aboutsummaryrefslogtreecommitdiff
path: root/lib/Bitcode/Writer/ValueEnumerator.cpp
blob: 5d5bfab58b81e11323fa66b8b3352f7acaa1cb55 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ValueEnumerator class.
//
//===----------------------------------------------------------------------===//

#include "ValueEnumerator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/UseListOrder.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;

namespace {
struct OrderMap {
  DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
  unsigned LastGlobalConstantID;
  unsigned LastGlobalValueID;

  OrderMap() : LastGlobalConstantID(0), LastGlobalValueID(0) {}

  bool isGlobalConstant(unsigned ID) const {
    return ID <= LastGlobalConstantID;
  }
  bool isGlobalValue(unsigned ID) const {
    return ID <= LastGlobalValueID && !isGlobalConstant(ID);
  }

  unsigned size() const { return IDs.size(); }
  std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
  std::pair<unsigned, bool> lookup(const Value *V) const {
    return IDs.lookup(V);
  }
  void index(const Value *V) {
    // Explicitly sequence get-size and insert-value operations to avoid UB.
    unsigned ID = IDs.size() + 1;
    IDs[V].first = ID;
  }
};
}

static void orderValue(const Value *V, OrderMap &OM) {
  if (OM.lookup(V).first)
    return;

  if (const Constant *C = dyn_cast<Constant>(V))
    if (C->getNumOperands() && !isa<GlobalValue>(C))
      for (const Value *Op : C->operands())
        if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
          orderValue(Op, OM);

  // Note: we cannot cache this lookup above, since inserting into the map
  // changes the map's size, and thus affects the other IDs.
  OM.index(V);
}

static OrderMap orderModule(const Module &M) {
  // This needs to match the order used by ValueEnumerator::ValueEnumerator()
  // and ValueEnumerator::incorporateFunction().
  OrderMap OM;

  // In the reader, initializers of GlobalValues are set *after* all the
  // globals have been read.  Rather than awkwardly modeling this behaviour
  // directly in predictValueUseListOrderImpl(), just assign IDs to
  // initializers of GlobalValues before GlobalValues themselves to model this
  // implicitly.
  for (const GlobalVariable &G : M.globals())
    if (G.hasInitializer())
      if (!isa<GlobalValue>(G.getInitializer()))
        orderValue(G.getInitializer(), OM);
  for (const GlobalAlias &A : M.aliases())
    if (!isa<GlobalValue>(A.getAliasee()))
      orderValue(A.getAliasee(), OM);
  for (const GlobalIFunc &I : M.ifuncs())
    if (!isa<GlobalValue>(I.getResolver()))
      orderValue(I.getResolver(), OM);
  for (const Function &F : M) {
    for (const Use &U : F.operands())
      if (!isa<GlobalValue>(U.get()))
        orderValue(U.get(), OM);
  }
  OM.LastGlobalConstantID = OM.size();

  // Initializers of GlobalValues are processed in
  // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
  // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
  // by giving IDs in reverse order.
  //
  // Since GlobalValues never reference each other directly (just through
  // initializers), their relative IDs only matter for determining order of
  // uses in their initializers.
  for (const Function &F : M)
    orderValue(&F, OM);
  for (const GlobalAlias &A : M.aliases())
    orderValue(&A, OM);
  for (const GlobalIFunc &I : M.ifuncs())
    orderValue(&I, OM);
  for (const GlobalVariable &G : M.globals())
    orderValue(&G, OM);
  OM.LastGlobalValueID = OM.size();

  for (const Function &F : M) {
    if (F.isDeclaration())
      continue;
    // Here we need to match the union of ValueEnumerator::incorporateFunction()
    // and WriteFunction().  Basic blocks are implicitly declared before
    // anything else (by declaring their size).
    for (const BasicBlock &BB : F)
      orderValue(&BB, OM);
    for (const Argument &A : F.args())
      orderValue(&A, OM);
    for (const BasicBlock &BB : F)
      for (const Instruction &I : BB)
        for (const Value *Op : I.operands())
          if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
              isa<InlineAsm>(*Op))
            orderValue(Op, OM);
    for (const BasicBlock &BB : F)
      for (const Instruction &I : BB)
        orderValue(&I, OM);
  }
  return OM;
}

static void predictValueUseListOrderImpl(const Value *V, const Function *F,
                                         unsigned ID, const OrderMap &OM,
                                         UseListOrderStack &Stack) {
  // Predict use-list order for this one.
  typedef std::pair<const Use *, unsigned> Entry;
  SmallVector<Entry, 64> List;
  for (const Use &U : V->uses())
    // Check if this user will be serialized.
    if (OM.lookup(U.getUser()).first)
      List.push_back(std::make_pair(&U, List.size()));

  if (List.size() < 2)
    // We may have lost some users.
    return;

  bool IsGlobalValue = OM.isGlobalValue(ID);
  std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
    const Use *LU = L.first;
    const Use *RU = R.first;
    if (LU == RU)
      return false;

    auto LID = OM.lookup(LU->getUser()).first;
    auto RID = OM.lookup(RU->getUser()).first;

    // Global values are processed in reverse order.
    //
    // Moreover, initializers of GlobalValues are set *after* all the globals
    // have been read (despite having earlier IDs).  Rather than awkwardly
    // modeling this behaviour here, orderModule() has assigned IDs to
    // initializers of GlobalValues before GlobalValues themselves.
    if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
      return LID < RID;

    // If ID is 4, then expect: 7 6 5 1 2 3.
    if (LID < RID) {
      if (RID <= ID)
        if (!IsGlobalValue) // GlobalValue uses don't get reversed.
          return true;
      return false;
    }
    if (RID < LID) {
      if (LID <= ID)
        if (!IsGlobalValue) // GlobalValue uses don't get reversed.
          return false;
      return true;
    }

    // LID and RID are equal, so we have different operands of the same user.
    // Assume operands are added in order for all instructions.
    if (LID <= ID)
      if (!IsGlobalValue) // GlobalValue uses don't get reversed.
        return LU->getOperandNo() < RU->getOperandNo();
    return LU->getOperandNo() > RU->getOperandNo();
  });

  if (std::is_sorted(
          List.begin(), List.end(),
          [](const Entry &L, const Entry &R) { return L.second < R.second; }))
    // Order is already correct.
    return;

  // Store the shuffle.
  Stack.emplace_back(V, F, List.size());
  assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
  for (size_t I = 0, E = List.size(); I != E; ++I)
    Stack.back().Shuffle[I] = List[I].second;
}

static void predictValueUseListOrder(const Value *V, const Function *F,
                                     OrderMap &OM, UseListOrderStack &Stack) {
  auto &IDPair = OM[V];
  assert(IDPair.first && "Unmapped value");
  if (IDPair.second)
    // Already predicted.
    return;

  // Do the actual prediction.
  IDPair.second = true;
  if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
    predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);

  // Recursive descent into constants.
  if (const Constant *C = dyn_cast<Constant>(V))
    if (C->getNumOperands()) // Visit GlobalValues.
      for (const Value *Op : C->operands())
        if (isa<Constant>(Op)) // Visit GlobalValues.
          predictValueUseListOrder(Op, F, OM, Stack);
}

static UseListOrderStack predictUseListOrder(const Module &M) {
  OrderMap OM = orderModule(M);

  // Use-list orders need to be serialized after all the users have been added
  // to a value, or else the shuffles will be incomplete.  Store them per
  // function in a stack.
  //
  // Aside from function order, the order of values doesn't matter much here.
  UseListOrderStack Stack;

  // We want to visit the functions backward now so we can list function-local
  // constants in the last Function they're used in.  Module-level constants
  // have already been visited above.
  for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
    const Function &F = *I;
    if (F.isDeclaration())
      continue;
    for (const BasicBlock &BB : F)
      predictValueUseListOrder(&BB, &F, OM, Stack);
    for (const Argument &A : F.args())
      predictValueUseListOrder(&A, &F, OM, Stack);
    for (const BasicBlock &BB : F)
      for (const Instruction &I : BB)
        for (const Value *Op : I.operands())
          if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
            predictValueUseListOrder(Op, &F, OM, Stack);
    for (const BasicBlock &BB : F)
      for (const Instruction &I : BB)
        predictValueUseListOrder(&I, &F, OM, Stack);
  }

  // Visit globals last, since the module-level use-list block will be seen
  // before the function bodies are processed.
  for (const GlobalVariable &G : M.globals())
    predictValueUseListOrder(&G, nullptr, OM, Stack);
  for (const Function &F : M)
    predictValueUseListOrder(&F, nullptr, OM, Stack);
  for (const GlobalAlias &A : M.aliases())
    predictValueUseListOrder(&A, nullptr, OM, Stack);
  for (const GlobalIFunc &I : M.ifuncs())
    predictValueUseListOrder(&I, nullptr, OM, Stack);
  for (const GlobalVariable &G : M.globals())
    if (G.hasInitializer())
      predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
  for (const GlobalAlias &A : M.aliases())
    predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
  for (const GlobalIFunc &I : M.ifuncs())
    predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
  for (const Function &F : M) {
    for (const Use &U : F.operands())
      predictValueUseListOrder(U.get(), nullptr, OM, Stack);
  }

  return Stack;
}

static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
  return V.first->getType()->isIntOrIntVectorTy();
}

ValueEnumerator::ValueEnumerator(const Module &M,
                                 bool ShouldPreserveUseListOrder)
    : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
  if (ShouldPreserveUseListOrder)
    UseListOrders = predictUseListOrder(M);

  // Enumerate the global variables.
  for (const GlobalVariable &GV : M.globals())
    EnumerateValue(&GV);

  // Enumerate the functions.
  for (const Function & F : M) {
    EnumerateValue(&F);
    EnumerateAttributes(F.getAttributes());
  }

  // Enumerate the aliases.
  for (const GlobalAlias &GA : M.aliases())
    EnumerateValue(&GA);

  // Enumerate the ifuncs.
  for (const GlobalIFunc &GIF : M.ifuncs())
    EnumerateValue(&GIF);

  // Remember what is the cutoff between globalvalue's and other constants.
  unsigned FirstConstant = Values.size();

  // Enumerate the global variable initializers.
  for (const GlobalVariable &GV : M.globals())
    if (GV.hasInitializer())
      EnumerateValue(GV.getInitializer());

  // Enumerate the aliasees.
  for (const GlobalAlias &GA : M.aliases())
    EnumerateValue(GA.getAliasee());

  // Enumerate the ifunc resolvers.
  for (const GlobalIFunc &GIF : M.ifuncs())
    EnumerateValue(GIF.getResolver());

  // Enumerate any optional Function data.
  for (const Function &F : M)
    for (const Use &U : F.operands())
      EnumerateValue(U.get());

  // Enumerate the metadata type.
  //
  // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
  // only encodes the metadata type when it's used as a value.
  EnumerateType(Type::getMetadataTy(M.getContext()));

  // Insert constants and metadata that are named at module level into the slot
  // pool so that the module symbol table can refer to them...
  EnumerateValueSymbolTable(M.getValueSymbolTable());
  EnumerateNamedMetadata(M);

  SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
  for (const GlobalVariable &GV : M.globals()) {
    MDs.clear();
    GV.getAllMetadata(MDs);
    for (const auto &I : MDs)
      // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
      // to write metadata to the global variable's own metadata block
      // (PR28134).
      EnumerateMetadata(nullptr, I.second);
  }

  // Enumerate types used by function bodies and argument lists.
  for (const Function &F : M) {
    for (const Argument &A : F.args())
      EnumerateType(A.getType());

    // Enumerate metadata attached to this function.
    MDs.clear();
    F.getAllMetadata(MDs);
    for (const auto &I : MDs)
      EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);

    for (const BasicBlock &BB : F)
      for (const Instruction &I : BB) {
        for (const Use &Op : I.operands()) {
          auto *MD = dyn_cast<MetadataAsValue>(&Op);
          if (!MD) {
            EnumerateOperandType(Op);
            continue;
          }

          // Local metadata is enumerated during function-incorporation.
          if (isa<LocalAsMetadata>(MD->getMetadata()))
            continue;

          EnumerateMetadata(&F, MD->getMetadata());
        }
        EnumerateType(I.getType());
        if (const CallInst *CI = dyn_cast<CallInst>(&I))
          EnumerateAttributes(CI->getAttributes());
        else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I))
          EnumerateAttributes(II->getAttributes());

        // Enumerate metadata attached with this instruction.
        MDs.clear();
        I.getAllMetadataOtherThanDebugLoc(MDs);
        for (unsigned i = 0, e = MDs.size(); i != e; ++i)
          EnumerateMetadata(&F, MDs[i].second);

        // Don't enumerate the location directly -- it has a special record
        // type -- but enumerate its operands.
        if (DILocation *L = I.getDebugLoc())
          for (const Metadata *Op : L->operands())
            EnumerateMetadata(&F, Op);
      }
  }

  // Optimize constant ordering.
  OptimizeConstants(FirstConstant, Values.size());

  // Organize metadata ordering.
  organizeMetadata();
}

unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
  InstructionMapType::const_iterator I = InstructionMap.find(Inst);
  assert(I != InstructionMap.end() && "Instruction is not mapped!");
  return I->second;
}

unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
  unsigned ComdatID = Comdats.idFor(C);
  assert(ComdatID && "Comdat not found!");
  return ComdatID;
}

void ValueEnumerator::setInstructionID(const Instruction *I) {
  InstructionMap[I] = InstructionCount++;
}

unsigned ValueEnumerator::getValueID(const Value *V) const {
  if (auto *MD = dyn_cast<MetadataAsValue>(V))
    return getMetadataID(MD->getMetadata());

  ValueMapType::const_iterator I = ValueMap.find(V);
  assert(I != ValueMap.end() && "Value not in slotcalculator!");
  return I->second-1;
}

LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
  print(dbgs(), ValueMap, "Default");
  dbgs() << '\n';
  print(dbgs(), MetadataMap, "MetaData");
  dbgs() << '\n';
}

void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
                            const char *Name) const {

  OS << "Map Name: " << Name << "\n";
  OS << "Size: " << Map.size() << "\n";
  for (ValueMapType::const_iterator I = Map.begin(),
         E = Map.end(); I != E; ++I) {

    const Value *V = I->first;
    if (V->hasName())
      OS << "Value: " << V->getName();
    else
      OS << "Value: [null]\n";
    V->dump();

    OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
    for (const Use &U : V->uses()) {
      if (&U != &*V->use_begin())
        OS << ",";
      if(U->hasName())
        OS << " " << U->getName();
      else
        OS << " [null]";

    }
    OS <<  "\n\n";
  }
}

void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
                            const char *Name) const {

  OS << "Map Name: " << Name << "\n";
  OS << "Size: " << Map.size() << "\n";
  for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
    const Metadata *MD = I->first;
    OS << "Metadata: slot = " << I->second.ID << "\n";
    OS << "Metadata: function = " << I->second.F << "\n";
    MD->print(OS);
    OS << "\n";
  }
}

/// OptimizeConstants - Reorder constant pool for denser encoding.
void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
  if (CstStart == CstEnd || CstStart+1 == CstEnd) return;

  if (ShouldPreserveUseListOrder)
    // Optimizing constants makes the use-list order difficult to predict.
    // Disable it for now when trying to preserve the order.
    return;

  std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
                   [this](const std::pair<const Value *, unsigned> &LHS,
                          const std::pair<const Value *, unsigned> &RHS) {
    // Sort by plane.
    if (LHS.first->getType() != RHS.first->getType())
      return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
    // Then by frequency.
    return LHS.second > RHS.second;
  });

  // Ensure that integer and vector of integer constants are at the start of the
  // constant pool.  This is important so that GEP structure indices come before
  // gep constant exprs.
  std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
                        isIntOrIntVectorValue);

  // Rebuild the modified portion of ValueMap.
  for (; CstStart != CstEnd; ++CstStart)
    ValueMap[Values[CstStart].first] = CstStart+1;
}


/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
/// table into the values table.
void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
  for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
       VI != VE; ++VI)
    EnumerateValue(VI->getValue());
}

/// Insert all of the values referenced by named metadata in the specified
/// module.
void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
  for (const auto &I : M.named_metadata())
    EnumerateNamedMDNode(&I);
}

void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
  for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
    EnumerateMetadata(nullptr, MD->getOperand(i));
}

unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
  return F ? getValueID(F) + 1 : 0;
}

void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
  EnumerateMetadata(getMetadataFunctionID(F), MD);
}

void ValueEnumerator::EnumerateFunctionLocalMetadata(
    const Function &F, const LocalAsMetadata *Local) {
  EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
}

void ValueEnumerator::dropFunctionFromMetadata(
    MetadataMapType::value_type &FirstMD) {
  SmallVector<const MDNode *, 64> Worklist;
  auto push = [this, &Worklist](MetadataMapType::value_type &MD) {
    auto &Entry = MD.second;

    // Nothing to do if this metadata isn't tagged.
    if (!Entry.F)
      return;

    // Drop the function tag.
    Entry.F = 0;

    // If this is has an ID and is an MDNode, then its operands have entries as
    // well.  We need to drop the function from them too.
    if (Entry.ID)
      if (auto *N = dyn_cast<MDNode>(MD.first))
        Worklist.push_back(N);
  };
  push(FirstMD);
  while (!Worklist.empty())
    for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
      if (!Op)
        continue;
      auto MD = MetadataMap.find(Op);
      if (MD != MetadataMap.end())
        push(*MD);
    }
}

void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
  // It's vital for reader efficiency that uniqued subgraphs are done in
  // post-order; it's expensive when their operands have forward references.
  // If a distinct node is referenced from a uniqued node, it'll be delayed
  // until the uniqued subgraph has been completely traversed.
  SmallVector<const MDNode *, 32> DelayedDistinctNodes;

  // Start by enumerating MD, and then work through its transitive operands in
  // post-order.  This requires a depth-first search.
  SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
  if (const MDNode *N = enumerateMetadataImpl(F, MD))
    Worklist.push_back(std::make_pair(N, N->op_begin()));

  while (!Worklist.empty()) {
    const MDNode *N = Worklist.back().first;

    // Enumerate operands until we hit a new node.  We need to traverse these
    // nodes' operands before visiting the rest of N's operands.
    MDNode::op_iterator I = std::find_if(
        Worklist.back().second, N->op_end(),
        [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
    if (I != N->op_end()) {
      auto *Op = cast<MDNode>(*I);
      Worklist.back().second = ++I;

      // Delay traversing Op if it's a distinct node and N is uniqued.
      if (Op->isDistinct() && !N->isDistinct())
        DelayedDistinctNodes.push_back(Op);
      else
        Worklist.push_back(std::make_pair(Op, Op->op_begin()));
      continue;
    }

    // All the operands have been visited.  Now assign an ID.
    Worklist.pop_back();
    MDs.push_back(N);
    MetadataMap[N].ID = MDs.size();

    // Flush out any delayed distinct nodes; these are all the distinct nodes
    // that are leaves in last uniqued subgraph.
    if (Worklist.empty() || Worklist.back().first->isDistinct()) {
      for (const MDNode *N : DelayedDistinctNodes)
        Worklist.push_back(std::make_pair(N, N->op_begin()));
      DelayedDistinctNodes.clear();
    }
  }
}

const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
  if (!MD)
    return nullptr;

  assert(
      (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
      "Invalid metadata kind");

  auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
  MDIndex &Entry = Insertion.first->second;
  if (!Insertion.second) {
    // Already mapped.  If F doesn't match the function tag, drop it.
    if (Entry.hasDifferentFunction(F))
      dropFunctionFromMetadata(*Insertion.first);
    return nullptr;
  }

  // Don't assign IDs to metadata nodes.
  if (auto *N = dyn_cast<MDNode>(MD))
    return N;

  // Save the metadata.
  MDs.push_back(MD);
  Entry.ID = MDs.size();

  // Enumerate the constant, if any.
  if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
    EnumerateValue(C->getValue());

  return nullptr;
}

/// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
/// information reachable from the metadata.
void ValueEnumerator::EnumerateFunctionLocalMetadata(
    unsigned F, const LocalAsMetadata *Local) {
  assert(F && "Expected a function");

  // Check to see if it's already in!
  MDIndex &Index = MetadataMap[Local];
  if (Index.ID) {
    assert(Index.F == F && "Expected the same function");
    return;
  }

  MDs.push_back(Local);
  Index.F = F;
  Index.ID = MDs.size();

  EnumerateValue(Local->getValue());
}

static unsigned getMetadataTypeOrder(const Metadata *MD) {
  // Strings are emitted in bulk and must come first.
  if (isa<MDString>(MD))
    return 0;

  // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
  // to the front since we can detect it.
  auto *N = dyn_cast<MDNode>(MD);
  if (!N)
    return 1;

  // The reader is fast forward references for distinct node operands, but slow
  // when uniqued operands are unresolved.
  return N->isDistinct() ? 2 : 3;
}

void ValueEnumerator::organizeMetadata() {
  assert(MetadataMap.size() == MDs.size() &&
         "Metadata map and vector out of sync");

  if (MDs.empty())
    return;

  // Copy out the index information from MetadataMap in order to choose a new
  // order.
  SmallVector<MDIndex, 64> Order;
  Order.reserve(MetadataMap.size());
  for (const Metadata *MD : MDs)
    Order.push_back(MetadataMap.lookup(MD));

  // Partition:
  //   - by function, then
  //   - by isa<MDString>
  // and then sort by the original/current ID.  Since the IDs are guaranteed to
  // be unique, the result of std::sort will be deterministic.  There's no need
  // for std::stable_sort.
  std::sort(Order.begin(), Order.end(), [this](MDIndex LHS, MDIndex RHS) {
    return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
           std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
  });

  // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
  // and fix up MetadataMap.
  std::vector<const Metadata *> OldMDs = std::move(MDs);
  MDs.reserve(OldMDs.size());
  for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
    auto *MD = Order[I].get(OldMDs);
    MDs.push_back(MD);
    MetadataMap[MD].ID = I + 1;
    if (isa<MDString>(MD))
      ++NumMDStrings;
  }

  // Return early if there's nothing for the functions.
  if (MDs.size() == Order.size())
    return;

  // Build the function metadata ranges.
  MDRange R;
  FunctionMDs.reserve(OldMDs.size());
  unsigned PrevF = 0;
  for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
       ++I) {
    unsigned F = Order[I].F;
    if (!PrevF) {
      PrevF = F;
    } else if (PrevF != F) {
      R.Last = FunctionMDs.size();
      std::swap(R, FunctionMDInfo[PrevF]);
      R.First = FunctionMDs.size();

      ID = MDs.size();
      PrevF = F;
    }

    auto *MD = Order[I].get(OldMDs);
    FunctionMDs.push_back(MD);
    MetadataMap[MD].ID = ++ID;
    if (isa<MDString>(MD))
      ++R.NumStrings;
  }
  R.Last = FunctionMDs.size();
  FunctionMDInfo[PrevF] = R;
}

void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
  NumModuleMDs = MDs.size();

  auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
  NumMDStrings = R.NumStrings;
  MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
             FunctionMDs.begin() + R.Last);
}

void ValueEnumerator::EnumerateValue(const Value *V) {
  assert(!V->getType()->isVoidTy() && "Can't insert void values!");
  assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");

  // Check to see if it's already in!
  unsigned &ValueID = ValueMap[V];
  if (ValueID) {
    // Increment use count.
    Values[ValueID-1].second++;
    return;
  }

  if (auto *GO = dyn_cast<GlobalObject>(V))
    if (const Comdat *C = GO->getComdat())
      Comdats.insert(C);

  // Enumerate the type of this value.
  EnumerateType(V->getType());

  if (const Constant *C = dyn_cast<Constant>(V)) {
    if (isa<GlobalValue>(C)) {
      // Initializers for globals are handled explicitly elsewhere.
    } else if (C->getNumOperands()) {
      // If a constant has operands, enumerate them.  This makes sure that if a
      // constant has uses (for example an array of const ints), that they are
      // inserted also.

      // We prefer to enumerate them with values before we enumerate the user
      // itself.  This makes it more likely that we can avoid forward references
      // in the reader.  We know that there can be no cycles in the constants
      // graph that don't go through a global variable.
      for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
           I != E; ++I)
        if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
          EnumerateValue(*I);

      // Finally, add the value.  Doing this could make the ValueID reference be
      // dangling, don't reuse it.
      Values.push_back(std::make_pair(V, 1U));
      ValueMap[V] = Values.size();
      return;
    }
  }

  // Add the value.
  Values.push_back(std::make_pair(V, 1U));
  ValueID = Values.size();
}


void ValueEnumerator::EnumerateType(Type *Ty) {
  unsigned *TypeID = &TypeMap[Ty];

  // We've already seen this type.
  if (*TypeID)
    return;

  // If it is a non-anonymous struct, mark the type as being visited so that we
  // don't recursively visit it.  This is safe because we allow forward
  // references of these in the bitcode reader.
  if (StructType *STy = dyn_cast<StructType>(Ty))
    if (!STy->isLiteral())
      *TypeID = ~0U;

  // Enumerate all of the subtypes before we enumerate this type.  This ensures
  // that the type will be enumerated in an order that can be directly built.
  for (Type *SubTy : Ty->subtypes())
    EnumerateType(SubTy);

  // Refresh the TypeID pointer in case the table rehashed.
  TypeID = &TypeMap[Ty];

  // Check to see if we got the pointer another way.  This can happen when
  // enumerating recursive types that hit the base case deeper than they start.
  //
  // If this is actually a struct that we are treating as forward ref'able,
  // then emit the definition now that all of its contents are available.
  if (*TypeID && *TypeID != ~0U)
    return;

  // Add this type now that its contents are all happily enumerated.
  Types.push_back(Ty);

  *TypeID = Types.size();
}

// Enumerate the types for the specified value.  If the value is a constant,
// walk through it, enumerating the types of the constant.
void ValueEnumerator::EnumerateOperandType(const Value *V) {
  EnumerateType(V->getType());

  assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");

  const Constant *C = dyn_cast<Constant>(V);
  if (!C)
    return;

  // If this constant is already enumerated, ignore it, we know its type must
  // be enumerated.
  if (ValueMap.count(C))
    return;

  // This constant may have operands, make sure to enumerate the types in
  // them.
  for (const Value *Op : C->operands()) {
    // Don't enumerate basic blocks here, this happens as operands to
    // blockaddress.
    if (isa<BasicBlock>(Op))
      continue;

    EnumerateOperandType(Op);
  }
}

void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
  if (PAL.isEmpty()) return;  // null is always 0.

  // Do a lookup.
  unsigned &Entry = AttributeMap[PAL];
  if (Entry == 0) {
    // Never saw this before, add it.
    Attribute.push_back(PAL);
    Entry = Attribute.size();
  }

  // Do lookups for all attribute groups.
  for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) {
    AttributeSet AS = PAL.getSlotAttributes(i);
    unsigned &Entry = AttributeGroupMap[AS];
    if (Entry == 0) {
      AttributeGroups.push_back(AS);
      Entry = AttributeGroups.size();
    }
  }
}

void ValueEnumerator::incorporateFunction(const Function &F) {
  InstructionCount = 0;
  NumModuleValues = Values.size();

  // Add global metadata to the function block.  This doesn't include
  // LocalAsMetadata.
  incorporateFunctionMetadata(F);

  // Adding function arguments to the value table.
  for (const auto &I : F.args())
    EnumerateValue(&I);

  FirstFuncConstantID = Values.size();

  // Add all function-level constants to the value table.
  for (const BasicBlock &BB : F) {
    for (const Instruction &I : BB)
      for (const Use &OI : I.operands()) {
        if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
          EnumerateValue(OI);
      }
    BasicBlocks.push_back(&BB);
    ValueMap[&BB] = BasicBlocks.size();
  }

  // Optimize the constant layout.
  OptimizeConstants(FirstFuncConstantID, Values.size());

  // Add the function's parameter attributes so they are available for use in
  // the function's instruction.
  EnumerateAttributes(F.getAttributes());

  FirstInstID = Values.size();

  SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
  // Add all of the instructions.
  for (const BasicBlock &BB : F) {
    for (const Instruction &I : BB) {
      for (const Use &OI : I.operands()) {
        if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
          if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
            // Enumerate metadata after the instructions they might refer to.
            FnLocalMDVector.push_back(Local);
      }

      if (!I.getType()->isVoidTy())
        EnumerateValue(&I);
    }
  }

  // Add all of the function-local metadata.
  for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
    // At this point, every local values have been incorporated, we shouldn't
    // have a metadata operand that references a value that hasn't been seen.
    assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
           "Missing value for metadata operand");
    EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
  }
}

void ValueEnumerator::purgeFunction() {
  /// Remove purged values from the ValueMap.
  for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
    ValueMap.erase(Values[i].first);
  for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
    MetadataMap.erase(MDs[i]);
  for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
    ValueMap.erase(BasicBlocks[i]);

  Values.resize(NumModuleValues);
  MDs.resize(NumModuleMDs);
  BasicBlocks.clear();
  NumMDStrings = 0;
}

static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
                                 DenseMap<const BasicBlock*, unsigned> &IDMap) {
  unsigned Counter = 0;
  for (const BasicBlock &BB : *F)
    IDMap[&BB] = ++Counter;
}

/// getGlobalBasicBlockID - This returns the function-specific ID for the
/// specified basic block.  This is relatively expensive information, so it
/// should only be used by rare constructs such as address-of-label.
unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
  unsigned &Idx = GlobalBasicBlockIDs[BB];
  if (Idx != 0)
    return Idx-1;

  IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
  return getGlobalBasicBlockID(BB);
}

uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
  return Log2_32_Ceil(getTypes().size() + 1);
}