aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/LiveRegMatrix.cpp
blob: 7a51386aa9caaaa7cc22d3fb3aadc8cced7d92b4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
//===-- LiveRegMatrix.cpp - Track register interference -------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the LiveRegMatrix analysis pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/LiveRegMatrix.h"
#include "RegisterCoalescer.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"

using namespace llvm;

#define DEBUG_TYPE "regalloc"

STATISTIC(NumAssigned   , "Number of registers assigned");
STATISTIC(NumUnassigned , "Number of registers unassigned");

char LiveRegMatrix::ID = 0;
INITIALIZE_PASS_BEGIN(LiveRegMatrix, "liveregmatrix",
                      "Live Register Matrix", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
INITIALIZE_PASS_END(LiveRegMatrix, "liveregmatrix",
                    "Live Register Matrix", false, false)

LiveRegMatrix::LiveRegMatrix() : MachineFunctionPass(ID),
  UserTag(0), RegMaskTag(0), RegMaskVirtReg(0) {}

void LiveRegMatrix::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequiredTransitive<LiveIntervals>();
  AU.addRequiredTransitive<VirtRegMap>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

bool LiveRegMatrix::runOnMachineFunction(MachineFunction &MF) {
  TRI = MF.getSubtarget().getRegisterInfo();
  LIS = &getAnalysis<LiveIntervals>();
  VRM = &getAnalysis<VirtRegMap>();

  unsigned NumRegUnits = TRI->getNumRegUnits();
  if (NumRegUnits != Matrix.size())
    Queries.reset(new LiveIntervalUnion::Query[NumRegUnits]);
  Matrix.init(LIUAlloc, NumRegUnits);

  // Make sure no stale queries get reused.
  invalidateVirtRegs();
  return false;
}

void LiveRegMatrix::releaseMemory() {
  for (unsigned i = 0, e = Matrix.size(); i != e; ++i) {
    Matrix[i].clear();
    // No need to clear Queries here, since LiveIntervalUnion::Query doesn't
    // have anything important to clear and LiveRegMatrix's runOnFunction()
    // does a std::unique_ptr::reset anyways.
  }
}

template <typename Callable>
static bool foreachUnit(const TargetRegisterInfo *TRI,
                        LiveInterval &VRegInterval, unsigned PhysReg,
                        Callable Func) {
  if (VRegInterval.hasSubRanges()) {
    for (MCRegUnitMaskIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
      unsigned Unit = (*Units).first;
      LaneBitmask Mask = (*Units).second;
      for (LiveInterval::SubRange &S : VRegInterval.subranges()) {
        if ((S.LaneMask & Mask).any()) {
          if (Func(Unit, S))
            return true;
          break;
        }
      }
    }
  } else {
    for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
      if (Func(*Units, VRegInterval))
        return true;
    }
  }
  return false;
}

void LiveRegMatrix::assign(LiveInterval &VirtReg, unsigned PhysReg) {
  DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI)
               << " to " << PrintReg(PhysReg, TRI) << ':');
  assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment");
  VRM->assignVirt2Phys(VirtReg.reg, PhysReg);

  foreachUnit(TRI, VirtReg, PhysReg, [&](unsigned Unit,
                                         const LiveRange &Range) {
    DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << ' ' << Range);
    Matrix[Unit].unify(VirtReg, Range);
    return false;
  });

  ++NumAssigned;
  DEBUG(dbgs() << '\n');
}

void LiveRegMatrix::unassign(LiveInterval &VirtReg) {
  unsigned PhysReg = VRM->getPhys(VirtReg.reg);
  DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI)
               << " from " << PrintReg(PhysReg, TRI) << ':');
  VRM->clearVirt(VirtReg.reg);

  foreachUnit(TRI, VirtReg, PhysReg, [&](unsigned Unit,
                                         const LiveRange &Range) {
    DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI));
    Matrix[Unit].extract(VirtReg, Range);
    return false;
  });

  ++NumUnassigned;
  DEBUG(dbgs() << '\n');
}

bool LiveRegMatrix::isPhysRegUsed(unsigned PhysReg) const {
  for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid(); ++Unit) {
    if (!Matrix[*Unit].empty())
      return true;
  }
  return false;
}

bool LiveRegMatrix::checkRegMaskInterference(LiveInterval &VirtReg,
                                             unsigned PhysReg) {
  // Check if the cached information is valid.
  // The same BitVector can be reused for all PhysRegs.
  // We could cache multiple VirtRegs if it becomes necessary.
  if (RegMaskVirtReg != VirtReg.reg || RegMaskTag != UserTag) {
    RegMaskVirtReg = VirtReg.reg;
    RegMaskTag = UserTag;
    RegMaskUsable.clear();
    LIS->checkRegMaskInterference(VirtReg, RegMaskUsable);
  }

  // The BitVector is indexed by PhysReg, not register unit.
  // Regmask interference is more fine grained than regunits.
  // For example, a Win64 call can clobber %ymm8 yet preserve %xmm8.
  return !RegMaskUsable.empty() && (!PhysReg || !RegMaskUsable.test(PhysReg));
}

bool LiveRegMatrix::checkRegUnitInterference(LiveInterval &VirtReg,
                                             unsigned PhysReg) {
  if (VirtReg.empty())
    return false;
  CoalescerPair CP(VirtReg.reg, PhysReg, *TRI);

  bool Result = foreachUnit(TRI, VirtReg, PhysReg, [&](unsigned Unit,
                                                       const LiveRange &Range) {
    const LiveRange &UnitRange = LIS->getRegUnit(Unit);
    return Range.overlaps(UnitRange, CP, *LIS->getSlotIndexes());
  });
  return Result;
}

LiveIntervalUnion::Query &LiveRegMatrix::query(LiveInterval &VirtReg,
                                               unsigned RegUnit) {
  LiveIntervalUnion::Query &Q = Queries[RegUnit];
  Q.init(UserTag, &VirtReg, &Matrix[RegUnit]);
  return Q;
}

LiveRegMatrix::InterferenceKind
LiveRegMatrix::checkInterference(LiveInterval &VirtReg, unsigned PhysReg) {
  if (VirtReg.empty())
    return IK_Free;

  // Regmask interference is the fastest check.
  if (checkRegMaskInterference(VirtReg, PhysReg))
    return IK_RegMask;

  // Check for fixed interference.
  if (checkRegUnitInterference(VirtReg, PhysReg))
    return IK_RegUnit;

  // Check the matrix for virtual register interference.
  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
    if (query(VirtReg, *Units).checkInterference())
      return IK_VirtReg;

  return IK_Free;
}