aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/CGCall.cpp
blob: 06cd05cc75a8b0d37917772c7db3cd8f6e831af4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These classes wrap the information about a call or function
// definition used to handle ABI compliancy.
//
//===----------------------------------------------------------------------===//

#include "CGCall.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/Frontend/CompileOptions.h"
#include "llvm/Attributes.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Target/TargetData.h"

#include "ABIInfo.h"

using namespace clang;
using namespace CodeGen;

/***/

// FIXME: Use iterator and sidestep silly type array creation.

const
CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionNoProtoType *FTNP) {
  // FIXME: Set calling convention correctly, it needs to be associated with the
  // type somehow.
  return getFunctionInfo(FTNP->getResultType(),
                         llvm::SmallVector<QualType, 16>(), 0);
}

const
CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionProtoType *FTP) {
  llvm::SmallVector<QualType, 16> ArgTys;
  // FIXME: Kill copy.
  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
    ArgTys.push_back(FTP->getArgType(i));
  // FIXME: Set calling convention correctly, it needs to be associated with the
  // type somehow.
  return getFunctionInfo(FTP->getResultType(), ArgTys, 0);
}

static unsigned getCallingConventionForDecl(const Decl *D) {
  // Set the appropriate calling convention for the Function.
  if (D->hasAttr<StdCallAttr>())
    return llvm::CallingConv::X86_StdCall;

  if (D->hasAttr<FastCallAttr>())
    return llvm::CallingConv::X86_FastCall;

  return llvm::CallingConv::C;
}

const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXRecordDecl *RD,
                                                 const FunctionProtoType *FTP) {
  llvm::SmallVector<QualType, 16> ArgTys;
  
  // Add the 'this' pointer.
  ArgTys.push_back(Context.getPointerType(Context.getTagDeclType(RD)));
  
  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
    ArgTys.push_back(FTP->getArgType(i));
  
  // FIXME: Set calling convention correctly, it needs to be associated with the
  // type somehow.
  return getFunctionInfo(FTP->getResultType(), ArgTys, 0);
}

const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) {
  llvm::SmallVector<QualType, 16> ArgTys;
  // Add the 'this' pointer unless this is a static method.
  if (MD->isInstance())
    ArgTys.push_back(MD->getThisType(Context));

  const FunctionProtoType *FTP = MD->getType()->getAs<FunctionProtoType>();
  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
    ArgTys.push_back(FTP->getArgType(i));
  return getFunctionInfo(FTP->getResultType(), ArgTys,
                         getCallingConventionForDecl(MD));
}

const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) {
  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
    if (MD->isInstance())
      return getFunctionInfo(MD);

  unsigned CallingConvention = getCallingConventionForDecl(FD);
  const FunctionType *FTy = FD->getType()->getAs<FunctionType>();
  if (const FunctionNoProtoType *FNTP = dyn_cast<FunctionNoProtoType>(FTy))
    return getFunctionInfo(FNTP->getResultType(), 
                           llvm::SmallVector<QualType, 16>(),
                           CallingConvention);
  
  const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
  llvm::SmallVector<QualType, 16> ArgTys;
  // FIXME: Kill copy.
  for (unsigned i = 0, e = FPT->getNumArgs(); i != e; ++i)
    ArgTys.push_back(FPT->getArgType(i));
  return getFunctionInfo(FPT->getResultType(), ArgTys, CallingConvention);
}

const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) {
  llvm::SmallVector<QualType, 16> ArgTys;
  ArgTys.push_back(MD->getSelfDecl()->getType());
  ArgTys.push_back(Context.getObjCSelType());
  // FIXME: Kill copy?
  for (ObjCMethodDecl::param_iterator i = MD->param_begin(),
         e = MD->param_end(); i != e; ++i)
    ArgTys.push_back((*i)->getType());
  return getFunctionInfo(MD->getResultType(), ArgTys,
                         getCallingConventionForDecl(MD));
}

const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
                                                    const CallArgList &Args,
                                                    unsigned CallingConvention){
  // FIXME: Kill copy.
  llvm::SmallVector<QualType, 16> ArgTys;
  for (CallArgList::const_iterator i = Args.begin(), e = Args.end();
       i != e; ++i)
    ArgTys.push_back(i->second);
  return getFunctionInfo(ResTy, ArgTys, CallingConvention);
}

const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
                                                    const FunctionArgList &Args,
                                                    unsigned CallingConvention){
  // FIXME: Kill copy.
  llvm::SmallVector<QualType, 16> ArgTys;
  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
       i != e; ++i)
    ArgTys.push_back(i->second);
  return getFunctionInfo(ResTy, ArgTys, CallingConvention);
}

const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
                                  const llvm::SmallVector<QualType, 16> &ArgTys,
                                                    unsigned CallingConvention){
  // Lookup or create unique function info.
  llvm::FoldingSetNodeID ID;
  CGFunctionInfo::Profile(ID, CallingConvention, ResTy,
                          ArgTys.begin(), ArgTys.end());

  void *InsertPos = 0;
  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos);
  if (FI)
    return *FI;

  // Construct the function info.
  FI = new CGFunctionInfo(CallingConvention, ResTy, ArgTys);
  FunctionInfos.InsertNode(FI, InsertPos);

  // Compute ABI information.
  getABIInfo().computeInfo(*FI, getContext(), TheModule.getContext());

  return *FI;
}

CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention,
                               QualType ResTy,
                               const llvm::SmallVector<QualType, 16> &ArgTys) 
  : CallingConvention(_CallingConvention),
    EffectiveCallingConvention(_CallingConvention)
{
  NumArgs = ArgTys.size();
  Args = new ArgInfo[1 + NumArgs];
  Args[0].type = ResTy;
  for (unsigned i = 0; i < NumArgs; ++i)
    Args[1 + i].type = ArgTys[i];
}

/***/

void CodeGenTypes::GetExpandedTypes(QualType Ty,
                                    std::vector<const llvm::Type*> &ArgTys) {
  const RecordType *RT = Ty->getAsStructureType();
  assert(RT && "Can only expand structure types.");
  const RecordDecl *RD = RT->getDecl();
  assert(!RD->hasFlexibleArrayMember() &&
         "Cannot expand structure with flexible array.");

  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
         i != e; ++i) {
    const FieldDecl *FD = *i;
    assert(!FD->isBitField() &&
           "Cannot expand structure with bit-field members.");

    QualType FT = FD->getType();
    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
      GetExpandedTypes(FT, ArgTys);
    } else {
      ArgTys.push_back(ConvertType(FT));
    }
  }
}

llvm::Function::arg_iterator
CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
                                    llvm::Function::arg_iterator AI) {
  const RecordType *RT = Ty->getAsStructureType();
  assert(RT && "Can only expand structure types.");

  RecordDecl *RD = RT->getDecl();
  assert(LV.isSimple() &&
         "Unexpected non-simple lvalue during struct expansion.");
  llvm::Value *Addr = LV.getAddress();
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
         i != e; ++i) {
    FieldDecl *FD = *i;
    QualType FT = FD->getType();

    // FIXME: What are the right qualifiers here?
    LValue LV = EmitLValueForField(Addr, FD, false, 0);
    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
      AI = ExpandTypeFromArgs(FT, LV, AI);
    } else {
      EmitStoreThroughLValue(RValue::get(AI), LV, FT);
      ++AI;
    }
  }

  return AI;
}

void
CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
                                  llvm::SmallVector<llvm::Value*, 16> &Args) {
  const RecordType *RT = Ty->getAsStructureType();
  assert(RT && "Can only expand structure types.");

  RecordDecl *RD = RT->getDecl();
  assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
  llvm::Value *Addr = RV.getAggregateAddr();
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
         i != e; ++i) {
    FieldDecl *FD = *i;
    QualType FT = FD->getType();

    // FIXME: What are the right qualifiers here?
    LValue LV = EmitLValueForField(Addr, FD, false, 0);
    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
      ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args);
    } else {
      RValue RV = EmitLoadOfLValue(LV, FT);
      assert(RV.isScalar() &&
             "Unexpected non-scalar rvalue during struct expansion.");
      Args.push_back(RV.getScalarVal());
    }
  }
}

/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
/// a pointer to an object of type \arg Ty.
///
/// This safely handles the case when the src type is smaller than the
/// destination type; in this situation the values of bits which not
/// present in the src are undefined.
static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
                                      const llvm::Type *Ty,
                                      CodeGenFunction &CGF) {
  const llvm::Type *SrcTy =
    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
  uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
  uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);

  // If load is legal, just bitcast the src pointer.
  if (SrcSize >= DstSize) {
    // Generally SrcSize is never greater than DstSize, since this means we are
    // losing bits. However, this can happen in cases where the structure has
    // additional padding, for example due to a user specified alignment.
    //
    // FIXME: Assert that we aren't truncating non-padding bits when have access
    // to that information.
    llvm::Value *Casted =
      CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
    // FIXME: Use better alignment / avoid requiring aligned load.
    Load->setAlignment(1);
    return Load;
  } else {
    // Otherwise do coercion through memory. This is stupid, but
    // simple.
    llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
    llvm::Value *Casted =
      CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
    llvm::StoreInst *Store =
      CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
    // FIXME: Use better alignment / avoid requiring aligned store.
    Store->setAlignment(1);
    return CGF.Builder.CreateLoad(Tmp);
  }
}

/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
/// where the source and destination may have different types.
///
/// This safely handles the case when the src type is larger than the
/// destination type; the upper bits of the src will be lost.
static void CreateCoercedStore(llvm::Value *Src,
                               llvm::Value *DstPtr,
                               CodeGenFunction &CGF) {
  const llvm::Type *SrcTy = Src->getType();
  const llvm::Type *DstTy =
    cast<llvm::PointerType>(DstPtr->getType())->getElementType();

  uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
  uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);

  // If store is legal, just bitcast the src pointer.
  if (SrcSize <= DstSize) {
    llvm::Value *Casted =
      CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
    // FIXME: Use better alignment / avoid requiring aligned store.
    CGF.Builder.CreateStore(Src, Casted)->setAlignment(1);
  } else {
    // Otherwise do coercion through memory. This is stupid, but
    // simple.

    // Generally SrcSize is never greater than DstSize, since this means we are
    // losing bits. However, this can happen in cases where the structure has
    // additional padding, for example due to a user specified alignment.
    //
    // FIXME: Assert that we aren't truncating non-padding bits when have access
    // to that information.
    llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
    CGF.Builder.CreateStore(Src, Tmp);
    llvm::Value *Casted =
      CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
    // FIXME: Use better alignment / avoid requiring aligned load.
    Load->setAlignment(1);
    CGF.Builder.CreateStore(Load, DstPtr);
  }
}

/***/

bool CodeGenModule::ReturnTypeUsesSret(const CGFunctionInfo &FI) {
  return FI.getReturnInfo().isIndirect();
}

const llvm::FunctionType *
CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) {
  std::vector<const llvm::Type*> ArgTys;

  const llvm::Type *ResultType = 0;

  QualType RetTy = FI.getReturnType();
  const ABIArgInfo &RetAI = FI.getReturnInfo();
  switch (RetAI.getKind()) {
  case ABIArgInfo::Expand:
    assert(0 && "Invalid ABI kind for return argument");

  case ABIArgInfo::Extend:
  case ABIArgInfo::Direct:
    ResultType = ConvertType(RetTy);
    break;

  case ABIArgInfo::Indirect: {
    assert(!RetAI.getIndirectAlign() && "Align unused on indirect return.");
    ResultType = llvm::Type::getVoidTy(getLLVMContext());
    const llvm::Type *STy = ConvertType(RetTy);
    ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace()));
    break;
  }

  case ABIArgInfo::Ignore:
    ResultType = llvm::Type::getVoidTy(getLLVMContext());
    break;

  case ABIArgInfo::Coerce:
    ResultType = RetAI.getCoerceToType();
    break;
  }

  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
         ie = FI.arg_end(); it != ie; ++it) {
    const ABIArgInfo &AI = it->info;

    switch (AI.getKind()) {
    case ABIArgInfo::Ignore:
      break;

    case ABIArgInfo::Coerce:
      ArgTys.push_back(AI.getCoerceToType());
      break;

    case ABIArgInfo::Indirect: {
      // indirect arguments are always on the stack, which is addr space #0.
      const llvm::Type *LTy = ConvertTypeForMem(it->type);
      ArgTys.push_back(llvm::PointerType::getUnqual(LTy));
      break;
    }

    case ABIArgInfo::Extend:
    case ABIArgInfo::Direct:
      ArgTys.push_back(ConvertType(it->type));
      break;

    case ABIArgInfo::Expand:
      GetExpandedTypes(it->type, ArgTys);
      break;
    }
  }

  return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic);
}

void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
                                           const Decl *TargetDecl,
                                           AttributeListType &PAL, 
                                           unsigned &CallingConv) {
  unsigned FuncAttrs = 0;
  unsigned RetAttrs = 0;

  CallingConv = FI.getEffectiveCallingConvention();

  // FIXME: handle sseregparm someday...
  if (TargetDecl) {
    if (TargetDecl->hasAttr<NoThrowAttr>())
      FuncAttrs |= llvm::Attribute::NoUnwind;
    if (TargetDecl->hasAttr<NoReturnAttr>())
      FuncAttrs |= llvm::Attribute::NoReturn;
    if (TargetDecl->hasAttr<ConstAttr>())
      FuncAttrs |= llvm::Attribute::ReadNone;
    else if (TargetDecl->hasAttr<PureAttr>())
      FuncAttrs |= llvm::Attribute::ReadOnly;
    if (TargetDecl->hasAttr<MallocAttr>())
      RetAttrs |= llvm::Attribute::NoAlias;
  }

  if (CompileOpts.OptimizeSize)
    FuncAttrs |= llvm::Attribute::OptimizeForSize;
  if (CompileOpts.DisableRedZone)
    FuncAttrs |= llvm::Attribute::NoRedZone;
  if (CompileOpts.NoImplicitFloat)
    FuncAttrs |= llvm::Attribute::NoImplicitFloat;

  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
    FuncAttrs |= llvm::Attribute::StackProtect;
  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
    FuncAttrs |= llvm::Attribute::StackProtectReq;

  QualType RetTy = FI.getReturnType();
  unsigned Index = 1;
  const ABIArgInfo &RetAI = FI.getReturnInfo();
  switch (RetAI.getKind()) {
  case ABIArgInfo::Extend:
   if (RetTy->isSignedIntegerType()) {
     RetAttrs |= llvm::Attribute::SExt;
   } else if (RetTy->isUnsignedIntegerType()) {
     RetAttrs |= llvm::Attribute::ZExt;
   }
   // FALLTHROUGH
  case ABIArgInfo::Direct:
    break;

  case ABIArgInfo::Indirect:
    PAL.push_back(llvm::AttributeWithIndex::get(Index,
                                                llvm::Attribute::StructRet |
                                                llvm::Attribute::NoAlias));
    ++Index;
    // sret disables readnone and readonly
    FuncAttrs &= ~(llvm::Attribute::ReadOnly |
                   llvm::Attribute::ReadNone);
    break;

  case ABIArgInfo::Ignore:
  case ABIArgInfo::Coerce:
    break;

  case ABIArgInfo::Expand:
    assert(0 && "Invalid ABI kind for return argument");
  }

  if (RetAttrs)
    PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));

  // FIXME: we need to honour command line settings also...
  // FIXME: RegParm should be reduced in case of nested functions and/or global
  // register variable.
  signed RegParm = 0;
  if (TargetDecl)
    if (const RegparmAttr *RegParmAttr
          = TargetDecl->getAttr<RegparmAttr>())
      RegParm = RegParmAttr->getNumParams();

  unsigned PointerWidth = getContext().Target.getPointerWidth(0);
  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
         ie = FI.arg_end(); it != ie; ++it) {
    QualType ParamType = it->type;
    const ABIArgInfo &AI = it->info;
    unsigned Attributes = 0;

    switch (AI.getKind()) {
    case ABIArgInfo::Coerce:
      break;

    case ABIArgInfo::Indirect:
      if (AI.getIndirectByVal())
        Attributes |= llvm::Attribute::ByVal;

      Attributes |=
        llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
      // byval disables readnone and readonly.
      FuncAttrs &= ~(llvm::Attribute::ReadOnly |
                     llvm::Attribute::ReadNone);
      break;

    case ABIArgInfo::Extend:
     if (ParamType->isSignedIntegerType()) {
       Attributes |= llvm::Attribute::SExt;
     } else if (ParamType->isUnsignedIntegerType()) {
       Attributes |= llvm::Attribute::ZExt;
     }
     // FALLS THROUGH
    case ABIArgInfo::Direct:
      if (RegParm > 0 &&
          (ParamType->isIntegerType() || ParamType->isPointerType())) {
        RegParm -=
          (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
        if (RegParm >= 0)
          Attributes |= llvm::Attribute::InReg;
      }
      // FIXME: handle sseregparm someday...
      break;

    case ABIArgInfo::Ignore:
      // Skip increment, no matching LLVM parameter.
      continue;

    case ABIArgInfo::Expand: {
      std::vector<const llvm::Type*> Tys;
      // FIXME: This is rather inefficient. Do we ever actually need to do
      // anything here? The result should be just reconstructed on the other
      // side, so extension should be a non-issue.
      getTypes().GetExpandedTypes(ParamType, Tys);
      Index += Tys.size();
      continue;
    }
    }

    if (Attributes)
      PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes));
    ++Index;
  }
  if (FuncAttrs)
    PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
}

void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
                                         llvm::Function *Fn,
                                         const FunctionArgList &Args) {
  // If this is an implicit-return-zero function, go ahead and
  // initialize the return value.  TODO: it might be nice to have
  // a more general mechanism for this that didn't require synthesized
  // return statements.
  if (const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
    if (FD->hasImplicitReturnZero()) {
      QualType RetTy = FD->getResultType().getUnqualifiedType();
      const llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
      llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
      Builder.CreateStore(Zero, ReturnValue);
    }
  }

  // FIXME: We no longer need the types from FunctionArgList; lift up and
  // simplify.

  // Emit allocs for param decls.  Give the LLVM Argument nodes names.
  llvm::Function::arg_iterator AI = Fn->arg_begin();

  // Name the struct return argument.
  if (CGM.ReturnTypeUsesSret(FI)) {
    AI->setName("agg.result");
    ++AI;
  }

  assert(FI.arg_size() == Args.size() &&
         "Mismatch between function signature & arguments.");
  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
       i != e; ++i, ++info_it) {
    const VarDecl *Arg = i->first;
    QualType Ty = info_it->type;
    const ABIArgInfo &ArgI = info_it->info;

    switch (ArgI.getKind()) {
    case ABIArgInfo::Indirect: {
      llvm::Value* V = AI;
      if (hasAggregateLLVMType(Ty)) {
        // Do nothing, aggregates and complex variables are accessed by
        // reference.
      } else {
        // Load scalar value from indirect argument.
        V = EmitLoadOfScalar(V, false, Ty);
        if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
          // This must be a promotion, for something like
          // "void a(x) short x; {..."
          V = EmitScalarConversion(V, Ty, Arg->getType());
        }
      }
      EmitParmDecl(*Arg, V);
      break;
    }

    case ABIArgInfo::Extend:
    case ABIArgInfo::Direct: {
      assert(AI != Fn->arg_end() && "Argument mismatch!");
      llvm::Value* V = AI;
      if (hasAggregateLLVMType(Ty)) {
        // Create a temporary alloca to hold the argument; the rest of
        // codegen expects to access aggregates & complex values by
        // reference.
        V = CreateTempAlloca(ConvertTypeForMem(Ty));
        Builder.CreateStore(AI, V);
      } else {
        if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
          // This must be a promotion, for something like
          // "void a(x) short x; {..."
          V = EmitScalarConversion(V, Ty, Arg->getType());
        }
      }
      EmitParmDecl(*Arg, V);
      break;
    }

    case ABIArgInfo::Expand: {
      // If this structure was expanded into multiple arguments then
      // we need to create a temporary and reconstruct it from the
      // arguments.
      llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(Ty),
                                           Arg->getName() + ".addr");
      // FIXME: What are the right qualifiers here?
      llvm::Function::arg_iterator End =
        ExpandTypeFromArgs(Ty, LValue::MakeAddr(Temp, Qualifiers()), AI);
      EmitParmDecl(*Arg, Temp);

      // Name the arguments used in expansion and increment AI.
      unsigned Index = 0;
      for (; AI != End; ++AI, ++Index)
        AI->setName(Arg->getName() + "." + llvm::Twine(Index));
      continue;
    }

    case ABIArgInfo::Ignore:
      // Initialize the local variable appropriately.
      if (hasAggregateLLVMType(Ty)) {
        EmitParmDecl(*Arg, CreateTempAlloca(ConvertTypeForMem(Ty)));
      } else {
        EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())));
      }

      // Skip increment, no matching LLVM parameter.
      continue;

    case ABIArgInfo::Coerce: {
      assert(AI != Fn->arg_end() && "Argument mismatch!");
      // FIXME: This is very wasteful; EmitParmDecl is just going to drop the
      // result in a new alloca anyway, so we could just store into that
      // directly if we broke the abstraction down more.
      llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(Ty), "coerce");
      CreateCoercedStore(AI, V, *this);
      // Match to what EmitParmDecl is expecting for this type.
      if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
        V = EmitLoadOfScalar(V, false, Ty);
        if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
          // This must be a promotion, for something like
          // "void a(x) short x; {..."
          V = EmitScalarConversion(V, Ty, Arg->getType());
        }
      }
      EmitParmDecl(*Arg, V);
      break;
    }
    }

    ++AI;
  }
  assert(AI == Fn->arg_end() && "Argument mismatch!");
}

void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
                                         llvm::Value *ReturnValue) {
  llvm::Value *RV = 0;

  // Functions with no result always return void.
  if (ReturnValue) {
    QualType RetTy = FI.getReturnType();
    const ABIArgInfo &RetAI = FI.getReturnInfo();

    switch (RetAI.getKind()) {
    case ABIArgInfo::Indirect:
      if (RetTy->isAnyComplexType()) {
        ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
        StoreComplexToAddr(RT, CurFn->arg_begin(), false);
      } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
        EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy);
      } else {
        EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
                          false, RetTy);
      }
      break;

    case ABIArgInfo::Extend:
    case ABIArgInfo::Direct:
      // The internal return value temp always will have
      // pointer-to-return-type type.
      RV = Builder.CreateLoad(ReturnValue);
      break;

    case ABIArgInfo::Ignore:
      break;

    case ABIArgInfo::Coerce:
      RV = CreateCoercedLoad(ReturnValue, RetAI.getCoerceToType(), *this);
      break;

    case ABIArgInfo::Expand:
      assert(0 && "Invalid ABI kind for return argument");
    }
  }

  if (RV) {
    Builder.CreateRet(RV);
  } else {
    Builder.CreateRetVoid();
  }
}

RValue CodeGenFunction::EmitCallArg(const Expr *E, QualType ArgType) {
  if (ArgType->isReferenceType())
    return EmitReferenceBindingToExpr(E, ArgType);

  return EmitAnyExprToTemp(E);
}

RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
                                 llvm::Value *Callee,
                                 const CallArgList &CallArgs,
                                 const Decl *TargetDecl) {
  // FIXME: We no longer need the types from CallArgs; lift up and simplify.
  llvm::SmallVector<llvm::Value*, 16> Args;

  // Handle struct-return functions by passing a pointer to the
  // location that we would like to return into.
  QualType RetTy = CallInfo.getReturnType();
  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();


  // If the call returns a temporary with struct return, create a temporary
  // alloca to hold the result.
  if (CGM.ReturnTypeUsesSret(CallInfo))
    Args.push_back(CreateTempAlloca(ConvertTypeForMem(RetTy)));

  assert(CallInfo.arg_size() == CallArgs.size() &&
         "Mismatch between function signature & arguments.");
  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
       I != E; ++I, ++info_it) {
    const ABIArgInfo &ArgInfo = info_it->info;
    RValue RV = I->first;

    switch (ArgInfo.getKind()) {
    case ABIArgInfo::Indirect:
      if (RV.isScalar() || RV.isComplex()) {
        // Make a temporary alloca to pass the argument.
        Args.push_back(CreateTempAlloca(ConvertTypeForMem(I->second)));
        if (RV.isScalar())
          EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, I->second);
        else
          StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
      } else {
        Args.push_back(RV.getAggregateAddr());
      }
      break;

    case ABIArgInfo::Extend:
    case ABIArgInfo::Direct:
      if (RV.isScalar()) {
        Args.push_back(RV.getScalarVal());
      } else if (RV.isComplex()) {
        llvm::Value *Tmp = llvm::UndefValue::get(ConvertType(I->second));
        Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().first, 0);
        Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().second, 1);
        Args.push_back(Tmp);
      } else {
        Args.push_back(Builder.CreateLoad(RV.getAggregateAddr()));
      }
      break;

    case ABIArgInfo::Ignore:
      break;

    case ABIArgInfo::Coerce: {
      // FIXME: Avoid the conversion through memory if possible.
      llvm::Value *SrcPtr;
      if (RV.isScalar()) {
        SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce");
        EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, I->second);
      } else if (RV.isComplex()) {
        SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce");
        StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
      } else
        SrcPtr = RV.getAggregateAddr();
      Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
                                       *this));
      break;
    }

    case ABIArgInfo::Expand:
      ExpandTypeToArgs(I->second, RV, Args);
      break;
    }
  }

  // If the callee is a bitcast of a function to a varargs pointer to function
  // type, check to see if we can remove the bitcast.  This handles some cases
  // with unprototyped functions.
  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
    if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
      const llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
      const llvm::FunctionType *CurFT =
        cast<llvm::FunctionType>(CurPT->getElementType());
      const llvm::FunctionType *ActualFT = CalleeF->getFunctionType();

      if (CE->getOpcode() == llvm::Instruction::BitCast &&
          ActualFT->getReturnType() == CurFT->getReturnType() &&
          ActualFT->getNumParams() == CurFT->getNumParams() &&
          ActualFT->getNumParams() == Args.size()) {
        bool ArgsMatch = true;
        for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
          if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
            ArgsMatch = false;
            break;
          }

        // Strip the cast if we can get away with it.  This is a nice cleanup,
        // but also allows us to inline the function at -O0 if it is marked
        // always_inline.
        if (ArgsMatch)
          Callee = CalleeF;
      }
    }


  llvm::BasicBlock *InvokeDest = getInvokeDest();
  unsigned CallingConv;
  CodeGen::AttributeListType AttributeList;
  CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
  llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
                                                   AttributeList.end());

  llvm::CallSite CS;
  if (!InvokeDest || (Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) {
    CS = Builder.CreateCall(Callee, Args.data(), Args.data()+Args.size());
  } else {
    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
    CS = Builder.CreateInvoke(Callee, Cont, InvokeDest,
                              Args.data(), Args.data()+Args.size());
    EmitBlock(Cont);
  }

  CS.setAttributes(Attrs);
  CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));

  // If the call doesn't return, finish the basic block and clear the
  // insertion point; this allows the rest of IRgen to discard
  // unreachable code.
  if (CS.doesNotReturn()) {
    Builder.CreateUnreachable();
    Builder.ClearInsertionPoint();

    // FIXME: For now, emit a dummy basic block because expr emitters in
    // generally are not ready to handle emitting expressions at unreachable
    // points.
    EnsureInsertPoint();

    // Return a reasonable RValue.
    return GetUndefRValue(RetTy);
  }

  llvm::Instruction *CI = CS.getInstruction();
  if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
    CI->setName("call");

  switch (RetAI.getKind()) {
  case ABIArgInfo::Indirect:
    if (RetTy->isAnyComplexType())
      return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
      return RValue::getAggregate(Args[0]);
    return RValue::get(EmitLoadOfScalar(Args[0], false, RetTy));

  case ABIArgInfo::Extend:
  case ABIArgInfo::Direct:
    if (RetTy->isAnyComplexType()) {
      llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
      llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
      return RValue::getComplex(std::make_pair(Real, Imag));
    }
    if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
      llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "agg.tmp");
      Builder.CreateStore(CI, V);
      return RValue::getAggregate(V);
    }
    return RValue::get(CI);

  case ABIArgInfo::Ignore:
    // If we are ignoring an argument that had a result, make sure to
    // construct the appropriate return value for our caller.
    return GetUndefRValue(RetTy);

  case ABIArgInfo::Coerce: {
    // FIXME: Avoid the conversion through memory if possible.
    llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "coerce");
    CreateCoercedStore(CI, V, *this);
    if (RetTy->isAnyComplexType())
      return RValue::getComplex(LoadComplexFromAddr(V, false));
    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
      return RValue::getAggregate(V);
    return RValue::get(EmitLoadOfScalar(V, false, RetTy));
  }

  case ABIArgInfo::Expand:
    assert(0 && "Invalid ABI kind for return argument");
  }

  assert(0 && "Unhandled ABIArgInfo::Kind");
  return RValue::get(0);
}

/* VarArg handling */

llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
  return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
}