2Size, DL, TLI)))
      return AliasCache[Locs] = PartialAlias;

  // Recurse back into the best AA results we have, potentially with refined
  // memory locations. We have already ensured that BasicAA has a MayAlias
  // cache result for these, so any recursion back into BasicAA won't loop.
  AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
  return AliasCache[Locs] = Result;
}

/// Check whether two Values can be considered equivalent.
///
/// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
/// they can not be part of a cycle in the value graph by looking at all
/// visited phi nodes an making sure that the phis cannot reach the value. We
/// have to do this because we are looking through phi nodes (That is we say
/// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
                                                  const Value *V2) {
  if (V != V2)
    return false;

  const Instruction *Inst = dyn_cast<Instruction>(V);
  if (!Inst)
    return true;

  if (VisitedPhiBBs.empty())
    return true;

  if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
    return false;

  // Make sure that the visited phis cannot reach the Value. This ensures that
  // the Values cannot come from different iterations of a potential cycle the
  // phi nodes could be involved in.
  for (auto *P : VisitedPhiBBs)
    if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
      return false;

  return true;
}

/// Computes the symbolic difference between two de-composed GEPs.
///
/// Dest and Src are the variable indices from two decomposed GetElementPtr
/// instructions GEP1 and GEP2 which have common base pointers.
void BasicAAResult::GetIndexDifference(
    SmallVectorImpl<VariableGEPIndex> &Dest,
    const SmallVectorImpl<VariableGEPIndex> &Src) {
  if (Src.empty())
    return;

  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
    const Value *V = Src[i].V;
    unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
    int64_t Scale = Src[i].Scale;

    // Find V in Dest.  This is N^2, but pointer indices almost never have more
    // than a few variable indexes.
    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
      if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
          Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
        continue;

      // If we found it, subtract off Scale V's from the entry in Dest.  If it
      // goes to zero, remove the entry.
      if (Dest[j].Scale != Scale)
        Dest[j].Scale -= Scale;
      else
        Dest.erase(Dest.begin() + j);
      Scale = 0;
      break;
    }

    // If we didn't consume this entry, add it to the end of the Dest list.
    if (Scale) {
      VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
      Dest.push_back(Entry);
    }
  }
}

bool BasicAAResult::constantOffsetHeuristic(
    const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
    uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
    DominatorTree *DT) {
  if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
      V2Size == MemoryLocation::UnknownSize)
    return false;

  const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];

  if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
      Var0.Scale != -Var1.Scale)
    return false;

  unsigned Width = Var1.V->getType()->getIntegerBitWidth();

  // We'll strip off the Extensions of Var0 and Var1 and do another round
  // of GetLinearExpression decomposition. In the example above, if Var0
  // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.

  APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
      V1Offset(Width, 0);
  bool NSW = true, NUW = true;
  unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
  const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
                                        V0SExtBits, DL, 0, AC, DT, NSW, NUW);
  NSW = true;
  NUW = true;
  const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
                                        V1SExtBits, DL, 0, AC, DT, NSW, NUW);

  if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
      V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
    return false;

  // We have a hit - Var0 and Var1 only differ by a constant offset!

  // If we've been sext'ed then zext'd the maximum difference between Var0 and
  // Var1 is possible to calculate, but we're just interested in the absolute
  // minimum difference between the two. The minimum distance may occur due to
  // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
  // the minimum distance between %i and %i + 5 is 3.
  APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
  MinDiff = APIntOps::umin(MinDiff, Wrapped);
  uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);

  // We can't definitely say whether GEP1 is before or after V2 due to wrapping
  // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
  // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
  // V2Size can fit in the MinDiffBytes gap.
  return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
         V2Size + std::abs(BaseOffset) <= MinDiffBytes;
}

//===----------------------------------------------------------------------===//
// BasicAliasAnalysis Pass
//===----------------------------------------------------------------------===//

AnalysisKey BasicAA::Key;

BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
  return BasicAAResult(F.getParent()->getDataLayout(),
                       AM.getResult<TargetLibraryAnalysis>(F),
                       AM.getResult<AssumptionAnalysis>(F),
                       &AM.getResult<DominatorTreeAnalysis>(F),
                       AM.getCachedResult<LoopAnalysis>(F));
}

BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
    initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
}

char BasicAAWrapperPass::ID = 0;
void BasicAAWrapperPass::anchor() {}

INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
                      "Basic Alias Analysis (stateless AA impl)", true, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
                    "Basic Alias Analysis (stateless AA impl)", true, true)

FunctionPass *llvm::createBasicAAWrapperPass() {
  return new BasicAAWrapperPass();
}

bool BasicAAWrapperPass::runOnFunction(Function &F) {
  auto &ACT = getAnalysis<AssumptionCacheTracker>();
  auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
  auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();

  Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
                                 ACT.getAssumptionCache(F), &DTWP.getDomTree(),
                                 LIWP ? &LIWP->getLoopInfo() : nullptr));

  return false;
}

void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<AssumptionCacheTracker>();
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addRequired<TargetLibraryInfoWrapperPass>();
}

BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
  return BasicAAResult(
      F.getParent()->getDataLayout(),
      P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
      P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
}