aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/LazyCallGraph.cpp
blob: acff8529b151a0e2dbb7f3de380702fb39d089b9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GraphWriter.h"

using namespace llvm;

#define DEBUG_TYPE "lcg"

static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
                    DenseMap<Function *, int> &EdgeIndexMap, Function &F,
                    LazyCallGraph::Edge::Kind EK) {
  // Note that we consider *any* function with a definition to be a viable
  // edge. Even if the function's definition is subject to replacement by
  // some other module (say, a weak definition) there may still be
  // optimizations which essentially speculate based on the definition and
  // a way to check that the specific definition is in fact the one being
  // used. For example, this could be done by moving the weak definition to
  // a strong (internal) definition and making the weak definition be an
  // alias. Then a test of the address of the weak function against the new
  // strong definition's address would be an effective way to determine the
  // safety of optimizing a direct call edge.
  if (!F.isDeclaration() &&
      EdgeIndexMap.insert({&F, Edges.size()}).second) {
    DEBUG(dbgs() << "    Added callable function: " << F.getName() << "\n");
    Edges.emplace_back(LazyCallGraph::Edge(F, EK));
  }
}

static void findReferences(SmallVectorImpl<Constant *> &Worklist,
                           SmallPtrSetImpl<Constant *> &Visited,
                           SmallVectorImpl<LazyCallGraph::Edge> &Edges,
                           DenseMap<Function *, int> &EdgeIndexMap) {
  while (!Worklist.empty()) {
    Constant *C = Worklist.pop_back_val();

    if (Function *F = dyn_cast<Function>(C)) {
      addEdge(Edges, EdgeIndexMap, *F, LazyCallGraph::Edge::Ref);
      continue;
    }

    for (Value *Op : C->operand_values())
      if (Visited.insert(cast<Constant>(Op)).second)
        Worklist.push_back(cast<Constant>(Op));
  }
}

LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
    : G(&G), F(F), DFSNumber(0), LowLink(0) {
  DEBUG(dbgs() << "  Adding functions called by '" << F.getName()
               << "' to the graph.\n");

  SmallVector<Constant *, 16> Worklist;
  SmallPtrSet<Function *, 4> Callees;
  SmallPtrSet<Constant *, 16> Visited;

  // Find all the potential call graph edges in this function. We track both
  // actual call edges and indirect references to functions. The direct calls
  // are trivially added, but to accumulate the latter we walk the instructions
  // and add every operand which is a constant to the worklist to process
  // afterward.
  for (BasicBlock &BB : F)
    for (Instruction &I : BB) {
      if (auto CS = CallSite(&I))
        if (Function *Callee = CS.getCalledFunction())
          if (Callees.insert(Callee).second) {
            Visited.insert(Callee);
            addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call);
          }

      for (Value *Op : I.operand_values())
        if (Constant *C = dyn_cast<Constant>(Op))
          if (Visited.insert(C).second)
            Worklist.push_back(C);
    }

  // We've collected all the constant (and thus potentially function or
  // function containing) operands to all of the instructions in the function.
  // Process them (recursively) collecting every function found.
  findReferences(Worklist, Visited, Edges, EdgeIndexMap);
}

void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) {
  if (Node *N = G->lookup(Target))
    return insertEdgeInternal(*N, EK);

  EdgeIndexMap.insert({&Target, Edges.size()});
  Edges.emplace_back(Target, EK);
}

void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) {
  EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()});
  Edges.emplace_back(TargetN, EK);
}

void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) {
  Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK);
}

void LazyCallGraph::Node::removeEdgeInternal(Function &Target) {
  auto IndexMapI = EdgeIndexMap.find(&Target);
  assert(IndexMapI != EdgeIndexMap.end() &&
         "Target not in the edge set for this caller?");

  Edges[IndexMapI->second] = Edge();
  EdgeIndexMap.erase(IndexMapI);
}

void LazyCallGraph::Node::dump() const {
  dbgs() << *this << '\n';
}

LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
  DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
               << "\n");
  for (Function &F : M)
    if (!F.isDeclaration() && !F.hasLocalLinkage())
      if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) {
        DEBUG(dbgs() << "  Adding '" << F.getName()
                     << "' to entry set of the graph.\n");
        EntryEdges.emplace_back(F, Edge::Ref);
      }

  // Now add entry nodes for functions reachable via initializers to globals.
  SmallVector<Constant *, 16> Worklist;
  SmallPtrSet<Constant *, 16> Visited;
  for (GlobalVariable &GV : M.globals())
    if (GV.hasInitializer())
      if (Visited.insert(GV.getInitializer()).second)
        Worklist.push_back(GV.getInitializer());

  DEBUG(dbgs() << "  Adding functions referenced by global initializers to the "
                  "entry set.\n");
  findReferences(Worklist, Visited, EntryEdges, EntryIndexMap);

  for (const Edge &E : EntryEdges)
    RefSCCEntryNodes.push_back(&E.getFunction());
}

LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
    : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
      EntryEdges(std::move(G.EntryEdges)),
      EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
      SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)),
      DFSStack(std::move(G.DFSStack)),
      RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)),
      NextDFSNumber(G.NextDFSNumber) {
  updateGraphPtrs();
}

LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
  BPA = std::move(G.BPA);
  NodeMap = std::move(G.NodeMap);
  EntryEdges = std::move(G.EntryEdges);
  EntryIndexMap = std::move(G.EntryIndexMap);
  SCCBPA = std::move(G.SCCBPA);
  SCCMap = std::move(G.SCCMap);
  LeafRefSCCs = std::move(G.LeafRefSCCs);
  DFSStack = std::move(G.DFSStack);
  RefSCCEntryNodes = std::move(G.RefSCCEntryNodes);
  NextDFSNumber = G.NextDFSNumber;
  updateGraphPtrs();
  return *this;
}

void LazyCallGraph::SCC::dump() const {
  dbgs() << *this << '\n';
}

#ifndef NDEBUG
void LazyCallGraph::SCC::verify() {
  assert(OuterRefSCC && "Can't have a null RefSCC!");
  assert(!Nodes.empty() && "Can't have an empty SCC!");

  for (Node *N : Nodes) {
    assert(N && "Can't have a null node!");
    assert(OuterRefSCC->G->lookupSCC(*N) == this &&
           "Node does not map to this SCC!");
    assert(N->DFSNumber == -1 &&
           "Must set DFS numbers to -1 when adding a node to an SCC!");
    assert(N->LowLink == -1 &&
           "Must set low link to -1 when adding a node to an SCC!");
    for (Edge &E : *N)
      assert(E.getNode() && "Can't have an edge to a raw function!");
  }
}
#endif

LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}

void LazyCallGraph::RefSCC::dump() const {
  dbgs() << *this << '\n';
}

#ifndef NDEBUG
void LazyCallGraph::RefSCC::verify() {
  assert(G && "Can't have a null graph!");
  assert(!SCCs.empty() && "Can't have an empty SCC!");

  // Verify basic properties of the SCCs.
  for (SCC *C : SCCs) {
    assert(C && "Can't have a null SCC!");
    C->verify();
    assert(&C->getOuterRefSCC() == this &&
           "SCC doesn't think it is inside this RefSCC!");
  }

  // Check that our indices map correctly.
  for (auto &SCCIndexPair : SCCIndices) {
    SCC *C = SCCIndexPair.first;
    int i = SCCIndexPair.second;
    assert(C && "Can't have a null SCC in the indices!");
    assert(SCCs[i] == C && "Index doesn't point to SCC!");
  }

  // Check that the SCCs are in fact in post-order.
  for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
    SCC &SourceSCC = *SCCs[i];
    for (Node &N : SourceSCC)
      for (Edge &E : N) {
        if (!E.isCall())
          continue;
        SCC &TargetSCC = *G->lookupSCC(*E.getNode());
        if (&TargetSCC.getOuterRefSCC() == this) {
          assert(SCCIndices.find(&TargetSCC)->second <= i &&
                 "Edge between SCCs violates post-order relationship.");
          continue;
        }
        assert(TargetSCC.getOuterRefSCC().Parents.count(this) &&
               "Edge to a RefSCC missing us in its parent set.");
      }
  }
}
#endif

bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const {
  // Walk up the parents of this SCC and verify that we eventually find C.
  SmallVector<const RefSCC *, 4> AncestorWorklist;
  AncestorWorklist.push_back(this);
  do {
    const RefSCC *AncestorC = AncestorWorklist.pop_back_val();
    if (AncestorC->isChildOf(C))
      return true;
    for (const RefSCC *ParentC : AncestorC->Parents)
      AncestorWorklist.push_back(ParentC);
  } while (!AncestorWorklist.empty());

  return false;
}

SmallVector<LazyCallGraph::SCC *, 1>
LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) {
  assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");

  SmallVector<SCC *, 1> DeletedSCCs;

  SCC &SourceSCC = *G->lookupSCC(SourceN);
  SCC &TargetSCC = *G->lookupSCC(TargetN);

  // If the two nodes are already part of the same SCC, we're also done as
  // we've just added more connectivity.
  if (&SourceSCC == &TargetSCC) {
    SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
#ifndef NDEBUG
    // Check that the RefSCC is still valid.
    verify();
#endif
    return DeletedSCCs;
  }

  // At this point we leverage the postorder list of SCCs to detect when the
  // insertion of an edge changes the SCC structure in any way.
  //
  // First and foremost, we can eliminate the need for any changes when the
  // edge is toward the beginning of the postorder sequence because all edges
  // flow in that direction already. Thus adding a new one cannot form a cycle.
  int SourceIdx = SCCIndices[&SourceSCC];
  int TargetIdx = SCCIndices[&TargetSCC];
  if (TargetIdx < SourceIdx) {
    SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
#ifndef NDEBUG
    // Check that the RefSCC is still valid.
    verify();
#endif
    return DeletedSCCs;
  }

  // When we do have an edge from an earlier SCC to a later SCC in the
  // postorder sequence, all of the SCCs which may be impacted are in the
  // closed range of those two within the postorder sequence. The algorithm to
  // restore the state is as follows:
  //
  // 1) Starting from the source SCC, construct a set of SCCs which reach the
  //    source SCC consisting of just the source SCC. Then scan toward the
  //    target SCC in postorder and for each SCC, if it has an edge to an SCC
  //    in the set, add it to the set. Otherwise, the source SCC is not
  //    a successor, move it in the postorder sequence to immediately before
  //    the source SCC, shifting the source SCC and all SCCs in the set one
  //    position toward the target SCC. Stop scanning after processing the
  //    target SCC.
  // 2) If the source SCC is now past the target SCC in the postorder sequence,
  //    and thus the new edge will flow toward the start, we are done.
  // 3) Otherwise, starting from the target SCC, walk all edges which reach an
  //    SCC between the source and the target, and add them to the set of
  //    connected SCCs, then recurse through them. Once a complete set of the
  //    SCCs the target connects to is known, hoist the remaining SCCs between
  //    the source and the target to be above the target. Note that there is no
  //    need to process the source SCC, it is already known to connect.
  // 4) At this point, all of the SCCs in the closed range between the source
  //    SCC and the target SCC in the postorder sequence are connected,
  //    including the target SCC and the source SCC. Inserting the edge from
  //    the source SCC to the target SCC will form a cycle out of precisely
  //    these SCCs. Thus we can merge all of the SCCs in this closed range into
  //    a single SCC.
  //
  // This process has various important properties:
  // - Only mutates the SCCs when adding the edge actually changes the SCC
  //   structure.
  // - Never mutates SCCs which are unaffected by the change.
  // - Updates the postorder sequence to correctly satisfy the postorder
  //   constraint after the edge is inserted.
  // - Only reorders SCCs in the closed postorder sequence from the source to
  //   the target, so easy to bound how much has changed even in the ordering.
  // - Big-O is the number of edges in the closed postorder range of SCCs from
  //   source to target.

  assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
  SmallPtrSet<SCC *, 4> ConnectedSet;

  // Compute the SCCs which (transitively) reach the source.
  ConnectedSet.insert(&SourceSCC);
  auto IsConnected = [&](SCC &C) {
    for (Node &N : C)
      for (Edge &E : N.calls()) {
        assert(E.getNode() && "Must have formed a node within an SCC!");
        if (ConnectedSet.count(G->lookupSCC(*E.getNode())))
          return true;
      }

    return false;
  };

  for (SCC *C :
       make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
    if (IsConnected(*C))
      ConnectedSet.insert(C);

  // Partition the SCCs in this part of the port-order sequence so only SCCs
  // connecting to the source remain between it and the target. This is
  // a benign partition as it preserves postorder.
  auto SourceI = std::stable_partition(
      SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
      [&ConnectedSet](SCC *C) { return !ConnectedSet.count(C); });
  for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
    SCCIndices.find(SCCs[i])->second = i;

  // If the target doesn't connect to the source, then we've corrected the
  // post-order and there are no cycles formed.
  if (!ConnectedSet.count(&TargetSCC)) {
    assert(SourceI > (SCCs.begin() + SourceIdx) &&
           "Must have moved the source to fix the post-order.");
    assert(*std::prev(SourceI) == &TargetSCC &&
           "Last SCC to move should have bene the target.");
    SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
#ifndef NDEBUG
    verify();
#endif
    return DeletedSCCs;
  }

  assert(SCCs[TargetIdx] == &TargetSCC &&
         "Should not have moved target if connected!");
  SourceIdx = SourceI - SCCs.begin();

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif

  // See whether there are any remaining intervening SCCs between the source
  // and target. If so we need to make sure they all are reachable form the
  // target.
  if (SourceIdx + 1 < TargetIdx) {
    // Use a normal worklist to find which SCCs the target connects to. We still
    // bound the search based on the range in the postorder list we care about,
    // but because this is forward connectivity we just "recurse" through the
    // edges.
    ConnectedSet.clear();
    ConnectedSet.insert(&TargetSCC);
    SmallVector<SCC *, 4> Worklist;
    Worklist.push_back(&TargetSCC);
    do {
      SCC &C = *Worklist.pop_back_val();
      for (Node &N : C)
        for (Edge &E : N) {
          assert(E.getNode() && "Must have formed a node within an SCC!");
          if (!E.isCall())
            continue;
          SCC &EdgeC = *G->lookupSCC(*E.getNode());
          if (&EdgeC.getOuterRefSCC() != this)
            // Not in this RefSCC...
            continue;
          if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
            // Not in the postorder sequence between source and target.
            continue;

          if (ConnectedSet.insert(&EdgeC).second)
            Worklist.push_back(&EdgeC);
        }
    } while (!Worklist.empty());

    // Partition SCCs so that only SCCs reached from the target remain between
    // the source and the target. This preserves postorder.
    auto TargetI = std::stable_partition(
        SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
        [&ConnectedSet](SCC *C) { return ConnectedSet.count(C); });
    for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
      SCCIndices.find(SCCs[i])->second = i;
    TargetIdx = std::prev(TargetI) - SCCs.begin();
    assert(SCCs[TargetIdx] == &TargetSCC &&
           "Should always end with the target!");

#ifndef NDEBUG
    // Check that the RefSCC is still valid.
    verify();
#endif
  }

  // At this point, we know that connecting source to target forms a cycle
  // because target connects back to source, and we know that all of the SCCs
  // between the source and target in the postorder sequence participate in that
  // cycle. This means that we need to merge all of these SCCs into a single
  // result SCC.
  //
  // NB: We merge into the target because all of these functions were already
  // reachable from the target, meaning any SCC-wide properties deduced about it
  // other than the set of functions within it will not have changed.
  auto MergeRange =
      make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
  for (SCC *C : MergeRange) {
    assert(C != &TargetSCC &&
           "We merge *into* the target and shouldn't process it here!");
    SCCIndices.erase(C);
    TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
    for (Node *N : C->Nodes)
      G->SCCMap[N] = &TargetSCC;
    C->clear();
    DeletedSCCs.push_back(C);
  }

  // Erase the merged SCCs from the list and update the indices of the
  // remaining SCCs.
  int IndexOffset = MergeRange.end() - MergeRange.begin();
  auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
  for (SCC *C : make_range(EraseEnd, SCCs.end()))
    SCCIndices[C] -= IndexOffset;

  // Now that the SCC structure is finalized, flip the kind to call.
  SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);

#ifndef NDEBUG
  // And we're done! Verify in debug builds that the RefSCC is coherent.
  verify();
#endif
  return DeletedSCCs;
}

void LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN,
                                                    Node &TargetN) {
  assert(SourceN[TargetN].isCall() && "Must start with a call edge!");

  SCC &SourceSCC = *G->lookupSCC(SourceN);
  SCC &TargetSCC = *G->lookupSCC(TargetN);

  assert(&SourceSCC.getOuterRefSCC() == this &&
         "Source must be in this RefSCC.");
  assert(&TargetSCC.getOuterRefSCC() == this &&
         "Target must be in this RefSCC.");

  // Set the edge kind.
  SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);

  // If this call edge is just connecting two separate SCCs within this RefSCC,
  // there is nothing to do.
  if (&SourceSCC != &TargetSCC) {
#ifndef NDEBUG
    // Check that the RefSCC is still valid.
    verify();
#endif
    return;
  }

  // Otherwise we are removing a call edge from a single SCC. This may break
  // the cycle. In order to compute the new set of SCCs, we need to do a small
  // DFS over the nodes within the SCC to form any sub-cycles that remain as
  // distinct SCCs and compute a postorder over the resulting SCCs.
  //
  // However, we specially handle the target node. The target node is known to
  // reach all other nodes in the original SCC by definition. This means that
  // we want the old SCC to be replaced with an SCC contaning that node as it
  // will be the root of whatever SCC DAG results from the DFS. Assumptions
  // about an SCC such as the set of functions called will continue to hold,
  // etc.

  SCC &OldSCC = TargetSCC;
  SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
  SmallVector<Node *, 16> PendingSCCStack;
  SmallVector<SCC *, 4> NewSCCs;

  // Prepare the nodes for a fresh DFS.
  SmallVector<Node *, 16> Worklist;
  Worklist.swap(OldSCC.Nodes);
  for (Node *N : Worklist) {
    N->DFSNumber = N->LowLink = 0;
    G->SCCMap.erase(N);
  }

  // Force the target node to be in the old SCC. This also enables us to take
  // a very significant short-cut in the standard Tarjan walk to re-form SCCs
  // below: whenever we build an edge that reaches the target node, we know
  // that the target node eventually connects back to all other nodes in our
  // walk. As a consequence, we can detect and handle participants in that
  // cycle without walking all the edges that form this connection, and instead
  // by relying on the fundamental guarantee coming into this operation (all
  // nodes are reachable from the target due to previously forming an SCC).
  TargetN.DFSNumber = TargetN.LowLink = -1;
  OldSCC.Nodes.push_back(&TargetN);
  G->SCCMap[&TargetN] = &OldSCC;

  // Scan down the stack and DFS across the call edges.
  for (Node *RootN : Worklist) {
    assert(DFSStack.empty() &&
           "Cannot begin a new root with a non-empty DFS stack!");
    assert(PendingSCCStack.empty() &&
           "Cannot begin a new root with pending nodes for an SCC!");

    // Skip any nodes we've already reached in the DFS.
    if (RootN->DFSNumber != 0) {
      assert(RootN->DFSNumber == -1 &&
             "Shouldn't have any mid-DFS root nodes!");
      continue;
    }

    RootN->DFSNumber = RootN->LowLink = 1;
    int NextDFSNumber = 2;

    DFSStack.push_back({RootN, RootN->call_begin()});
    do {
      Node *N;
      call_edge_iterator I;
      std::tie(N, I) = DFSStack.pop_back_val();
      auto E = N->call_end();
      while (I != E) {
        Node &ChildN = *I->getNode();
        if (ChildN.DFSNumber == 0) {
          // We haven't yet visited this child, so descend, pushing the current
          // node onto the stack.
          DFSStack.push_back({N, I});

          assert(!G->SCCMap.count(&ChildN) &&
                 "Found a node with 0 DFS number but already in an SCC!");
          ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
          N = &ChildN;
          I = N->call_begin();
          E = N->call_end();
          continue;
        }

        // Check for the child already being part of some component.
        if (ChildN.DFSNumber == -1) {
          if (G->lookupSCC(ChildN) == &OldSCC) {
            // If the child is part of the old SCC, we know that it can reach
            // every other node, so we have formed a cycle. Pull the entire DFS
            // and pending stacks into it. See the comment above about setting
            // up the old SCC for why we do this.
            int OldSize = OldSCC.size();
            OldSCC.Nodes.push_back(N);
            OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
            PendingSCCStack.clear();
            while (!DFSStack.empty())
              OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
            for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
              N.DFSNumber = N.LowLink = -1;
              G->SCCMap[&N] = &OldSCC;
            }
            N = nullptr;
            break;
          }

          // If the child has already been added to some child component, it
          // couldn't impact the low-link of this parent because it isn't
          // connected, and thus its low-link isn't relevant so skip it.
          ++I;
          continue;
        }

        // Track the lowest linked child as the lowest link for this node.
        assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
        if (ChildN.LowLink < N->LowLink)
          N->LowLink = ChildN.LowLink;

        // Move to the next edge.
        ++I;
      }
      if (!N)
        // Cleared the DFS early, start another round.
        break;

      // We've finished processing N and its descendents, put it on our pending
      // SCC stack to eventually get merged into an SCC of nodes.
      PendingSCCStack.push_back(N);

      // If this node is linked to some lower entry, continue walking up the
      // stack.
      if (N->LowLink != N->DFSNumber)
        continue;

      // Otherwise, we've completed an SCC. Append it to our post order list of
      // SCCs.
      int RootDFSNumber = N->DFSNumber;
      // Find the range of the node stack by walking down until we pass the
      // root DFS number.
      auto SCCNodes = make_range(
          PendingSCCStack.rbegin(),
          std::find_if(PendingSCCStack.rbegin(), PendingSCCStack.rend(),
                       [RootDFSNumber](Node *N) {
                         return N->DFSNumber < RootDFSNumber;
                       }));

      // Form a new SCC out of these nodes and then clear them off our pending
      // stack.
      NewSCCs.push_back(G->createSCC(*this, SCCNodes));
      for (Node &N : *NewSCCs.back()) {
        N.DFSNumber = N.LowLink = -1;
        G->SCCMap[&N] = NewSCCs.back();
      }
      PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
    } while (!DFSStack.empty());
  }

  // Insert the remaining SCCs before the old one. The old SCC can reach all
  // other SCCs we form because it contains the target node of the removed edge
  // of the old SCC. This means that we will have edges into all of the new
  // SCCs, which means the old one must come last for postorder.
  int OldIdx = SCCIndices[&OldSCC];
  SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());

  // Update the mapping from SCC* to index to use the new SCC*s, and remove the
  // old SCC from the mapping.
  for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
    SCCIndices[SCCs[Idx]] = Idx;

#ifndef NDEBUG
  // We're done. Check the validity on our way out.
  verify();
#endif
}

void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
                                                     Node &TargetN) {
  assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");

  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN) != this &&
         "Target must not be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
         "Target must be a descendant of the Source.");

  // Edges between RefSCCs are the same regardless of call or ref, so we can
  // just flip the edge here.
  SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif
}

void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
                                                    Node &TargetN) {
  assert(SourceN[TargetN].isCall() && "Must start with a call edge!");

  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN) != this &&
         "Target must not be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
         "Target must be a descendant of the Source.");

  // Edges between RefSCCs are the same regardless of call or ref, so we can
  // just flip the edge here.
  SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif
}

void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
                                                  Node &TargetN) {
  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");

  SourceN.insertEdgeInternal(TargetN, Edge::Ref);

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif
}

void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
                                               Edge::Kind EK) {
  // First insert it into the caller.
  SourceN.insertEdgeInternal(TargetN, EK);

  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");

  RefSCC &TargetC = *G->lookupRefSCC(TargetN);
  assert(&TargetC != this && "Target must not be in this RefSCC.");
  assert(TargetC.isDescendantOf(*this) &&
         "Target must be a descendant of the Source.");

  // The only change required is to add this SCC to the parent set of the
  // callee.
  TargetC.Parents.insert(this);

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif
}

SmallVector<LazyCallGraph::RefSCC *, 1>
LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
  assert(G->lookupRefSCC(TargetN) == this && "Target must be in this SCC.");

  // We store the RefSCCs found to be connected in postorder so that we can use
  // that when merging. We also return this to the caller to allow them to
  // invalidate information pertaining to these RefSCCs.
  SmallVector<RefSCC *, 1> Connected;

  RefSCC &SourceC = *G->lookupRefSCC(SourceN);
  assert(&SourceC != this && "Source must not be in this SCC.");
  assert(SourceC.isDescendantOf(*this) &&
         "Source must be a descendant of the Target.");

  // The algorithm we use for merging SCCs based on the cycle introduced here
  // is to walk the RefSCC inverted DAG formed by the parent sets. The inverse
  // graph has the same cycle properties as the actual DAG of the RefSCCs, and
  // when forming RefSCCs lazily by a DFS, the bottom of the graph won't exist
  // in many cases which should prune the search space.
  //
  // FIXME: We can get this pruning behavior even after the incremental RefSCC
  // formation by leaving behind (conservative) DFS numberings in the nodes,
  // and pruning the search with them. These would need to be cleverly updated
  // during the removal of intra-SCC edges, but could be preserved
  // conservatively.
  //
  // FIXME: This operation currently creates ordering stability problems
  // because we don't use stably ordered containers for the parent SCCs.

  // The set of RefSCCs that are connected to the parent, and thus will
  // participate in the merged connected component.
  SmallPtrSet<RefSCC *, 8> ConnectedSet;
  ConnectedSet.insert(this);

  // We build up a DFS stack of the parents chains.
  SmallVector<std::pair<RefSCC *, parent_iterator>, 8> DFSStack;
  SmallPtrSet<RefSCC *, 8> Visited;
  int ConnectedDepth = -1;
  DFSStack.push_back({&SourceC, SourceC.parent_begin()});
  do {
    auto DFSPair = DFSStack.pop_back_val();
    RefSCC *C = DFSPair.first;
    parent_iterator I = DFSPair.second;
    auto E = C->parent_end();

    while (I != E) {
      RefSCC &Parent = *I++;

      // If we have already processed this parent SCC, skip it, and remember
      // whether it was connected so we don't have to check the rest of the
      // stack. This also handles when we reach a child of the 'this' SCC (the
      // callee) which terminates the search.
      if (ConnectedSet.count(&Parent)) {
        assert(ConnectedDepth < (int)DFSStack.size() &&
               "Cannot have a connected depth greater than the DFS depth!");
        ConnectedDepth = DFSStack.size();
        continue;
      }
      if (Visited.count(&Parent))
        continue;

      // We fully explore the depth-first space, adding nodes to the connected
      // set only as we pop them off, so "recurse" by rotating to the parent.
      DFSStack.push_back({C, I});
      C = &Parent;
      I = C->parent_begin();
      E = C->parent_end();
    }

    // If we've found a connection anywhere below this point on the stack (and
    // thus up the parent graph from the caller), the current node needs to be
    // added to the connected set now that we've processed all of its parents.
    if ((int)DFSStack.size() == ConnectedDepth) {
      --ConnectedDepth; // We're finished with this connection.
      bool Inserted = ConnectedSet.insert(C).second;
      (void)Inserted;
      assert(Inserted && "Cannot insert a refSCC multiple times!");
      Connected.push_back(C);
    } else {
      // Otherwise remember that its parents don't ever connect.
      assert(ConnectedDepth < (int)DFSStack.size() &&
             "Cannot have a connected depth greater than the DFS depth!");
      Visited.insert(C);
    }
  } while (!DFSStack.empty());

  // Now that we have identified all of the SCCs which need to be merged into
  // a connected set with the inserted edge, merge all of them into this SCC.
  // We walk the newly connected RefSCCs in the reverse postorder of the parent
  // DAG walk above and merge in each of their SCC postorder lists. This
  // ensures a merged postorder SCC list.
  SmallVector<SCC *, 16> MergedSCCs;
  int SCCIndex = 0;
  for (RefSCC *C : reverse(Connected)) {
    assert(C != this &&
           "This RefSCC should terminate the DFS without being reached.");

    // Merge the parents which aren't part of the merge into the our parents.
    for (RefSCC *ParentC : C->Parents)
      if (!ConnectedSet.count(ParentC))
        Parents.insert(ParentC);
    C->Parents.clear();

    // Walk the inner SCCs to update their up-pointer and walk all the edges to
    // update any parent sets.
    // FIXME: We should try to find a way to avoid this (rather expensive) edge
    // walk by updating the parent sets in some other manner.
    for (SCC &InnerC : *C) {
      InnerC.OuterRefSCC = this;
      SCCIndices[&InnerC] = SCCIndex++;
      for (Node &N : InnerC) {
        G->SCCMap[&N] = &InnerC;
        for (Edge &E : N) {
          assert(E.getNode() &&
                 "Cannot have a null node within a visited SCC!");
          RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
          if (ConnectedSet.count(&ChildRC))
            continue;
          ChildRC.Parents.erase(C);
          ChildRC.Parents.insert(this);
        }
      }
    }

    // Now merge in the SCCs. We can actually move here so try to reuse storage
    // the first time through.
    if (MergedSCCs.empty())
      MergedSCCs = std::move(C->SCCs);
    else
      MergedSCCs.append(C->SCCs.begin(), C->SCCs.end());
    C->SCCs.clear();
  }

  // Finally append our original SCCs to the merged list and move it into
  // place.
  for (SCC &InnerC : *this)
    SCCIndices[&InnerC] = SCCIndex++;
  MergedSCCs.append(SCCs.begin(), SCCs.end());
  SCCs = std::move(MergedSCCs);

  // At this point we have a merged RefSCC with a post-order SCCs list, just
  // connect the nodes to form the new edge.
  SourceN.insertEdgeInternal(TargetN, Edge::Ref);

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif

  // We return the list of SCCs which were merged so that callers can
  // invalidate any data they have associated with those SCCs. Note that these
  // SCCs are no longer in an interesting state (they are totally empty) but
  // the pointers will remain stable for the life of the graph itself.
  return Connected;
}

void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
  assert(G->lookupRefSCC(SourceN) == this &&
         "The source must be a member of this RefSCC.");

  RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
  assert(&TargetRC != this && "The target must not be a member of this RefSCC");

  assert(std::find(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this) ==
             G->LeafRefSCCs.end() &&
         "Cannot have a leaf RefSCC source.");

  // First remove it from the node.
  SourceN.removeEdgeInternal(TargetN.getFunction());

  bool HasOtherEdgeToChildRC = false;
  bool HasOtherChildRC = false;
  for (SCC *InnerC : SCCs) {
    for (Node &N : *InnerC) {
      for (Edge &E : N) {
        assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
        RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode());
        if (&OtherChildRC == &TargetRC) {
          HasOtherEdgeToChildRC = true;
          break;
        }
        if (&OtherChildRC != this)
          HasOtherChildRC = true;
      }
      if (HasOtherEdgeToChildRC)
        break;
    }
    if (HasOtherEdgeToChildRC)
      break;
  }
  // Because the SCCs form a DAG, deleting such an edge cannot change the set
  // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
  // the source SCC no longer connected to the target SCC. If so, we need to
  // update the target SCC's map of its parents.
  if (!HasOtherEdgeToChildRC) {
    bool Removed = TargetRC.Parents.erase(this);
    (void)Removed;
    assert(Removed &&
           "Did not find the source SCC in the target SCC's parent list!");

    // It may orphan an SCC if it is the last edge reaching it, but that does
    // not violate any invariants of the graph.
    if (TargetRC.Parents.empty())
      DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName()
                   << " -> " << TargetN.getFunction().getName()
                   << " edge orphaned the callee's SCC!\n");

    // It may make the Source SCC a leaf SCC.
    if (!HasOtherChildRC)
      G->LeafRefSCCs.push_back(this);
  }
}

SmallVector<LazyCallGraph::RefSCC *, 1>
LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) {
  assert(!SourceN[TargetN].isCall() &&
         "Cannot remove a call edge, it must first be made a ref edge");

  // First remove the actual edge.
  SourceN.removeEdgeInternal(TargetN.getFunction());

  // We return a list of the resulting *new* RefSCCs in post-order.
  SmallVector<RefSCC *, 1> Result;

  // Direct recursion doesn't impact the SCC graph at all.
  if (&SourceN == &TargetN)
    return Result;

  // We build somewhat synthetic new RefSCCs by providing a postorder mapping
  // for each inner SCC. We also store these associated with *nodes* rather
  // than SCCs because this saves a round-trip through the node->SCC map and in
  // the common case, SCCs are small. We will verify that we always give the
  // same number to every node in the SCC such that these are equivalent.
  const int RootPostOrderNumber = 0;
  int PostOrderNumber = RootPostOrderNumber + 1;
  SmallDenseMap<Node *, int> PostOrderMapping;

  // Every node in the target SCC can already reach every node in this RefSCC
  // (by definition). It is the only node we know will stay inside this RefSCC.
  // Everything which transitively reaches Target will also remain in the
  // RefSCC. We handle this by pre-marking that the nodes in the target SCC map
  // back to the root post order number.
  //
  // This also enables us to take a very significant short-cut in the standard
  // Tarjan walk to re-form RefSCCs below: whenever we build an edge that
  // references the target node, we know that the target node eventually
  // references all other nodes in our walk. As a consequence, we can detect
  // and handle participants in that cycle without walking all the edges that
  // form the connections, and instead by relying on the fundamental guarantee
  // coming into this operation.
  SCC &TargetC = *G->lookupSCC(TargetN);
  for (Node &N : TargetC)
    PostOrderMapping[&N] = RootPostOrderNumber;

  // Reset all the other nodes to prepare for a DFS over them, and add them to
  // our worklist.
  SmallVector<Node *, 8> Worklist;
  for (SCC *C : SCCs) {
    if (C == &TargetC)
      continue;

    for (Node &N : *C)
      N.DFSNumber = N.LowLink = 0;

    Worklist.append(C->Nodes.begin(), C->Nodes.end());
  }

  auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) {
    N.DFSNumber = N.LowLink = -1;
    PostOrderMapping[&N] = Number;
  };

  SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack;
  SmallVector<Node *, 4> PendingRefSCCStack;
  do {
    assert(DFSStack.empty() &&
           "Cannot begin a new root with a non-empty DFS stack!");
    assert(PendingRefSCCStack.empty() &&
           "Cannot begin a new root with pending nodes for an SCC!");

    Node *RootN = Worklist.pop_back_val();
    // Skip any nodes we've already reached in the DFS.
    if (RootN->DFSNumber != 0) {
      assert(RootN->DFSNumber == -1 &&
             "Shouldn't have any mid-DFS root nodes!");
      continue;
    }

    RootN->DFSNumber = RootN->LowLink = 1;
    int NextDFSNumber = 2;

    DFSStack.push_back({RootN, RootN->begin()});
    do {
      Node *N;
      edge_iterator I;
      std::tie(N, I) = DFSStack.pop_back_val();
      auto E = N->end();

      assert(N->DFSNumber != 0 && "We should always assign a DFS number "
                                  "before processing a node.");

      while (I != E) {
        Node &ChildN = I->getNode(*G);
        if (ChildN.DFSNumber == 0) {
          // Mark that we should start at this child when next this node is the
          // top of the stack. We don't start at the next child to ensure this
          // child's lowlink is reflected.
          DFSStack.push_back({N, I});

          // Continue, resetting to the child node.
          ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
          N = &ChildN;
          I = ChildN.begin();
          E = ChildN.end();
          continue;
        }
        if (ChildN.DFSNumber == -1) {
          // Check if this edge's target node connects to the deleted edge's
          // target node. If so, we know that every node connected will end up
          // in this RefSCC, so collapse the entire current stack into the root
          // slot in our SCC numbering. See above for the motivation of
          // optimizing the target connected nodes in this way.
          auto PostOrderI = PostOrderMapping.find(&ChildN);
          if (PostOrderI != PostOrderMapping.end() &&
              PostOrderI->second == RootPostOrderNumber) {
            MarkNodeForSCCNumber(*N, RootPostOrderNumber);
            while (!PendingRefSCCStack.empty())
              MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(),
                                   RootPostOrderNumber);
            while (!DFSStack.empty())
              MarkNodeForSCCNumber(*DFSStack.pop_back_val().first,
                                   RootPostOrderNumber);
            // Ensure we break all the way out of the enclosing loop.
            N = nullptr;
            break;
          }

          // If this child isn't currently in this RefSCC, no need to process
          // it.
          // However, we do need to remove this RefSCC from its RefSCC's parent
          // set.
          RefSCC &ChildRC = *G->lookupRefSCC(ChildN);
          ChildRC.Parents.erase(this);
          ++I;
          continue;
        }

        // Track the lowest link of the children, if any are still in the stack.
        // Any child not on the stack will have a LowLink of -1.
        assert(ChildN.LowLink != 0 &&
               "Low-link must not be zero with a non-zero DFS number.");
        if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
          N->LowLink = ChildN.LowLink;
        ++I;
      }
      if (!N)
        // We short-circuited this node.
        break;

      // We've finished processing N and its descendents, put it on our pending
      // stack to eventually get merged into a RefSCC.
      PendingRefSCCStack.push_back(N);

      // If this node is linked to some lower entry, continue walking up the
      // stack.
      if (N->LowLink != N->DFSNumber) {
        assert(!DFSStack.empty() &&
               "We never found a viable root for a RefSCC to pop off!");
        continue;
      }

      // Otherwise, form a new RefSCC from the top of the pending node stack.
      int RootDFSNumber = N->DFSNumber;
      // Find the range of the node stack by walking down until we pass the
      // root DFS number.
      auto RefSCCNodes = make_range(
          PendingRefSCCStack.rbegin(),
          std::find_if(PendingRefSCCStack.rbegin(), PendingRefSCCStack.rend(),
                       [RootDFSNumber](Node *N) {
                         return N->DFSNumber < RootDFSNumber;
                       }));

      // Mark the postorder number for these nodes and clear them off the
      // stack. We'll use the postorder number to pull them into RefSCCs at the
      // end. FIXME: Fuse with the loop above.
      int RefSCCNumber = PostOrderNumber++;
      for (Node *N : RefSCCNodes)
        MarkNodeForSCCNumber(*N, RefSCCNumber);

      PendingRefSCCStack.erase(RefSCCNodes.end().base(),
                               PendingRefSCCStack.end());
    } while (!DFSStack.empty());

    assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
    assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
  } while (!Worklist.empty());

  // We now have a post-order numbering for RefSCCs and a mapping from each
  // node in this RefSCC to its final RefSCC. We create each new RefSCC node
  // (re-using this RefSCC node for the root) and build a radix-sort style map
  // from postorder number to the RefSCC. We then append SCCs to each of these
  // RefSCCs in the order they occured in the original SCCs container.
  for (int i = 1; i < PostOrderNumber; ++i)
    Result.push_back(G->createRefSCC(*G));

  for (SCC *C : SCCs) {
    auto PostOrderI = PostOrderMapping.find(&*C->begin());
    assert(PostOrderI != PostOrderMapping.end() &&
           "Cannot have missing mappings for nodes!");
    int SCCNumber = PostOrderI->second;
#ifndef NDEBUG
    for (Node &N : *C)
      assert(PostOrderMapping.find(&N)->second == SCCNumber &&
             "Cannot have different numbers for nodes in the same SCC!");
#endif
    if (SCCNumber == 0)
      // The root node is handled separately by removing the SCCs.
      continue;

    RefSCC &RC = *Result[SCCNumber - 1];
    int SCCIndex = RC.SCCs.size();
    RC.SCCs.push_back(C);
    SCCIndices[C] = SCCIndex;
    C->OuterRefSCC = &RC;
  }

  // FIXME: We re-walk the edges in each RefSCC to establish whether it is
  // a leaf and connect it to the rest of the graph's parents lists. This is
  // really wasteful. We should instead do this during the DFS to avoid yet
  // another edge walk.
  for (RefSCC *RC : Result)
    G->connectRefSCC(*RC);

  // Now erase all but the root's SCCs.
  SCCs.erase(std::remove_if(SCCs.begin(), SCCs.end(),
                            [&](SCC *C) {
                              return PostOrderMapping.lookup(&*C->begin()) !=
                                     RootPostOrderNumber;
                            }),
             SCCs.end());

#ifndef NDEBUG
  // Now we need to reconnect the current (root) SCC to the graph. We do this
  // manually because we can special case our leaf handling and detect errors.
  bool IsLeaf = true;
#endif
  for (SCC *C : SCCs)
    for (Node &N : *C) {
      for (Edge &E : N) {
        assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
        RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
        if (&ChildRC == this)
          continue;
        ChildRC.Parents.insert(this);
#ifndef NDEBUG
        IsLeaf = false;
#endif
      }
    }
#ifndef NDEBUG
  if (!Result.empty())
    assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new "
                      "SCCs by removing this edge.");
  if (!std::any_of(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(),
                   [&](RefSCC *C) { return C == this; }))
    assert(!IsLeaf && "This SCC cannot be a leaf as it already had child "
                      "SCCs before we removed this edge.");
#endif
  // If this SCC stopped being a leaf through this edge removal, remove it from
  // the leaf SCC list. Note that this DTRT in the case where this was never
  // a leaf.
  // FIXME: As LeafRefSCCs could be very large, we might want to not walk the
  // entire list if this RefSCC wasn't a leaf before the edge removal.
  if (!Result.empty())
    G->LeafRefSCCs.erase(
        std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this),
        G->LeafRefSCCs.end());

  // Return the new list of SCCs.
  return Result;
}

void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) {
  assert(SCCMap.empty() && DFSStack.empty() &&
         "This method cannot be called after SCCs have been formed!");

  return SourceN.insertEdgeInternal(Target, EK);
}

void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) {
  assert(SCCMap.empty() && DFSStack.empty() &&
         "This method cannot be called after SCCs have been formed!");

  return SourceN.removeEdgeInternal(Target);
}

LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
  return *new (MappedN = BPA.Allocate()) Node(*this, F);
}

void LazyCallGraph::updateGraphPtrs() {
  // Process all nodes updating the graph pointers.
  {
    SmallVector<Node *, 16> Worklist;
    for (Edge &E : EntryEdges)
      if (Node *EntryN = E.getNode())
        Worklist.push_back(EntryN);

    while (!Worklist.empty()) {
      Node *N = Worklist.pop_back_val();
      N->G = this;
      for (Edge &E : N->Edges)
        if (Node *TargetN = E.getNode())
          Worklist.push_back(TargetN);
    }
  }

  // Process all SCCs updating the graph pointers.
  {
    SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end());

    while (!Worklist.empty()) {
      RefSCC &C = *Worklist.pop_back_val();
      C.G = this;
      for (RefSCC &ParentC : C.parents())
        Worklist.push_back(&ParentC);
    }
  }
}

/// Build the internal SCCs for a RefSCC from a sequence of nodes.
///
/// Appends the SCCs to the provided vector and updates the map with their
/// indices. Both the vector and map must be empty when passed into this
/// routine.
void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
  assert(RC.SCCs.empty() && "Already built SCCs!");
  assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");

  for (Node *N : Nodes) {
    assert(N->LowLink >= (*Nodes.begin())->LowLink &&
           "We cannot have a low link in an SCC lower than its root on the "
           "stack!");

    // This node will go into the next RefSCC, clear out its DFS and low link
    // as we scan.
    N->DFSNumber = N->LowLink = 0;
  }

  // Each RefSCC contains a DAG of the call SCCs. To build these, we do
  // a direct walk of the call edges using Tarjan's algorithm. We reuse the
  // internal storage as we won't need it for the outer graph's DFS any longer.

  SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
  SmallVector<Node *, 16> PendingSCCStack;

  // Scan down the stack and DFS across the call edges.
  for (Node *RootN : Nodes) {
    assert(DFSStack.empty() &&
           "Cannot begin a new root with a non-empty DFS stack!");
    assert(PendingSCCStack.empty() &&
           "Cannot begin a new root with pending nodes for an SCC!");

    // Skip any nodes we've already reached in the DFS.
    if (RootN->DFSNumber != 0) {
      assert(RootN->DFSNumber == -1 &&
             "Shouldn't have any mid-DFS root nodes!");
      continue;
    }

    RootN->DFSNumber = RootN->LowLink = 1;
    int NextDFSNumber = 2;

    DFSStack.push_back({RootN, RootN->call_begin()});
    do {
      Node *N;
      call_edge_iterator I;
      std::tie(N, I) = DFSStack.pop_back_val();
      auto E = N->call_end();
      while (I != E) {
        Node &ChildN = *I->getNode();
        if (ChildN.DFSNumber == 0) {
          // We haven't yet visited this child, so descend, pushing the current
          // node onto the stack.
          DFSStack.push_back({N, I});

          assert(!lookupSCC(ChildN) &&
                 "Found a node with 0 DFS number but already in an SCC!");
          ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
          N = &ChildN;
          I = N->call_begin();
          E = N->call_end();
          continue;
        }

        // If the child has already been added to some child component, it
        // couldn't impact the low-link of this parent because it isn't
        // connected, and thus its low-link isn't relevant so skip it.
        if (ChildN.DFSNumber == -1) {
          ++I;
          continue;
        }

        // Track the lowest linked child as the lowest link for this node.
        assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
        if (ChildN.LowLink < N->LowLink)
          N->LowLink = ChildN.LowLink;

        // Move to the next edge.
        ++I;
      }

      // We've finished processing N and its descendents, put it on our pending
      // SCC stack to eventually get merged into an SCC of nodes.
      PendingSCCStack.push_back(N);

      // If this node is linked to some lower entry, continue walking up the
      // stack.
      if (N->LowLink != N->DFSNumber)
        continue;

      // Otherwise, we've completed an SCC. Append it to our post order list of
      // SCCs.
      int RootDFSNumber = N->DFSNumber;
      // Find the range of the node stack by walking down until we pass the
      // root DFS number.
      auto SCCNodes = make_range(
          PendingSCCStack.rbegin(),
          std::find_if(PendingSCCStack.rbegin(), PendingSCCStack.rend(),
                       [RootDFSNumber](Node *N) {
                         return N->DFSNumber < RootDFSNumber;
                       }));
      // Form a new SCC out of these nodes and then clear them off our pending
      // stack.
      RC.SCCs.push_back(createSCC(RC, SCCNodes));
      for (Node &N : *RC.SCCs.back()) {
        N.DFSNumber = N.LowLink = -1;
        SCCMap[&N] = RC.SCCs.back();
      }
      PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
    } while (!DFSStack.empty());
  }

  // Wire up the SCC indices.
  for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
    RC.SCCIndices[RC.SCCs[i]] = i;
}

// FIXME: We should move callers of this to embed the parent linking and leaf
// tracking into their DFS in order to remove a full walk of all edges.
void LazyCallGraph::connectRefSCC(RefSCC &RC) {
  // Walk all edges in the RefSCC (this remains linear as we only do this once
  // when we build the RefSCC) to connect it to the parent sets of its
  // children.
  bool IsLeaf = true;
  for (SCC &C : RC)
    for (Node &N : C)
      for (Edge &E : N) {
        assert(E.getNode() &&
               "Cannot have a missing node in a visited part of the graph!");
        RefSCC &ChildRC = *lookupRefSCC(*E.getNode());
        if (&ChildRC == &RC)
          continue;
        ChildRC.Parents.insert(&RC);
        IsLeaf = false;
      }

  // For the SCCs where we fine no child SCCs, add them to the leaf list.
  if (IsLeaf)
    LeafRefSCCs.push_back(&RC);
}

LazyCallGraph::RefSCC *LazyCallGraph::getNextRefSCCInPostOrder() {
  if (DFSStack.empty()) {
    Node *N;
    do {
      // If we've handled all candidate entry nodes to the SCC forest, we're
      // done.
      if (RefSCCEntryNodes.empty())
        return nullptr;

      N = &get(*RefSCCEntryNodes.pop_back_val());
    } while (N->DFSNumber != 0);

    // Found a new root, begin the DFS here.
    N->LowLink = N->DFSNumber = 1;
    NextDFSNumber = 2;
    DFSStack.push_back({N, N->begin()});
  }

  for (;;) {
    Node *N;
    edge_iterator I;
    std::tie(N, I) = DFSStack.pop_back_val();

    assert(N->DFSNumber > 0 && "We should always assign a DFS number "
                               "before placing a node onto the stack.");

    auto E = N->end();
    while (I != E) {
      Node &ChildN = I->getNode(*this);
      if (ChildN.DFSNumber == 0) {
        // We haven't yet visited this child, so descend, pushing the current
        // node onto the stack.
        DFSStack.push_back({N, N->begin()});

        assert(!SCCMap.count(&ChildN) &&
               "Found a node with 0 DFS number but already in an SCC!");
        ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
        N = &ChildN;
        I = N->begin();
        E = N->end();
        continue;
      }

      // If the child has already been added to some child component, it
      // couldn't impact the low-link of this parent because it isn't
      // connected, and thus its low-link isn't relevant so skip it.
      if (ChildN.DFSNumber == -1) {
        ++I;
        continue;
      }

      // Track the lowest linked child as the lowest link for this node.
      assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
      if (ChildN.LowLink < N->LowLink)
        N->LowLink = ChildN.LowLink;

      // Move to the next edge.
      ++I;
    }

    // We've finished processing N and its descendents, put it on our pending
    // SCC stack to eventually get merged into an SCC of nodes.
    PendingRefSCCStack.push_back(N);

    // If this node is linked to some lower entry, continue walking up the
    // stack.
    if (N->LowLink != N->DFSNumber) {
      assert(!DFSStack.empty() &&
             "We never found a viable root for an SCC to pop off!");
      continue;
    }

    // Otherwise, form a new RefSCC from the top of the pending node stack.
    int RootDFSNumber = N->DFSNumber;
    // Find the range of the node stack by walking down until we pass the
    // root DFS number.
    auto RefSCCNodes = node_stack_range(
        PendingRefSCCStack.rbegin(),
        std::find_if(
            PendingRefSCCStack.rbegin(), PendingRefSCCStack.rend(),
            [RootDFSNumber](Node *N) { return N->DFSNumber < RootDFSNumber; }));
    // Form a new RefSCC out of these nodes and then clear them off our pending
    // stack.
    RefSCC *NewRC = createRefSCC(*this);
    buildSCCs(*NewRC, RefSCCNodes);
    connectRefSCC(*NewRC);
    PendingRefSCCStack.erase(RefSCCNodes.end().base(),
                             PendingRefSCCStack.end());

    // We return the new node here. This essentially suspends the DFS walk
    // until another RefSCC is requested.
    return NewRC;
  }
}

char LazyCallGraphAnalysis::PassID;

LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}

static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
  OS << "  Edges in function: " << N.getFunction().getName() << "\n";
  for (const LazyCallGraph::Edge &E : N)
    OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
       << E.getFunction().getName() << "\n";

  OS << "\n";
}

static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
  ptrdiff_t Size = std::distance(C.begin(), C.end());
  OS << "    SCC with " << Size << " functions:\n";

  for (LazyCallGraph::Node &N : C)
    OS << "      " << N.getFunction().getName() << "\n";
}

static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
  ptrdiff_t Size = std::distance(C.begin(), C.end());
  OS << "  RefSCC with " << Size << " call SCCs:\n";

  for (LazyCallGraph::SCC &InnerC : C)
    printSCC(OS, InnerC);

  OS << "\n";
}

PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
                                                ModuleAnalysisManager &AM) {
  LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);

  OS << "Printing the call graph for module: " << M.getModuleIdentifier()
     << "\n\n";

  for (Function &F : M)
    printNode(OS, G.get(F));

  for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
    printRefSCC(OS, C);

  return PreservedAnalyses::all();
}

LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
    : OS(OS) {}

static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
  std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";

  for (const LazyCallGraph::Edge &E : N) {
    OS << "  " << Name << " -> \""
       << DOT::EscapeString(E.getFunction().getName()) << "\"";
    if (!E.isCall()) // It is a ref edge.
      OS << " [style=dashed,label=\"ref\"]";
    OS << ";\n";
  }

  OS << "\n";
}

PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
                                                   ModuleAnalysisManager &AM) {
  LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);

  OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";

  for (Function &F : M)
    printNodeDOT(OS, G.get(F));

  OS << "}\n";

  return PreservedAnalyses::all();
}