aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/CGExprScalar.cpp
blob: e9bbf35fcd8d4dab4add3ff6e466e6e2ff535844 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CodeGenFunction.h"
#include "CGObjCRuntime.h"
#include "CodeGenModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Intrinsics.h"
#include "llvm/Module.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/CFG.h"
#include "llvm/Target/TargetData.h"
#include <cstdarg>

using namespace clang;
using namespace CodeGen;
using llvm::Value;

//===----------------------------------------------------------------------===//
//                         Scalar Expression Emitter
//===----------------------------------------------------------------------===//

struct BinOpInfo {
  Value *LHS;
  Value *RHS;
  QualType Ty;  // Computation Type.
  const BinaryOperator *E;
};

namespace {
class VISIBILITY_HIDDEN ScalarExprEmitter
  : public StmtVisitor<ScalarExprEmitter, Value*> {
  CodeGenFunction &CGF;
  CGBuilderTy &Builder;
  bool IgnoreResultAssign;
  llvm::LLVMContext &VMContext;
public:

  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
      VMContext(cgf.getLLVMContext()) {
  }

  //===--------------------------------------------------------------------===//
  //                               Utilities
  //===--------------------------------------------------------------------===//

  bool TestAndClearIgnoreResultAssign() {
    bool I = IgnoreResultAssign;
    IgnoreResultAssign = false;
    return I;
  }

  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }

  Value *EmitLoadOfLValue(LValue LV, QualType T) {
    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
  }

  /// EmitLoadOfLValue - Given an expression with complex type that represents a
  /// value l-value, this method emits the address of the l-value, then loads
  /// and returns the result.
  Value *EmitLoadOfLValue(const Expr *E) {
    return EmitLoadOfLValue(EmitLValue(E), E->getType());
  }

  /// EmitConversionToBool - Convert the specified expression value to a
  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
  Value *EmitConversionToBool(Value *Src, QualType DstTy);

  /// EmitScalarConversion - Emit a conversion from the specified type to the
  /// specified destination type, both of which are LLVM scalar types.
  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);

  /// EmitComplexToScalarConversion - Emit a conversion from the specified
  /// complex type to the specified destination type, where the destination type
  /// is an LLVM scalar type.
  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
                                       QualType SrcTy, QualType DstTy);

  //===--------------------------------------------------------------------===//
  //                            Visitor Methods
  //===--------------------------------------------------------------------===//

  Value *VisitStmt(Stmt *S) {
    S->dump(CGF.getContext().getSourceManager());
    assert(0 && "Stmt can't have complex result type!");
    return 0;
  }
  Value *VisitExpr(Expr *S);
  
  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }

  // Leaves.
  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
    return llvm::ConstantInt::get(VMContext, E->getValue());
  }
  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
    return llvm::ConstantFP::get(VMContext, E->getValue());
  }
  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  }
  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  }
  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
    return llvm::Constant::getNullValue(ConvertType(E->getType()));
  }
  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
    return llvm::Constant::getNullValue(ConvertType(E->getType()));
  }
  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
    return llvm::ConstantInt::get(ConvertType(E->getType()),
                                  CGF.getContext().typesAreCompatible(
                                    E->getArgType1(), E->getArgType2()));
  }
  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
    return Builder.CreateBitCast(V, ConvertType(E->getType()));
  }

  // l-values.
  Value *VisitDeclRefExpr(DeclRefExpr *E) {
    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
      return llvm::ConstantInt::get(VMContext, EC->getInitVal());
    return EmitLoadOfLValue(E);
  }
  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
    return CGF.EmitObjCSelectorExpr(E);
  }
  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
    return CGF.EmitObjCProtocolExpr(E);
  }
  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    return EmitLoadOfLValue(E);
  }
  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
    return EmitLoadOfLValue(E);
  }
  Value *VisitObjCImplicitSetterGetterRefExpr(
                        ObjCImplicitSetterGetterRefExpr *E) {
    return EmitLoadOfLValue(E);
  }
  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
    return CGF.EmitObjCMessageExpr(E).getScalarVal();
  }

  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    return EmitLoadOfLValue(E);
  }
  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
     return EmitLValue(E).getAddress();
  }

  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }

  Value *VisitInitListExpr(InitListExpr *E);

  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
    return llvm::Constant::getNullValue(ConvertType(E->getType()));
  }
  Value *VisitCastExpr(const CastExpr *E) {
    // Make sure to evaluate VLA bounds now so that we have them for later.
    if (E->getType()->isVariablyModifiedType())
      CGF.EmitVLASize(E->getType());

    return EmitCastExpr(E);
  }
  Value *EmitCastExpr(const CastExpr *E);

  Value *VisitCallExpr(const CallExpr *E) {
    if (E->getCallReturnType()->isReferenceType())
      return EmitLoadOfLValue(E);

    return CGF.EmitCallExpr(E).getScalarVal();
  }

  Value *VisitStmtExpr(const StmtExpr *E);

  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);

  // Unary Operators.
  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
  Value *VisitUnaryPostDec(const UnaryOperator *E) {
    return VisitPrePostIncDec(E, false, false);
  }
  Value *VisitUnaryPostInc(const UnaryOperator *E) {
    return VisitPrePostIncDec(E, true, false);
  }
  Value *VisitUnaryPreDec(const UnaryOperator *E) {
    return VisitPrePostIncDec(E, false, true);
  }
  Value *VisitUnaryPreInc(const UnaryOperator *E) {
    return VisitPrePostIncDec(E, true, true);
  }
  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
    return EmitLValue(E->getSubExpr()).getAddress();
  }
  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
  Value *VisitUnaryPlus(const UnaryOperator *E) {
    // This differs from gcc, though, most likely due to a bug in gcc.
    TestAndClearIgnoreResultAssign();
    return Visit(E->getSubExpr());
  }
  Value *VisitUnaryMinus    (const UnaryOperator *E);
  Value *VisitUnaryNot      (const UnaryOperator *E);
  Value *VisitUnaryLNot     (const UnaryOperator *E);
  Value *VisitUnaryReal     (const UnaryOperator *E);
  Value *VisitUnaryImag     (const UnaryOperator *E);
  Value *VisitUnaryExtension(const UnaryOperator *E) {
    return Visit(E->getSubExpr());
  }
  Value *VisitUnaryOffsetOf(const UnaryOperator *E);

  // C++
  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    return Visit(DAE->getExpr());
  }
  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
    return CGF.LoadCXXThis();
  }

  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
  }
  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
    return CGF.EmitCXXNewExpr(E);
  }
  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
    CGF.EmitCXXDeleteExpr(E);
    return 0;
  }

  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
    // C++ [expr.pseudo]p1:
    //   The result shall only be used as the operand for the function call
    //   operator (), and the result of such a call has type void. The only
    //   effect is the evaluation of the postfix-expression before the dot or
    //   arrow.
    CGF.EmitScalarExpr(E->getBase());
    return 0;
  }

  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
    return llvm::Constant::getNullValue(ConvertType(E->getType()));
  }

  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
    CGF.EmitCXXThrowExpr(E);
    return 0;
  }

  // Binary Operators.
  Value *EmitMul(const BinOpInfo &Ops) {
    if (CGF.getContext().getLangOptions().OverflowChecking
        && Ops.Ty->isSignedIntegerType())
      return EmitOverflowCheckedBinOp(Ops);
    if (Ops.LHS->getType()->isFPOrFPVector())
      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
  }
  /// Create a binary op that checks for overflow.
  /// Currently only supports +, - and *.
  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
  Value *EmitDiv(const BinOpInfo &Ops);
  Value *EmitRem(const BinOpInfo &Ops);
  Value *EmitAdd(const BinOpInfo &Ops);
  Value *EmitSub(const BinOpInfo &Ops);
  Value *EmitShl(const BinOpInfo &Ops);
  Value *EmitShr(const BinOpInfo &Ops);
  Value *EmitAnd(const BinOpInfo &Ops) {
    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
  }
  Value *EmitXor(const BinOpInfo &Ops) {
    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
  }
  Value *EmitOr (const BinOpInfo &Ops) {
    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
  }

  BinOpInfo EmitBinOps(const BinaryOperator *E);
  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));

  // Binary operators and binary compound assignment operators.
#define HANDLEBINOP(OP) \
  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
    return Emit ## OP(EmitBinOps(E));                                      \
  }                                                                        \
  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
  }
  HANDLEBINOP(Mul);
  HANDLEBINOP(Div);
  HANDLEBINOP(Rem);
  HANDLEBINOP(Add);
  HANDLEBINOP(Sub);
  HANDLEBINOP(Shl);
  HANDLEBINOP(Shr);
  HANDLEBINOP(And);
  HANDLEBINOP(Xor);
  HANDLEBINOP(Or);
#undef HANDLEBINOP

  // Comparisons.
  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
                     unsigned SICmpOpc, unsigned FCmpOpc);
#define VISITCOMP(CODE, UI, SI, FP) \
    Value *VisitBin##CODE(const BinaryOperator *E) { \
      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
                         llvm::FCmpInst::FP); }
  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
#undef VISITCOMP

  Value *VisitBinAssign     (const BinaryOperator *E);

  Value *VisitBinLAnd       (const BinaryOperator *E);
  Value *VisitBinLOr        (const BinaryOperator *E);
  Value *VisitBinComma      (const BinaryOperator *E);

  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }

  // Other Operators.
  Value *VisitBlockExpr(const BlockExpr *BE);
  Value *VisitConditionalOperator(const ConditionalOperator *CO);
  Value *VisitChooseExpr(ChooseExpr *CE);
  Value *VisitVAArgExpr(VAArgExpr *VE);
  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
    return CGF.EmitObjCStringLiteral(E);
  }
};
}  // end anonymous namespace.

//===----------------------------------------------------------------------===//
//                                Utilities
//===----------------------------------------------------------------------===//

/// EmitConversionToBool - Convert the specified expression value to a
/// boolean (i1) truth value.  This is equivalent to "Val != 0".
Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");

  if (SrcType->isRealFloatingType()) {
    // Compare against 0.0 for fp scalars.
    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
  }

  if (SrcType->isMemberPointerType()) {
    // FIXME: This is ABI specific.

    // Compare against -1.
    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
  }

  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
         "Unknown scalar type to convert");

  // Because of the type rules of C, we often end up computing a logical value,
  // then zero extending it to int, then wanting it as a logical value again.
  // Optimize this common case.
  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
    if (ZI->getOperand(0)->getType() ==
        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
      Value *Result = ZI->getOperand(0);
      // If there aren't any more uses, zap the instruction to save space.
      // Note that there can be more uses, for example if this
      // is the result of an assignment.
      if (ZI->use_empty())
        ZI->eraseFromParent();
      return Result;
    }
  }

  // Compare against an integer or pointer null.
  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
  return Builder.CreateICmpNE(Src, Zero, "tobool");
}

/// EmitScalarConversion - Emit a conversion from the specified type to the
/// specified destination type, both of which are LLVM scalar types.
Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
                                               QualType DstType) {
  SrcType = CGF.getContext().getCanonicalType(SrcType);
  DstType = CGF.getContext().getCanonicalType(DstType);
  if (SrcType == DstType) return Src;

  if (DstType->isVoidType()) return 0;

  llvm::LLVMContext &VMContext = CGF.getLLVMContext();

  // Handle conversions to bool first, they are special: comparisons against 0.
  if (DstType->isBooleanType())
    return EmitConversionToBool(Src, SrcType);

  const llvm::Type *DstTy = ConvertType(DstType);

  // Ignore conversions like int -> uint.
  if (Src->getType() == DstTy)
    return Src;

  // Handle pointer conversions next: pointers can only be converted to/from
  // other pointers and integers. Check for pointer types in terms of LLVM, as
  // some native types (like Obj-C id) may map to a pointer type.
  if (isa<llvm::PointerType>(DstTy)) {
    // The source value may be an integer, or a pointer.
    if (isa<llvm::PointerType>(Src->getType()))
      return Builder.CreateBitCast(Src, DstTy, "conv");

    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
    // First, convert to the correct width so that we control the kind of
    // extension.
    const llvm::Type *MiddleTy =
          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
    bool InputSigned = SrcType->isSignedIntegerType();
    llvm::Value* IntResult =
        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
    // Then, cast to pointer.
    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
  }

  if (isa<llvm::PointerType>(Src->getType())) {
    // Must be an ptr to int cast.
    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
    return Builder.CreatePtrToInt(Src, DstTy, "conv");
  }

  // A scalar can be splatted to an extended vector of the same element type
  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
    // Cast the scalar to element type
    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);

    // Insert the element in element zero of an undef vector
    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
    llvm::Value *Idx =
        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");

    // Splat the element across to all elements
    llvm::SmallVector<llvm::Constant*, 16> Args;
    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
    for (unsigned i = 0; i < NumElements; i++)
      Args.push_back(llvm::ConstantInt::get(
                                        llvm::Type::getInt32Ty(VMContext), 0));

    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
    return Yay;
  }

  // Allow bitcast from vector to integer/fp of the same size.
  if (isa<llvm::VectorType>(Src->getType()) ||
      isa<llvm::VectorType>(DstTy))
    return Builder.CreateBitCast(Src, DstTy, "conv");

  // Finally, we have the arithmetic types: real int/float.
  if (isa<llvm::IntegerType>(Src->getType())) {
    bool InputSigned = SrcType->isSignedIntegerType();
    if (isa<llvm::IntegerType>(DstTy))
      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
    else if (InputSigned)
      return Builder.CreateSIToFP(Src, DstTy, "conv");
    else
      return Builder.CreateUIToFP(Src, DstTy, "conv");
  }

  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
  if (isa<llvm::IntegerType>(DstTy)) {
    if (DstType->isSignedIntegerType())
      return Builder.CreateFPToSI(Src, DstTy, "conv");
    else
      return Builder.CreateFPToUI(Src, DstTy, "conv");
  }

  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
  if (DstTy->getTypeID() < Src->getType()->getTypeID())
    return Builder.CreateFPTrunc(Src, DstTy, "conv");
  else
    return Builder.CreateFPExt(Src, DstTy, "conv");
}

/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
/// type to the specified destination type, where the destination type is an
/// LLVM scalar type.
Value *ScalarExprEmitter::
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
                              QualType SrcTy, QualType DstTy) {
  // Get the source element type.
  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();

  // Handle conversions to bool first, they are special: comparisons against 0.
  if (DstTy->isBooleanType()) {
    //  Complex != 0  -> (Real != 0) | (Imag != 0)
    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
    return Builder.CreateOr(Src.first, Src.second, "tobool");
  }

  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
  // the imaginary part of the complex value is discarded and the value of the
  // real part is converted according to the conversion rules for the
  // corresponding real type.
  return EmitScalarConversion(Src.first, SrcTy, DstTy);
}


//===----------------------------------------------------------------------===//
//                            Visitor Methods
//===----------------------------------------------------------------------===//

Value *ScalarExprEmitter::VisitExpr(Expr *E) {
  CGF.ErrorUnsupported(E, "scalar expression");
  if (E->getType()->isVoidType())
    return 0;
  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
}

Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
  llvm::SmallVector<llvm::Constant*, 32> indices;
  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
  }
  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
}

Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
  TestAndClearIgnoreResultAssign();

  // Emit subscript expressions in rvalue context's.  For most cases, this just
  // loads the lvalue formed by the subscript expr.  However, we have to be
  // careful, because the base of a vector subscript is occasionally an rvalue,
  // so we can't get it as an lvalue.
  if (!E->getBase()->getType()->isVectorType())
    return EmitLoadOfLValue(E);

  // Handle the vector case.  The base must be a vector, the index must be an
  // integer value.
  Value *Base = Visit(E->getBase());
  Value *Idx  = Visit(E->getIdx());
  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
  Idx = Builder.CreateIntCast(Idx,
                              llvm::Type::getInt32Ty(CGF.getLLVMContext()),
                              IdxSigned,
                              "vecidxcast");
  return Builder.CreateExtractElement(Base, Idx, "vecext");
}

static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
                                  unsigned Off, const llvm::Type *I32Ty) {
  int MV = SVI->getMaskValue(Idx);
  if (MV == -1) 
    return llvm::UndefValue::get(I32Ty);
  return llvm::ConstantInt::get(I32Ty, Off+MV);
}

Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
  bool Ignore = TestAndClearIgnoreResultAssign();
  (void)Ignore;
  assert (Ignore == false && "init list ignored");
  unsigned NumInitElements = E->getNumInits();
  
  if (E->hadArrayRangeDesignator())
    CGF.ErrorUnsupported(E, "GNU array range designator extension");
  
  const llvm::VectorType *VType =
    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
  
  // We have a scalar in braces. Just use the first element.
  if (!VType)
    return Visit(E->getInit(0));
  
  unsigned ResElts = VType->getNumElements();
  const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
  
  // Loop over initializers collecting the Value for each, and remembering 
  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
  // us to fold the shuffle for the swizzle into the shuffle for the vector
  // initializer, since LLVM optimizers generally do not want to touch
  // shuffles.
  unsigned CurIdx = 0;
  bool VIsUndefShuffle = false;
  llvm::Value *V = llvm::UndefValue::get(VType);
  for (unsigned i = 0; i != NumInitElements; ++i) {
    Expr *IE = E->getInit(i);
    Value *Init = Visit(IE);
    llvm::SmallVector<llvm::Constant*, 16> Args;
    
    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
    
    // Handle scalar elements.  If the scalar initializer is actually one
    // element of a different vector of the same width, use shuffle instead of 
    // extract+insert.
    if (!VVT) {
      if (isa<ExtVectorElementExpr>(IE)) {
        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);

        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
          Value *LHS = 0, *RHS = 0;
          if (CurIdx == 0) {
            // insert into undef -> shuffle (src, undef)
            Args.push_back(C);
            for (unsigned j = 1; j != ResElts; ++j)
              Args.push_back(llvm::UndefValue::get(I32Ty));

            LHS = EI->getVectorOperand();
            RHS = V;
            VIsUndefShuffle = true;
          } else if (VIsUndefShuffle) {
            // insert into undefshuffle && size match -> shuffle (v, src)
            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
            for (unsigned j = 0; j != CurIdx; ++j)
              Args.push_back(getMaskElt(SVV, j, 0, I32Ty));
            Args.push_back(llvm::ConstantInt::get(I32Ty, 
                                                  ResElts + C->getZExtValue()));
            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
              Args.push_back(llvm::UndefValue::get(I32Ty));
            
            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
            RHS = EI->getVectorOperand();
            VIsUndefShuffle = false;
          }
          if (!Args.empty()) {
            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
            ++CurIdx;
            continue;
          }
        }
      }
      Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
      VIsUndefShuffle = false;
      ++CurIdx;
      continue;
    }
    
    unsigned InitElts = VVT->getNumElements();

    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 
    // input is the same width as the vector being constructed, generate an
    // optimized shuffle of the swizzle input into the result.
    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
    if (isa<ExtVectorElementExpr>(IE)) {
      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
      Value *SVOp = SVI->getOperand(0);
      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
      
      if (OpTy->getNumElements() == ResElts) {
        for (unsigned j = 0; j != CurIdx; ++j) {
          // If the current vector initializer is a shuffle with undef, merge
          // this shuffle directly into it.
          if (VIsUndefShuffle) {
            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
                                      I32Ty));
          } else {
            Args.push_back(llvm::ConstantInt::get(I32Ty, j));
          }
        }
        for (unsigned j = 0, je = InitElts; j != je; ++j)
          Args.push_back(getMaskElt(SVI, j, Offset, I32Ty));
        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
          Args.push_back(llvm::UndefValue::get(I32Ty));

        if (VIsUndefShuffle)
          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);

        Init = SVOp;
      }
    }

    // Extend init to result vector length, and then shuffle its contribution
    // to the vector initializer into V.
    if (Args.empty()) {
      for (unsigned j = 0; j != InitElts; ++j)
        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
      for (unsigned j = InitElts; j != ResElts; ++j)
        Args.push_back(llvm::UndefValue::get(I32Ty));
      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
                                         Mask, "vext");

      Args.clear();
      for (unsigned j = 0; j != CurIdx; ++j)
        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
      for (unsigned j = 0; j != InitElts; ++j)
        Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset));
      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
        Args.push_back(llvm::UndefValue::get(I32Ty));
    }

    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
    // merging subsequent shuffles into this one.
    if (CurIdx == 0)
      std::swap(V, Init);
    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
    CurIdx += InitElts;
  }
  
  // FIXME: evaluate codegen vs. shuffling against constant null vector.
  // Emit remaining default initializers.
  const llvm::Type *EltTy = VType->getElementType();
  
  // Emit remaining default initializers
  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
    Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
  }
  return V;
}

// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
// have to handle a more broad range of conversions than explicit casts, as they
// handle things like function to ptr-to-function decay etc.
Value *ScalarExprEmitter::EmitCastExpr(const CastExpr *CE) {
  const Expr *E = CE->getSubExpr();
  QualType DestTy = CE->getType();
  CastExpr::CastKind Kind = CE->getCastKind();
  
  if (!DestTy->isVoidType())
    TestAndClearIgnoreResultAssign();

  switch (Kind) {
  default:
    //return CGF.ErrorUnsupported(E, "type of cast");
    break;

  case CastExpr::CK_Unknown:
    //assert(0 && "Unknown cast kind!");
    break;

  case CastExpr::CK_BitCast: {
    Value *Src = Visit(const_cast<Expr*>(E));
    return Builder.CreateBitCast(Src, ConvertType(DestTy));
  }
  case CastExpr::CK_NoOp:
    return Visit(const_cast<Expr*>(E));

  case CastExpr::CK_DerivedToBase: {
    const RecordType *DerivedClassTy = 
      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
    CXXRecordDecl *DerivedClassDecl = 
      cast<CXXRecordDecl>(DerivedClassTy->getDecl());

    const RecordType *BaseClassTy = 
      DestTy->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
    
    Value *Src = Visit(const_cast<Expr*>(E));

    bool NullCheckValue = true;
    
    if (isa<CXXThisExpr>(E)) {
      // We always assume that 'this' is never null.
      NullCheckValue = false;
    } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
      // And that lvalue casts are never null.
      if (ICE->isLvalueCast())
        NullCheckValue = false;
    }
    return CGF.GetAddressCXXOfBaseClass(Src, DerivedClassDecl, BaseClassDecl,
                                        NullCheckValue);
  }
  case CastExpr::CK_ToUnion: {
    assert(0 && "Should be unreachable!");
    break;
  }
  case CastExpr::CK_ArrayToPointerDecay: {
    assert(E->getType()->isArrayType() &&
           "Array to pointer decay must have array source type!");

    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.

    // Note that VLA pointers are always decayed, so we don't need to do
    // anything here.
    if (!E->getType()->isVariableArrayType()) {
      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
                                 ->getElementType()) &&
             "Expected pointer to array");
      V = Builder.CreateStructGEP(V, 0, "arraydecay");
    }

    return V;
  }
  case CastExpr::CK_FunctionToPointerDecay:
    return EmitLValue(E).getAddress();

  case CastExpr::CK_NullToMemberPointer:
    return CGF.CGM.EmitNullConstant(DestTy);

  case CastExpr::CK_IntegralToPointer: {
    Value *Src = Visit(const_cast<Expr*>(E));
    
    // First, convert to the correct width so that we control the kind of
    // extension.
    const llvm::Type *MiddleTy =
      llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
    bool InputSigned = E->getType()->isSignedIntegerType();
    llvm::Value* IntResult =
      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
    
    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
  }

  case CastExpr::CK_PointerToIntegral: {
    Value *Src = Visit(const_cast<Expr*>(E));
    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
  }

  case CastExpr::CK_ToVoid: {
    CGF.EmitAnyExpr(E, 0, false, true);
    return 0;
  }

  case CastExpr::CK_Dynamic: {
    Value *V = Visit(const_cast<Expr*>(E));
    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
    return CGF.EmitDynamicCast(V, DCE);
  }

  case CastExpr::CK_VectorSplat: {
    const llvm::Type *DstTy = ConvertType(DestTy);
    Value *Elt = Visit(const_cast<Expr*>(E));

    // Insert the element in element zero of an undef vector
    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
    llvm::Value *Idx =
        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");

    // Splat the element across to all elements
    llvm::SmallVector<llvm::Constant*, 16> Args;
    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
    for (unsigned i = 0; i < NumElements; i++)
      Args.push_back(llvm::ConstantInt::get(
                                        llvm::Type::getInt32Ty(VMContext), 0));

    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
    return Yay;
  }

  }

  // Handle cases where the source is an non-complex type.

  if (!CGF.hasAggregateLLVMType(E->getType())) {
    Value *Src = Visit(const_cast<Expr*>(E));

    // Use EmitScalarConversion to perform the conversion.
    return EmitScalarConversion(Src, E->getType(), DestTy);
  }

  if (E->getType()->isAnyComplexType()) {
    // Handle cases where the source is a complex type.
    bool IgnoreImag = true;
    bool IgnoreImagAssign = true;
    bool IgnoreReal = IgnoreResultAssign;
    bool IgnoreRealAssign = IgnoreResultAssign;
    if (DestTy->isBooleanType())
      IgnoreImagAssign = IgnoreImag = false;
    else if (DestTy->isVoidType()) {
      IgnoreReal = IgnoreImag = false;
      IgnoreRealAssign = IgnoreImagAssign = true;
    }
    CodeGenFunction::ComplexPairTy V
      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
                            IgnoreImagAssign);
    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
  }

  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
  // evaluate the result and return.
  CGF.EmitAggExpr(E, 0, false, true);
  return 0;
}

Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
  return CGF.EmitCompoundStmt(*E->getSubStmt(),
                              !E->getType()->isVoidType()).getScalarVal();
}

Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
  if (E->getType().isObjCGCWeak())
    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
  return Builder.CreateLoad(V, false, "tmp");
}

//===----------------------------------------------------------------------===//
//                             Unary Operators
//===----------------------------------------------------------------------===//

Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
                                             bool isInc, bool isPre) {
  LValue LV = EmitLValue(E->getSubExpr());
  QualType ValTy = E->getSubExpr()->getType();
  Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal();

  llvm::LLVMContext &VMContext = CGF.getLLVMContext();

  int AmountVal = isInc ? 1 : -1;

  if (ValTy->isPointerType() &&
      ValTy->getAs<PointerType>()->isVariableArrayType()) {
    // The amount of the addition/subtraction needs to account for the VLA size
    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
  }

  Value *NextVal;
  if (const llvm::PointerType *PT =
         dyn_cast<llvm::PointerType>(InVal->getType())) {
    llvm::Constant *Inc =
      llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal);
    if (!isa<llvm::FunctionType>(PT->getElementType())) {
      QualType PTEE = ValTy->getPointeeType();
      if (const ObjCInterfaceType *OIT =
          dyn_cast<ObjCInterfaceType>(PTEE)) {
        // Handle interface types, which are not represented with a concrete type.
        int size = CGF.getContext().getTypeSize(OIT) / 8;
        if (!isInc)
          size = -size;
        Inc = llvm::ConstantInt::get(Inc->getType(), size);
        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
        InVal = Builder.CreateBitCast(InVal, i8Ty);
        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
        llvm::Value *lhs = LV.getAddress();
        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
        LV = LValue::MakeAddr(lhs, CGF.MakeQualifiers(ValTy));
      } else
        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
    } else {
      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
    }
  } else if (InVal->getType() == llvm::Type::getInt1Ty(VMContext) && isInc) {
    // Bool++ is an interesting case, due to promotion rules, we get:
    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
    // Bool = ((int)Bool+1) != 0
    // An interesting aspect of this is that increment is always true.
    // Decrement does not have this property.
    NextVal = llvm::ConstantInt::getTrue(VMContext);
  } else if (isa<llvm::IntegerType>(InVal->getType())) {
    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);

    // Signed integer overflow is undefined behavior.
    if (ValTy->isSignedIntegerType())
      NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
    else
      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
  } else {
    // Add the inc/dec to the real part.
    if (InVal->getType()->isFloatTy())
      NextVal =
        llvm::ConstantFP::get(VMContext,
                              llvm::APFloat(static_cast<float>(AmountVal)));
    else if (InVal->getType()->isDoubleTy())
      NextVal =
        llvm::ConstantFP::get(VMContext,
                              llvm::APFloat(static_cast<double>(AmountVal)));
    else {
      llvm::APFloat F(static_cast<float>(AmountVal));
      bool ignored;
      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
                &ignored);
      NextVal = llvm::ConstantFP::get(VMContext, F);
    }
    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
  }

  // Store the updated result through the lvalue.
  if (LV.isBitfield())
    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy,
                                       &NextVal);
  else
    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);

  // If this is a postinc, return the value read from memory, otherwise use the
  // updated value.
  return isPre ? NextVal : InVal;
}


Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
  TestAndClearIgnoreResultAssign();
  Value *Op = Visit(E->getSubExpr());
  if (Op->getType()->isFPOrFPVector())
    return Builder.CreateFNeg(Op, "neg");
  return Builder.CreateNeg(Op, "neg");
}

Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
  TestAndClearIgnoreResultAssign();
  Value *Op = Visit(E->getSubExpr());
  return Builder.CreateNot(Op, "neg");
}

Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
  // Compare operand to zero.
  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());

  // Invert value.
  // TODO: Could dynamically modify easy computations here.  For example, if
  // the operand is an icmp ne, turn into icmp eq.
  BoolVal = Builder.CreateNot(BoolVal, "lnot");

  // ZExt result to the expr type.
  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
}

/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
/// argument of the sizeof expression as an integer.
Value *
ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
  QualType TypeToSize = E->getTypeOfArgument();
  if (E->isSizeOf()) {
    if (const VariableArrayType *VAT =
          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
      if (E->isArgumentType()) {
        // sizeof(type) - make sure to emit the VLA size.
        CGF.EmitVLASize(TypeToSize);
      } else {
        // C99 6.5.3.4p2: If the argument is an expression of type
        // VLA, it is evaluated.
        CGF.EmitAnyExpr(E->getArgumentExpr());
      }

      return CGF.GetVLASize(VAT);
    }
  }

  // If this isn't sizeof(vla), the result must be constant; use the constant
  // folding logic so we don't have to duplicate it here.
  Expr::EvalResult Result;
  E->Evaluate(Result, CGF.getContext());
  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
}

Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
  Expr *Op = E->getSubExpr();
  if (Op->getType()->isAnyComplexType())
    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
  return Visit(Op);
}
Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
  Expr *Op = E->getSubExpr();
  if (Op->getType()->isAnyComplexType())
    return CGF.EmitComplexExpr(Op, true, false, true, false).second;

  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
  // effects are evaluated, but not the actual value.
  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
    CGF.EmitLValue(Op);
  else
    CGF.EmitScalarExpr(Op, true);
  return llvm::Constant::getNullValue(ConvertType(E->getType()));
}

Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
  const llvm::Type* ResultType = ConvertType(E->getType());
  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
}

//===----------------------------------------------------------------------===//
//                           Binary Operators
//===----------------------------------------------------------------------===//

BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
  TestAndClearIgnoreResultAssign();
  BinOpInfo Result;
  Result.LHS = Visit(E->getLHS());
  Result.RHS = Visit(E->getRHS());
  Result.Ty  = E->getType();
  Result.E = E;
  return Result;
}

Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
  bool Ignore = TestAndClearIgnoreResultAssign();
  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();

  BinOpInfo OpInfo;

  if (E->getComputationResultType()->isAnyComplexType()) {
    // This needs to go through the complex expression emitter, but it's a tad
    // complicated to do that... I'm leaving it out for now.  (Note that we do
    // actually need the imaginary part of the RHS for multiplication and
    // division.)
    CGF.ErrorUnsupported(E, "complex compound assignment");
    return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
  }

  // Emit the RHS first.  __block variables need to have the rhs evaluated
  // first, plus this should improve codegen a little.
  OpInfo.RHS = Visit(E->getRHS());
  OpInfo.Ty = E->getComputationResultType();
  OpInfo.E = E;
  // Load/convert the LHS.
  LValue LHSLV = EmitLValue(E->getLHS());
  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
                                    E->getComputationLHSType());

  // Expand the binary operator.
  Value *Result = (this->*Func)(OpInfo);

  // Convert the result back to the LHS type.
  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);

  // Store the result value into the LHS lvalue. Bit-fields are handled
  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
  // 'An assignment expression has the value of the left operand after the
  // assignment...'.
  if (LHSLV.isBitfield()) {
    if (!LHSLV.isVolatileQualified()) {
      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
                                         &Result);
      return Result;
    } else
      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
  } else
    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
  if (Ignore)
    return 0;
  return EmitLoadOfLValue(LHSLV, E->getType());
}


Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
  if (Ops.LHS->getType()->isFPOrFPVector())
    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
  else if (Ops.Ty->isUnsignedIntegerType())
    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
  else
    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
}

Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
  // Rem in C can't be a floating point type: C99 6.5.5p2.
  if (Ops.Ty->isUnsignedIntegerType())
    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
  else
    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
}

Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
  unsigned IID;
  unsigned OpID = 0;

  switch (Ops.E->getOpcode()) {
  case BinaryOperator::Add:
  case BinaryOperator::AddAssign:
    OpID = 1;
    IID = llvm::Intrinsic::sadd_with_overflow;
    break;
  case BinaryOperator::Sub:
  case BinaryOperator::SubAssign:
    OpID = 2;
    IID = llvm::Intrinsic::ssub_with_overflow;
    break;
  case BinaryOperator::Mul:
  case BinaryOperator::MulAssign:
    OpID = 3;
    IID = llvm::Intrinsic::smul_with_overflow;
    break;
  default:
    assert(false && "Unsupported operation for overflow detection");
    IID = 0;
  }
  OpID <<= 1;
  OpID |= 1;

  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);

  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);

  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);

  // Branch in case of overflow.
  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
  llvm::BasicBlock *overflowBB =
    CGF.createBasicBlock("overflow", CGF.CurFn);
  llvm::BasicBlock *continueBB =
    CGF.createBasicBlock("overflow.continue", CGF.CurFn);

  Builder.CreateCondBr(overflow, overflowBB, continueBB);

  // Handle overflow

  Builder.SetInsertPoint(overflowBB);

  // Handler is:
  // long long *__overflow_handler)(long long a, long long b, char op,
  // char width)
  std::vector<const llvm::Type*> handerArgTypes;
  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
  llvm::FunctionType *handlerTy = llvm::FunctionType::get(
      llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
  llvm::Value *handlerFunction =
    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
        llvm::PointerType::getUnqual(handlerTy));
  handlerFunction = Builder.CreateLoad(handlerFunction);

  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
      Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
      Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
        cast<llvm::IntegerType>(opTy)->getBitWidth()));

  handlerResult = Builder.CreateTrunc(handlerResult, opTy);

  Builder.CreateBr(continueBB);

  // Set up the continuation
  Builder.SetInsertPoint(continueBB);
  // Get the correct result
  llvm::PHINode *phi = Builder.CreatePHI(opTy);
  phi->reserveOperandSpace(2);
  phi->addIncoming(result, initialBB);
  phi->addIncoming(handlerResult, overflowBB);

  return phi;
}

Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
  if (!Ops.Ty->isAnyPointerType()) {
    if (CGF.getContext().getLangOptions().OverflowChecking &&
        Ops.Ty->isSignedIntegerType())
      return EmitOverflowCheckedBinOp(Ops);

    if (Ops.LHS->getType()->isFPOrFPVector())
      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");

    // Signed integer overflow is undefined behavior.
    if (Ops.Ty->isSignedIntegerType())
      return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");

    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
  }

  if (Ops.Ty->isPointerType() &&
      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
    // The amount of the addition needs to account for the VLA size
    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
  }
  Value *Ptr, *Idx;
  Expr *IdxExp;
  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
  const ObjCObjectPointerType *OPT =
    Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
  if (PT || OPT) {
    Ptr = Ops.LHS;
    Idx = Ops.RHS;
    IdxExp = Ops.E->getRHS();
  } else {  // int + pointer
    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
    OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
    assert((PT || OPT) && "Invalid add expr");
    Ptr = Ops.RHS;
    Idx = Ops.LHS;
    IdxExp = Ops.E->getLHS();
  }

  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
  if (Width < CGF.LLVMPointerWidth) {
    // Zero or sign extend the pointer value based on whether the index is
    // signed or not.
    const llvm::Type *IdxType =
        llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
    if (IdxExp->getType()->isSignedIntegerType())
      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
    else
      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
  }
  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
  // Handle interface types, which are not represented with a concrete type.
  if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
    llvm::Value *InterfaceSize =
      llvm::ConstantInt::get(Idx->getType(),
                             CGF.getContext().getTypeSize(OIT) / 8);
    Idx = Builder.CreateMul(Idx, InterfaceSize);
    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
    return Builder.CreateBitCast(Res, Ptr->getType());
  }

  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
  // future proof.
  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
    return Builder.CreateBitCast(Res, Ptr->getType());
  }

  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
}

Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
    if (CGF.getContext().getLangOptions().OverflowChecking
        && Ops.Ty->isSignedIntegerType())
      return EmitOverflowCheckedBinOp(Ops);

    if (Ops.LHS->getType()->isFPOrFPVector())
      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
  }

  if (Ops.E->getLHS()->getType()->isPointerType() &&
      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
    // The amount of the addition needs to account for the VLA size for
    // ptr-int
    // The amount of the division needs to account for the VLA size for
    // ptr-ptr.
    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
  }

  const QualType LHSType = Ops.E->getLHS()->getType();
  const QualType LHSElementType = LHSType->getPointeeType();
  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
    // pointer - int
    Value *Idx = Ops.RHS;
    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
    if (Width < CGF.LLVMPointerWidth) {
      // Zero or sign extend the pointer value based on whether the index is
      // signed or not.
      const llvm::Type *IdxType =
          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
      else
        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
    }
    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");

    // Handle interface types, which are not represented with a concrete type.
    if (const ObjCInterfaceType *OIT =
        dyn_cast<ObjCInterfaceType>(LHSElementType)) {
      llvm::Value *InterfaceSize =
        llvm::ConstantInt::get(Idx->getType(),
                               CGF.getContext().getTypeSize(OIT) / 8);
      Idx = Builder.CreateMul(Idx, InterfaceSize);
      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
      return Builder.CreateBitCast(Res, Ops.LHS->getType());
    }

    // Explicitly handle GNU void* and function pointer arithmetic
    // extensions. The GNU void* casts amount to no-ops since our void* type is
    // i8*, but this is future proof.
    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
      return Builder.CreateBitCast(Res, Ops.LHS->getType());
    }

    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
  } else {
    // pointer - pointer
    Value *LHS = Ops.LHS;
    Value *RHS = Ops.RHS;

    uint64_t ElementSize;

    // Handle GCC extension for pointer arithmetic on void* and function pointer
    // types.
    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
      ElementSize = 1;
    } else {
      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
    }

    const llvm::Type *ResultType = ConvertType(Ops.Ty);
    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");

    // Optimize out the shift for element size of 1.
    if (ElementSize == 1)
      return BytesBetween;

    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
    // pointer difference in C is only defined in the case where both operands
    // are pointing to elements of an array.
    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
  }
}

Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
  // RHS to the same size as the LHS.
  Value *RHS = Ops.RHS;
  if (Ops.LHS->getType() != RHS->getType())
    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");

  return Builder.CreateShl(Ops.LHS, RHS, "shl");
}

Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
  // RHS to the same size as the LHS.
  Value *RHS = Ops.RHS;
  if (Ops.LHS->getType() != RHS->getType())
    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");

  if (Ops.Ty->isUnsignedIntegerType())
    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
}

Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
                                      unsigned SICmpOpc, unsigned FCmpOpc) {
  TestAndClearIgnoreResultAssign();
  Value *Result;
  QualType LHSTy = E->getLHS()->getType();
  if (!LHSTy->isAnyComplexType()) {
    Value *LHS = Visit(E->getLHS());
    Value *RHS = Visit(E->getRHS());

    if (LHS->getType()->isFPOrFPVector()) {
      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
                                  LHS, RHS, "cmp");
    } else if (LHSTy->isSignedIntegerType()) {
      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
                                  LHS, RHS, "cmp");
    } else {
      // Unsigned integers and pointers.
      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
                                  LHS, RHS, "cmp");
    }

    // If this is a vector comparison, sign extend the result to the appropriate
    // vector integer type and return it (don't convert to bool).
    if (LHSTy->isVectorType())
      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");

  } else {
    // Complex Comparison: can only be an equality comparison.
    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());

    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();

    Value *ResultR, *ResultI;
    if (CETy->isRealFloatingType()) {
      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
                                   LHS.first, RHS.first, "cmp.r");
      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
                                   LHS.second, RHS.second, "cmp.i");
    } else {
      // Complex comparisons can only be equality comparisons.  As such, signed
      // and unsigned opcodes are the same.
      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
                                   LHS.first, RHS.first, "cmp.r");
      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
                                   LHS.second, RHS.second, "cmp.i");
    }

    if (E->getOpcode() == BinaryOperator::EQ) {
      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
    } else {
      assert(E->getOpcode() == BinaryOperator::NE &&
             "Complex comparison other than == or != ?");
      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
    }
  }

  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
}

Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
  bool Ignore = TestAndClearIgnoreResultAssign();

  // __block variables need to have the rhs evaluated first, plus this should
  // improve codegen just a little.
  Value *RHS = Visit(E->getRHS());
  LValue LHS = EmitLValue(E->getLHS());

  // Store the value into the LHS.  Bit-fields are handled specially
  // because the result is altered by the store, i.e., [C99 6.5.16p1]
  // 'An assignment expression has the value of the left operand after
  // the assignment...'.
  if (LHS.isBitfield()) {
    if (!LHS.isVolatileQualified()) {
      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
                                         &RHS);
      return RHS;
    } else
      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
  } else
    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
  if (Ignore)
    return 0;
  return EmitLoadOfLValue(LHS, E->getType());
}

Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
  const llvm::Type *ResTy = ConvertType(E->getType());
  
  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
  // If we have 1 && X, just emit X without inserting the control flow.
  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
    if (Cond == 1) { // If we have 1 && X, just emit X.
      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
      // ZExt result to int or bool.
      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
    }

    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
    if (!CGF.ContainsLabel(E->getRHS()))
      return llvm::Constant::getNullValue(ResTy);
  }

  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");

  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);

  // Any edges into the ContBlock are now from an (indeterminate number of)
  // edges from this first condition.  All of these values will be false.  Start
  // setting up the PHI node in the Cont Block for this.
  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
                                            "", ContBlock);
  PN->reserveOperandSpace(2);  // Normal case, two inputs.
  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
       PI != PE; ++PI)
    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);

  CGF.PushConditionalTempDestruction();
  CGF.EmitBlock(RHSBlock);
  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
  CGF.PopConditionalTempDestruction();

  // Reaquire the RHS block, as there may be subblocks inserted.
  RHSBlock = Builder.GetInsertBlock();

  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
  // into the phi node for the edge with the value of RHSCond.
  CGF.EmitBlock(ContBlock);
  PN->addIncoming(RHSCond, RHSBlock);

  // ZExt result to int.
  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
}

Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
  const llvm::Type *ResTy = ConvertType(E->getType());
  
  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
  // If we have 0 || X, just emit X without inserting the control flow.
  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
    if (Cond == -1) { // If we have 0 || X, just emit X.
      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
      // ZExt result to int or bool.
      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
    }

    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
    if (!CGF.ContainsLabel(E->getRHS()))
      return llvm::ConstantInt::get(ResTy, 1);
  }

  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");

  // Branch on the LHS first.  If it is true, go to the success (cont) block.
  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);

  // Any edges into the ContBlock are now from an (indeterminate number of)
  // edges from this first condition.  All of these values will be true.  Start
  // setting up the PHI node in the Cont Block for this.
  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
                                            "", ContBlock);
  PN->reserveOperandSpace(2);  // Normal case, two inputs.
  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
       PI != PE; ++PI)
    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);

  CGF.PushConditionalTempDestruction();

  // Emit the RHS condition as a bool value.
  CGF.EmitBlock(RHSBlock);
  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());

  CGF.PopConditionalTempDestruction();

  // Reaquire the RHS block, as there may be subblocks inserted.
  RHSBlock = Builder.GetInsertBlock();

  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
  // into the phi node for the edge with the value of RHSCond.
  CGF.EmitBlock(ContBlock);
  PN->addIncoming(RHSCond, RHSBlock);

  // ZExt result to int.
  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
}

Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
  CGF.EmitStmt(E->getLHS());
  CGF.EnsureInsertPoint();
  return Visit(E->getRHS());
}

//===----------------------------------------------------------------------===//
//                             Other Operators
//===----------------------------------------------------------------------===//

/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
/// expression is cheap enough and side-effect-free enough to evaluate
/// unconditionally instead of conditionally.  This is used to convert control
/// flow into selects in some cases.
static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
                                                   CodeGenFunction &CGF) {
  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);

  // TODO: Allow anything we can constant fold to an integer or fp constant.
  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
      isa<FloatingLiteral>(E))
    return true;

  // Non-volatile automatic variables too, to get "cond ? X : Y" where
  // X and Y are local variables.
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
      if (VD->hasLocalStorage() && !(CGF.getContext()
                                     .getCanonicalType(VD->getType())
                                     .isVolatileQualified()))
        return true;

  return false;
}


Value *ScalarExprEmitter::
VisitConditionalOperator(const ConditionalOperator *E) {
  TestAndClearIgnoreResultAssign();
  // If the condition constant folds and can be elided, try to avoid emitting
  // the condition and the dead arm.
  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
    Expr *Live = E->getLHS(), *Dead = E->getRHS();
    if (Cond == -1)
      std::swap(Live, Dead);

    // If the dead side doesn't have labels we need, and if the Live side isn't
    // the gnu missing ?: extension (which we could handle, but don't bother
    // to), just emit the Live part.
    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
        Live)                                   // Live part isn't missing.
      return Visit(Live);
  }


  // If this is a really simple expression (like x ? 4 : 5), emit this as a
  // select instead of as control flow.  We can only do this if it is cheap and
  // safe to evaluate the LHS and RHS unconditionally.
  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
                                                            CGF) &&
      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
    llvm::Value *LHS = Visit(E->getLHS());
    llvm::Value *RHS = Visit(E->getRHS());
    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
  }


  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
  Value *CondVal = 0;

  // If we don't have the GNU missing condition extension, emit a branch on bool
  // the normal way.
  if (E->getLHS()) {
    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
    // the branch on bool.
    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
  } else {
    // Otherwise, for the ?: extension, evaluate the conditional and then
    // convert it to bool the hard way.  We do this explicitly because we need
    // the unconverted value for the missing middle value of the ?:.
    CondVal = CGF.EmitScalarExpr(E->getCond());

    // In some cases, EmitScalarConversion will delete the "CondVal" expression
    // if there are no extra uses (an optimization).  Inhibit this by making an
    // extra dead use, because we're going to add a use of CondVal later.  We
    // don't use the builder for this, because we don't want it to get optimized
    // away.  This leaves dead code, but the ?: extension isn't common.
    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
                          Builder.GetInsertBlock());

    Value *CondBoolVal =
      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
                               CGF.getContext().BoolTy);
    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
  }

  CGF.PushConditionalTempDestruction();
  CGF.EmitBlock(LHSBlock);

  // Handle the GNU extension for missing LHS.
  Value *LHS;
  if (E->getLHS())
    LHS = Visit(E->getLHS());
  else    // Perform promotions, to handle cases like "short ?: int"
    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());

  CGF.PopConditionalTempDestruction();
  LHSBlock = Builder.GetInsertBlock();
  CGF.EmitBranch(ContBlock);

  CGF.PushConditionalTempDestruction();
  CGF.EmitBlock(RHSBlock);

  Value *RHS = Visit(E->getRHS());
  CGF.PopConditionalTempDestruction();
  RHSBlock = Builder.GetInsertBlock();
  CGF.EmitBranch(ContBlock);

  CGF.EmitBlock(ContBlock);

  if (!LHS || !RHS) {
    assert(E->getType()->isVoidType() && "Non-void value should have a value");
    return 0;
  }

  // Create a PHI node for the real part.
  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
  PN->reserveOperandSpace(2);
  PN->addIncoming(LHS, LHSBlock);
  PN->addIncoming(RHS, RHSBlock);
  return PN;
}

Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
  return Visit(E->getChosenSubExpr(CGF.getContext()));
}

Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());

  // If EmitVAArg fails, we fall back to the LLVM instruction.
  if (!ArgPtr)
    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));

  // FIXME Volatility.
  return Builder.CreateLoad(ArgPtr);
}

Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
  return CGF.BuildBlockLiteralTmp(BE);
}

//===----------------------------------------------------------------------===//
//                         Entry Point into this File
//===----------------------------------------------------------------------===//

/// EmitScalarExpr - Emit the computation of the specified expression of scalar
/// type, ignoring the result.
Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
  assert(E && !hasAggregateLLVMType(E->getType()) &&
         "Invalid scalar expression to emit");

  return ScalarExprEmitter(*this, IgnoreResultAssign)
    .Visit(const_cast<Expr*>(E));
}

/// EmitScalarConversion - Emit a conversion from the specified type to the
/// specified destination type, both of which are LLVM scalar types.
Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
                                             QualType DstTy) {
  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
         "Invalid scalar expression to emit");
  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
}

/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
/// type to the specified destination type, where the destination type is an
/// LLVM scalar type.
Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
                                                      QualType SrcTy,
                                                      QualType DstTy) {
  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
         "Invalid complex -> scalar conversion");
  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
                                                                DstTy);
}

Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
  assert(V1->getType() == V2->getType() &&
         "Vector operands must be of the same type");
  unsigned NumElements =
    cast<llvm::VectorType>(V1->getType())->getNumElements();

  va_list va;
  va_start(va, V2);

  llvm::SmallVector<llvm::Constant*, 16> Args;
  for (unsigned i = 0; i < NumElements; i++) {
    int n = va_arg(va, int);
    assert(n >= 0 && n < (int)NumElements * 2 &&
           "Vector shuffle index out of bounds!");
    Args.push_back(llvm::ConstantInt::get(
                                         llvm::Type::getInt32Ty(VMContext), n));
  }

  const char *Name = va_arg(va, const char *);
  va_end(va);

  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);

  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
}

llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
                                         unsigned NumVals, bool isSplat) {
  llvm::Value *Vec
    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));

  for (unsigned i = 0, e = NumVals; i != e; ++i) {
    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
    llvm::Value *Idx = llvm::ConstantInt::get(
                                          llvm::Type::getInt32Ty(VMContext), i);
    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
  }

  return Vec;
}