aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h
blob: 9e34590cc39c6c4b33c538378146c137d96b4564 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
//===-- SelectionDAGBuilder.h - Selection-DAG building --------*- C++ -*---===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements routines for translating from LLVM IR into SelectionDAG IR.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
#define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H

#include "StatepointLowering.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetLowering.h"
#include <utility>
#include <vector>

namespace llvm {

class AddrSpaceCastInst;
class AllocaInst;
class BasicBlock;
class BitCastInst;
class BranchInst;
class CallInst;
class DbgValueInst;
class ExtractElementInst;
class ExtractValueInst;
class FCmpInst;
class FPExtInst;
class FPToSIInst;
class FPToUIInst;
class FPTruncInst;
class Function;
class FunctionLoweringInfo;
class GetElementPtrInst;
class GCFunctionInfo;
class ICmpInst;
class IntToPtrInst;
class IndirectBrInst;
class InvokeInst;
class InsertElementInst;
class InsertValueInst;
class Instruction;
class LoadInst;
class MachineBasicBlock;
class MachineInstr;
class MachineRegisterInfo;
class MDNode;
class MVT;
class PHINode;
class PtrToIntInst;
class ReturnInst;
class SDDbgValue;
class SExtInst;
class SelectInst;
class ShuffleVectorInst;
class SIToFPInst;
class StoreInst;
class SwitchInst;
class DataLayout;
class TargetLibraryInfo;
class TargetLowering;
class TruncInst;
class UIToFPInst;
class UnreachableInst;
class VAArgInst;
class ZExtInst;

//===----------------------------------------------------------------------===//
/// SelectionDAGBuilder - This is the common target-independent lowering
/// implementation that is parameterized by a TargetLowering object.
///
class SelectionDAGBuilder {
  /// CurInst - The current instruction being visited
  const Instruction *CurInst;

  DenseMap<const Value*, SDValue> NodeMap;

  /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
  /// to preserve debug information for incoming arguments.
  DenseMap<const Value*, SDValue> UnusedArgNodeMap;

  /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
  class DanglingDebugInfo {
    const DbgValueInst* DI;
    DebugLoc dl;
    unsigned SDNodeOrder;
  public:
    DanglingDebugInfo() : DI(nullptr), dl(DebugLoc()), SDNodeOrder(0) { }
    DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO)
        : DI(di), dl(std::move(DL)), SDNodeOrder(SDNO) {}
    const DbgValueInst* getDI() { return DI; }
    DebugLoc getdl() { return dl; }
    unsigned getSDNodeOrder() { return SDNodeOrder; }
  };

  /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
  /// yet seen the referent.  We defer handling these until we do see it.
  DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;

public:
  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
  /// them up and then emit token factor nodes when possible.  This allows us to
  /// get simple disambiguation between loads without worrying about alias
  /// analysis.
  SmallVector<SDValue, 8> PendingLoads;

  /// State used while lowering a statepoint sequence (gc_statepoint,
  /// gc_relocate, and gc_result).  See StatepointLowering.hpp/cpp for details.
  StatepointLoweringState StatepointLowering;
private:

  /// PendingExports - CopyToReg nodes that copy values to virtual registers
  /// for export to other blocks need to be emitted before any terminator
  /// instruction, but they have no other ordering requirements. We bunch them
  /// up and the emit a single tokenfactor for them just before terminator
  /// instructions.
  SmallVector<SDValue, 8> PendingExports;

  /// SDNodeOrder - A unique monotonically increasing number used to order the
  /// SDNodes we create.
  unsigned SDNodeOrder;

  enum CaseClusterKind {
    /// A cluster of adjacent case labels with the same destination, or just one
    /// case.
    CC_Range,
    /// A cluster of cases suitable for jump table lowering.
    CC_JumpTable,
    /// A cluster of cases suitable for bit test lowering.
    CC_BitTests
  };

  /// A cluster of case labels.
  struct CaseCluster {
    CaseClusterKind Kind;
    const ConstantInt *Low, *High;
    union {
      MachineBasicBlock *MBB;
      unsigned JTCasesIndex;
      unsigned BTCasesIndex;
    };
    BranchProbability Prob;

    static CaseCluster range(const ConstantInt *Low, const ConstantInt *High,
                             MachineBasicBlock *MBB, BranchProbability Prob) {
      CaseCluster C;
      C.Kind = CC_Range;
      C.Low = Low;
      C.High = High;
      C.MBB = MBB;
      C.Prob = Prob;
      return C;
    }

    static CaseCluster jumpTable(const ConstantInt *Low,
                                 const ConstantInt *High, unsigned JTCasesIndex,
                                 BranchProbability Prob) {
      CaseCluster C;
      C.Kind = CC_JumpTable;
      C.Low = Low;
      C.High = High;
      C.JTCasesIndex = JTCasesIndex;
      C.Prob = Prob;
      return C;
    }

    static CaseCluster bitTests(const ConstantInt *Low, const ConstantInt *High,
                                unsigned BTCasesIndex, BranchProbability Prob) {
      CaseCluster C;
      C.Kind = CC_BitTests;
      C.Low = Low;
      C.High = High;
      C.BTCasesIndex = BTCasesIndex;
      C.Prob = Prob;
      return C;
    }
  };

  typedef std::vector<CaseCluster> CaseClusterVector;
  typedef CaseClusterVector::iterator CaseClusterIt;

  struct CaseBits {
    uint64_t Mask;
    MachineBasicBlock* BB;
    unsigned Bits;
    BranchProbability ExtraProb;

    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits,
             BranchProbability Prob):
      Mask(mask), BB(bb), Bits(bits), ExtraProb(Prob) { }

    CaseBits() : Mask(0), BB(nullptr), Bits(0) {}
  };

  typedef std::vector<CaseBits> CaseBitsVector;

  /// Sort Clusters and merge adjacent cases.
  void sortAndRangeify(CaseClusterVector &Clusters);

  /// CaseBlock - This structure is used to communicate between
  /// SelectionDAGBuilder and SDISel for the code generation of additional basic
  /// blocks needed by multi-case switch statements.
  struct CaseBlock {
    CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
              const Value *cmpmiddle, MachineBasicBlock *truebb,
              MachineBasicBlock *falsebb, MachineBasicBlock *me,
              BranchProbability trueprob = BranchProbability::getUnknown(),
              BranchProbability falseprob = BranchProbability::getUnknown())
        : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
          TrueBB(truebb), FalseBB(falsebb), ThisBB(me), TrueProb(trueprob),
          FalseProb(falseprob) {}

    // CC - the condition code to use for the case block's setcc node
    ISD::CondCode CC;

    // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
    // Emit by default LHS op RHS. MHS is used for range comparisons:
    // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
    const Value *CmpLHS, *CmpMHS, *CmpRHS;

    // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
    MachineBasicBlock *TrueBB, *FalseBB;

    // ThisBB - the block into which to emit the code for the setcc and branches
    MachineBasicBlock *ThisBB;

    // TrueProb/FalseProb - branch weights.
    BranchProbability TrueProb, FalseProb;
  };

  struct JumpTable {
    JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
              MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}

    /// Reg - the virtual register containing the index of the jump table entry
    //. to jump to.
    unsigned Reg;
    /// JTI - the JumpTableIndex for this jump table in the function.
    unsigned JTI;
    /// MBB - the MBB into which to emit the code for the indirect jump.
    MachineBasicBlock *MBB;
    /// Default - the MBB of the default bb, which is a successor of the range
    /// check MBB.  This is when updating PHI nodes in successors.
    MachineBasicBlock *Default;
  };
  struct JumpTableHeader {
    JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
                    bool E = false)
        : First(std::move(F)), Last(std::move(L)), SValue(SV), HeaderBB(H),
          Emitted(E) {}
    APInt First;
    APInt Last;
    const Value *SValue;
    MachineBasicBlock *HeaderBB;
    bool Emitted;
  };
  typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;

  struct BitTestCase {
    BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr,
                BranchProbability Prob):
      Mask(M), ThisBB(T), TargetBB(Tr), ExtraProb(Prob) { }
    uint64_t Mask;
    MachineBasicBlock *ThisBB;
    MachineBasicBlock *TargetBB;
    BranchProbability ExtraProb;
  };

  typedef SmallVector<BitTestCase, 3> BitTestInfo;

  struct BitTestBlock {
    BitTestBlock(APInt F, APInt R, const Value *SV, unsigned Rg, MVT RgVT,
                 bool E, bool CR, MachineBasicBlock *P, MachineBasicBlock *D,
                 BitTestInfo C, BranchProbability Pr)
        : First(std::move(F)), Range(std::move(R)), SValue(SV), Reg(Rg),
          RegVT(RgVT), Emitted(E), ContiguousRange(CR), Parent(P), Default(D),
          Cases(std::move(C)), Prob(Pr) {}
    APInt First;
    APInt Range;
    const Value *SValue;
    unsigned Reg;
    MVT RegVT;
    bool Emitted;
    bool ContiguousRange;
    MachineBasicBlock *Parent;
    MachineBasicBlock *Default;
    BitTestInfo Cases;
    BranchProbability Prob;
    BranchProbability DefaultProb;
  };

  /// Check whether a range of clusters is dense enough for a jump table.
  bool isDense(const CaseClusterVector &Clusters,
               const SmallVectorImpl<unsigned> &TotalCases,
               unsigned First, unsigned Last, unsigned MinDensity) const;

  /// Build a jump table cluster from Clusters[First..Last]. Returns false if it
  /// decides it's not a good idea.
  bool buildJumpTable(const CaseClusterVector &Clusters, unsigned First,
                      unsigned Last, const SwitchInst *SI,
                      MachineBasicBlock *DefaultMBB, CaseCluster &JTCluster);

  /// Find clusters of cases suitable for jump table lowering.
  void findJumpTables(CaseClusterVector &Clusters, const SwitchInst *SI,
                      MachineBasicBlock *DefaultMBB);

  /// Check whether the range [Low,High] fits in a machine word.
  bool rangeFitsInWord(const APInt &Low, const APInt &High);

  /// Check whether these clusters are suitable for lowering with bit tests based
  /// on the number of destinations, comparison metric, and range.
  bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
                             const APInt &Low, const APInt &High);

  /// Build a bit test cluster from Clusters[First..Last]. Returns false if it
  /// decides it's not a good idea.
  bool buildBitTests(CaseClusterVector &Clusters, unsigned First, unsigned Last,
                     const SwitchInst *SI, CaseCluster &BTCluster);

  /// Find clusters of cases suitable for bit test lowering.
  void findBitTestClusters(CaseClusterVector &Clusters, const SwitchInst *SI);

  struct SwitchWorkListItem {
    MachineBasicBlock *MBB;
    CaseClusterIt FirstCluster;
    CaseClusterIt LastCluster;
    const ConstantInt *GE;
    const ConstantInt *LT;
    BranchProbability DefaultProb;
  };
  typedef SmallVector<SwitchWorkListItem, 4> SwitchWorkList;

  /// Determine the rank by weight of CC in [First,Last]. If CC has more weight
  /// than each cluster in the range, its rank is 0.
  static unsigned caseClusterRank(const CaseCluster &CC, CaseClusterIt First,
                                  CaseClusterIt Last);

  /// Emit comparison and split W into two subtrees.
  void splitWorkItem(SwitchWorkList &WorkList, const SwitchWorkListItem &W,
                     Value *Cond, MachineBasicBlock *SwitchMBB);

  /// Lower W.
  void lowerWorkItem(SwitchWorkListItem W, Value *Cond,
                     MachineBasicBlock *SwitchMBB,
                     MachineBasicBlock *DefaultMBB);


  /// A class which encapsulates all of the information needed to generate a
  /// stack protector check and signals to isel via its state being initialized
  /// that a stack protector needs to be generated.
  ///
  /// *NOTE* The following is a high level documentation of SelectionDAG Stack
  /// Protector Generation. The reason that it is placed here is for a lack of
  /// other good places to stick it.
  ///
  /// High Level Overview of SelectionDAG Stack Protector Generation:
  ///
  /// Previously, generation of stack protectors was done exclusively in the
  /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
  /// splitting basic blocks at the IR level to create the success/failure basic
  /// blocks in the tail of the basic block in question. As a result of this,
  /// calls that would have qualified for the sibling call optimization were no
  /// longer eligible for optimization since said calls were no longer right in
  /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
  /// instruction).
  ///
  /// Then it was noticed that since the sibling call optimization causes the
  /// callee to reuse the caller's stack, if we could delay the generation of
  /// the stack protector check until later in CodeGen after the sibling call
  /// decision was made, we get both the tail call optimization and the stack
  /// protector check!
  ///
  /// A few goals in solving this problem were:
  ///
  ///   1. Preserve the architecture independence of stack protector generation.
  ///
  ///   2. Preserve the normal IR level stack protector check for platforms like
  ///      OpenBSD for which we support platform-specific stack protector
  ///      generation.
  ///
  /// The main problem that guided the present solution is that one can not
  /// solve this problem in an architecture independent manner at the IR level
  /// only. This is because:
  ///
  ///   1. The decision on whether or not to perform a sibling call on certain
  ///      platforms (for instance i386) requires lower level information
  ///      related to available registers that can not be known at the IR level.
  ///
  ///   2. Even if the previous point were not true, the decision on whether to
  ///      perform a tail call is done in LowerCallTo in SelectionDAG which
  ///      occurs after the Stack Protector Pass. As a result, one would need to
  ///      put the relevant callinst into the stack protector check success
  ///      basic block (where the return inst is placed) and then move it back
  ///      later at SelectionDAG/MI time before the stack protector check if the
  ///      tail call optimization failed. The MI level option was nixed
  ///      immediately since it would require platform-specific pattern
  ///      matching. The SelectionDAG level option was nixed because
  ///      SelectionDAG only processes one IR level basic block at a time
  ///      implying one could not create a DAG Combine to move the callinst.
  ///
  /// To get around this problem a few things were realized:
  ///
  ///   1. While one can not handle multiple IR level basic blocks at the
  ///      SelectionDAG Level, one can generate multiple machine basic blocks
  ///      for one IR level basic block. This is how we handle bit tests and
  ///      switches.
  ///
  ///   2. At the MI level, tail calls are represented via a special return
  ///      MIInst called "tcreturn". Thus if we know the basic block in which we
  ///      wish to insert the stack protector check, we get the correct behavior
  ///      by always inserting the stack protector check right before the return
  ///      statement. This is a "magical transformation" since no matter where
  ///      the stack protector check intrinsic is, we always insert the stack
  ///      protector check code at the end of the BB.
  ///
  /// Given the aforementioned constraints, the following solution was devised:
  ///
  ///   1. On platforms that do not support SelectionDAG stack protector check
  ///      generation, allow for the normal IR level stack protector check
  ///      generation to continue.
  ///
  ///   2. On platforms that do support SelectionDAG stack protector check
  ///      generation:
  ///
  ///     a. Use the IR level stack protector pass to decide if a stack
  ///        protector is required/which BB we insert the stack protector check
  ///        in by reusing the logic already therein. If we wish to generate a
  ///        stack protector check in a basic block, we place a special IR
  ///        intrinsic called llvm.stackprotectorcheck right before the BB's
  ///        returninst or if there is a callinst that could potentially be
  ///        sibling call optimized, before the call inst.
  ///
  ///     b. Then when a BB with said intrinsic is processed, we codegen the BB
  ///        normally via SelectBasicBlock. In said process, when we visit the
  ///        stack protector check, we do not actually emit anything into the
  ///        BB. Instead, we just initialize the stack protector descriptor
  ///        class (which involves stashing information/creating the success
  ///        mbbb and the failure mbb if we have not created one for this
  ///        function yet) and export the guard variable that we are going to
  ///        compare.
  ///
  ///     c. After we finish selecting the basic block, in FinishBasicBlock if
  ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is
  ///        initialized, we produce the validation code with one of these
  ///        techniques:
  ///          1) with a call to a guard check function
  ///          2) with inlined instrumentation
  ///
  ///        1) We insert a call to the check function before the terminator.
  ///
  ///        2) We first find a splice point in the parent basic block
  ///        before the terminator and then splice the terminator of said basic
  ///        block into the success basic block. Then we code-gen a new tail for
  ///        the parent basic block consisting of the two loads, the comparison,
  ///        and finally two branches to the success/failure basic blocks. We
  ///        conclude by code-gening the failure basic block if we have not
  ///        code-gened it already (all stack protector checks we generate in
  ///        the same function, use the same failure basic block).
  class StackProtectorDescriptor {
  public:
    StackProtectorDescriptor()
        : ParentMBB(nullptr), SuccessMBB(nullptr), FailureMBB(nullptr) {}

    /// Returns true if all fields of the stack protector descriptor are
    /// initialized implying that we should/are ready to emit a stack protector.
    bool shouldEmitStackProtector() const {
      return ParentMBB && SuccessMBB && FailureMBB;
    }

    bool shouldEmitFunctionBasedCheckStackProtector() const {
      return ParentMBB && !SuccessMBB && !FailureMBB;
    }

    /// Initialize the stack protector descriptor structure for a new basic
    /// block.
    void initialize(const BasicBlock *BB, MachineBasicBlock *MBB,
                    bool FunctionBasedInstrumentation) {
      // Make sure we are not initialized yet.
      assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
             "already initialized!");
      ParentMBB = MBB;
      if (!FunctionBasedInstrumentation) {
        SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true);
        FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB);
      }
    }

    /// Reset state that changes when we handle different basic blocks.
    ///
    /// This currently includes:
    ///
    /// 1. The specific basic block we are generating a
    /// stack protector for (ParentMBB).
    ///
    /// 2. The successor machine basic block that will contain the tail of
    /// parent mbb after we create the stack protector check (SuccessMBB). This
    /// BB is visited only on stack protector check success.
    void resetPerBBState() {
      ParentMBB = nullptr;
      SuccessMBB = nullptr;
    }

    /// Reset state that only changes when we switch functions.
    ///
    /// This currently includes:
    ///
    /// 1. FailureMBB since we reuse the failure code path for all stack
    /// protector checks created in an individual function.
    ///
    /// 2.The guard variable since the guard variable we are checking against is
    /// always the same.
    void resetPerFunctionState() {
      FailureMBB = nullptr;
    }

    MachineBasicBlock *getParentMBB() { return ParentMBB; }
    MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
    MachineBasicBlock *getFailureMBB() { return FailureMBB; }

  private:
    /// The basic block for which we are generating the stack protector.
    ///
    /// As a result of stack protector generation, we will splice the
    /// terminators of this basic block into the successor mbb SuccessMBB and
    /// replace it with a compare/branch to the successor mbbs
    /// SuccessMBB/FailureMBB depending on whether or not the stack protector
    /// was violated.
    MachineBasicBlock *ParentMBB;

    /// A basic block visited on stack protector check success that contains the
    /// terminators of ParentMBB.
    MachineBasicBlock *SuccessMBB;

    /// This basic block visited on stack protector check failure that will
    /// contain a call to __stack_chk_fail().
    MachineBasicBlock *FailureMBB;

    /// Add a successor machine basic block to ParentMBB. If the successor mbb
    /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
    /// block will be created. Assign a large weight if IsLikely is true.
    MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
                                       MachineBasicBlock *ParentMBB,
                                       bool IsLikely,
                                       MachineBasicBlock *SuccMBB = nullptr);
  };

private:
  const TargetMachine &TM;
public:
  /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
  /// nodes without a corresponding SDNode.
  static const unsigned LowestSDNodeOrder = 1;

  SelectionDAG &DAG;
  const DataLayout *DL;
  AliasAnalysis *AA;
  const TargetLibraryInfo *LibInfo;

  /// SwitchCases - Vector of CaseBlock structures used to communicate
  /// SwitchInst code generation information.
  std::vector<CaseBlock> SwitchCases;
  /// JTCases - Vector of JumpTable structures used to communicate
  /// SwitchInst code generation information.
  std::vector<JumpTableBlock> JTCases;
  /// BitTestCases - Vector of BitTestBlock structures used to communicate
  /// SwitchInst code generation information.
  std::vector<BitTestBlock> BitTestCases;
  /// A StackProtectorDescriptor structure used to communicate stack protector
  /// information in between SelectBasicBlock and FinishBasicBlock.
  StackProtectorDescriptor SPDescriptor;

  // Emit PHI-node-operand constants only once even if used by multiple
  // PHI nodes.
  DenseMap<const Constant *, unsigned> ConstantsOut;

  /// FuncInfo - Information about the function as a whole.
  ///
  FunctionLoweringInfo &FuncInfo;

  /// GFI - Garbage collection metadata for the function.
  GCFunctionInfo *GFI;

  /// LPadToCallSiteMap - Map a landing pad to the call site indexes.
  DenseMap<MachineBasicBlock*, SmallVector<unsigned, 4> > LPadToCallSiteMap;

  /// HasTailCall - This is set to true if a call in the current
  /// block has been translated as a tail call. In this case,
  /// no subsequent DAG nodes should be created.
  ///
  bool HasTailCall;

  LLVMContext *Context;

  SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
                      CodeGenOpt::Level ol)
    : CurInst(nullptr), SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()),
      DAG(dag), FuncInfo(funcinfo),
      HasTailCall(false) {
  }

  void init(GCFunctionInfo *gfi, AliasAnalysis &aa,
            const TargetLibraryInfo *li);

  /// Clear out the current SelectionDAG and the associated state and prepare
  /// this SelectionDAGBuilder object to be used for a new block. This doesn't
  /// clear out information about additional blocks that are needed to complete
  /// switch lowering or PHI node updating; that information is cleared out as
  /// it is consumed.
  void clear();

  /// Clear the dangling debug information map. This function is separated from
  /// the clear so that debug information that is dangling in a basic block can
  /// be properly resolved in a different basic block. This allows the
  /// SelectionDAG to resolve dangling debug information attached to PHI nodes.
  void clearDanglingDebugInfo();

  /// Return the current virtual root of the Selection DAG, flushing any
  /// PendingLoad items. This must be done before emitting a store or any other
  /// node that may need to be ordered after any prior load instructions.
  SDValue getRoot();

  /// Similar to getRoot, but instead of flushing all the PendingLoad items,
  /// flush all the PendingExports items. It is necessary to do this before
  /// emitting a terminator instruction.
  SDValue getControlRoot();

  SDLoc getCurSDLoc() const {
    return SDLoc(CurInst, SDNodeOrder);
  }

  DebugLoc getCurDebugLoc() const {
    return CurInst ? CurInst->getDebugLoc() : DebugLoc();
  }

  void CopyValueToVirtualRegister(const Value *V, unsigned Reg);

  void visit(const Instruction &I);

  void visit(unsigned Opcode, const User &I);

  /// getCopyFromRegs - If there was virtual register allocated for the value V
  /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
  SDValue getCopyFromRegs(const Value *V, Type *Ty);

  // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
  // generate the debug data structures now that we've seen its definition.
  void resolveDanglingDebugInfo(const Value *V, SDValue Val);
  SDValue getValue(const Value *V);
  bool findValue(const Value *V) const;

  SDValue getNonRegisterValue(const Value *V);
  SDValue getValueImpl(const Value *V);

  void setValue(const Value *V, SDValue NewN) {
    SDValue &N = NodeMap[V];
    assert(!N.getNode() && "Already set a value for this node!");
    N = NewN;
  }

  void setUnusedArgValue(const Value *V, SDValue NewN) {
    SDValue &N = UnusedArgNodeMap[V];
    assert(!N.getNode() && "Already set a value for this node!");
    N = NewN;
  }

  void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
                            MachineBasicBlock *SwitchBB,
                            Instruction::BinaryOps Opc, BranchProbability TW,
                            BranchProbability FW, bool InvertCond);
  void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
                                    MachineBasicBlock *FBB,
                                    MachineBasicBlock *CurBB,
                                    MachineBasicBlock *SwitchBB,
                                    BranchProbability TW, BranchProbability FW,
                                    bool InvertCond);
  bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
  bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
  void CopyToExportRegsIfNeeded(const Value *V);
  void ExportFromCurrentBlock(const Value *V);
  void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
                   const BasicBlock *EHPadBB = nullptr);

  // Lower range metadata from 0 to N to assert zext to an integer of nearest
  // floor power of two.
  SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I,
                                 SDValue Op);

  void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI,
                                ImmutableCallSite CS, unsigned ArgIdx,
                                unsigned NumArgs, SDValue Callee,
                                Type *ReturnTy, bool IsPatchPoint);

  std::pair<SDValue, SDValue>
  lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
                 const BasicBlock *EHPadBB = nullptr);

  /// UpdateSplitBlock - When an MBB was split during scheduling, update the
  /// references that need to refer to the last resulting block.
  void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);

  /// Describes a gc.statepoint or a gc.statepoint like thing for the purposes
  /// of lowering into a STATEPOINT node.
  struct StatepointLoweringInfo {
    /// Bases[i] is the base pointer for Ptrs[i].  Together they denote the set
    /// of gc pointers this STATEPOINT has to relocate.
    SmallVector<const Value *, 16> Bases;
    SmallVector<const Value *, 16> Ptrs;

    /// The set of gc.relocate calls associated with this gc.statepoint.
    SmallVector<const GCRelocateInst *, 16> GCRelocates;

    /// The full list of gc arguments to the gc.statepoint being lowered.
    ArrayRef<const Use> GCArgs;

    /// The gc.statepoint instruction.
    const Instruction *StatepointInstr = nullptr;

    /// The list of gc transition arguments present in the gc.statepoint being
    /// lowered.
    ArrayRef<const Use> GCTransitionArgs;

    /// The ID that the resulting STATEPOINT instruction has to report.
    unsigned ID = -1;

    /// Information regarding the underlying call instruction.
    TargetLowering::CallLoweringInfo CLI;

    /// The deoptimization state associated with this gc.statepoint call, if
    /// any.
    ArrayRef<const Use> DeoptState;

    /// Flags associated with the meta arguments being lowered.
    uint64_t StatepointFlags = -1;

    /// The number of patchable bytes the call needs to get lowered into.
    unsigned NumPatchBytes = -1;

    /// The exception handling unwind destination, in case this represents an
    /// invoke of gc.statepoint.
    const BasicBlock *EHPadBB = nullptr;

    explicit StatepointLoweringInfo(SelectionDAG &DAG) : CLI(DAG) {}
  };

  /// Lower \p SLI into a STATEPOINT instruction.
  SDValue LowerAsSTATEPOINT(StatepointLoweringInfo &SLI);

  // This function is responsible for the whole statepoint lowering process.
  // It uniformly handles invoke and call statepoints.
  void LowerStatepoint(ImmutableStatepoint Statepoint,
                       const BasicBlock *EHPadBB = nullptr);

  void LowerCallSiteWithDeoptBundle(ImmutableCallSite CS, SDValue Callee,
                                    const BasicBlock *EHPadBB);

  void LowerDeoptimizeCall(const CallInst *CI);
  void LowerDeoptimizingReturn();

  void LowerCallSiteWithDeoptBundleImpl(ImmutableCallSite CS, SDValue Callee,
                                        const BasicBlock *EHPadBB,
                                        bool VarArgDisallowed,
                                        bool ForceVoidReturnTy);

private:
  // Terminator instructions.
  void visitRet(const ReturnInst &I);
  void visitBr(const BranchInst &I);
  void visitSwitch(const SwitchInst &I);
  void visitIndirectBr(const IndirectBrInst &I);
  void visitUnreachable(const UnreachableInst &I);
  void visitCleanupRet(const CleanupReturnInst &I);
  void visitCatchSwitch(const CatchSwitchInst &I);
  void visitCatchRet(const CatchReturnInst &I);
  void visitCatchPad(const CatchPadInst &I);
  void visitCleanupPad(const CleanupPadInst &CPI);

  BranchProbability getEdgeProbability(const MachineBasicBlock *Src,
                                       const MachineBasicBlock *Dst) const;
  void addSuccessorWithProb(
      MachineBasicBlock *Src, MachineBasicBlock *Dst,
      BranchProbability Prob = BranchProbability::getUnknown());

public:
  void visitSwitchCase(CaseBlock &CB,
                       MachineBasicBlock *SwitchBB);
  void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
                               MachineBasicBlock *ParentBB);
  void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
  void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
  void visitBitTestCase(BitTestBlock &BB,
                        MachineBasicBlock* NextMBB,
                        BranchProbability BranchProbToNext,
                        unsigned Reg,
                        BitTestCase &B,
                        MachineBasicBlock *SwitchBB);
  void visitJumpTable(JumpTable &JT);
  void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
                            MachineBasicBlock *SwitchBB);

private:
  // These all get lowered before this pass.
  void visitInvoke(const InvokeInst &I);
  void visitResume(const ResumeInst &I);

  void visitBinary(const User &I, unsigned OpCode);
  void visitShift(const User &I, unsigned Opcode);
  void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
  void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
  void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
  void visitFSub(const User &I);
  void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
  void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
  void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
  void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
  void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
  void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
  void visitSDiv(const User &I);
  void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
  void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
  void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
  void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
  void visitShl (const User &I) { visitShift(I, ISD::SHL); }
  void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
  void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
  void visitICmp(const User &I);
  void visitFCmp(const User &I);
  // Visit the conversion instructions
  void visitTrunc(const User &I);
  void visitZExt(const User &I);
  void visitSExt(const User &I);
  void visitFPTrunc(const User &I);
  void visitFPExt(const User &I);
  void visitFPToUI(const User &I);
  void visitFPToSI(const User &I);
  void visitUIToFP(const User &I);
  void visitSIToFP(const User &I);
  void visitPtrToInt(const User &I);
  void visitIntToPtr(const User &I);
  void visitBitCast(const User &I);
  void visitAddrSpaceCast(const User &I);

  void visitExtractElement(const User &I);
  void visitInsertElement(const User &I);
  void visitShuffleVector(const User &I);

  void visitExtractValue(const ExtractValueInst &I);
  void visitInsertValue(const InsertValueInst &I);
  void visitLandingPad(const LandingPadInst &I);

  void visitGetElementPtr(const User &I);
  void visitSelect(const User &I);

  void visitAlloca(const AllocaInst &I);
  void visitLoad(const LoadInst &I);
  void visitStore(const StoreInst &I);
  void visitMaskedLoad(const CallInst &I, bool IsExpanding = false);
  void visitMaskedStore(const CallInst &I, bool IsCompressing = false);
  void visitMaskedGather(const CallInst &I);
  void visitMaskedScatter(const CallInst &I);
  void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
  void visitAtomicRMW(const AtomicRMWInst &I);
  void visitFence(const FenceInst &I);
  void visitPHI(const PHINode &I);
  void visitCall(const CallInst &I);
  bool visitMemCmpCall(const CallInst &I);
  bool visitMemPCpyCall(const CallInst &I);
  bool visitMemChrCall(const CallInst &I);
  bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
  bool visitStrCmpCall(const CallInst &I);
  bool visitStrLenCall(const CallInst &I);
  bool visitStrNLenCall(const CallInst &I);
  bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
  bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode);
  void visitAtomicLoad(const LoadInst &I);
  void visitAtomicStore(const StoreInst &I);
  void visitLoadFromSwiftError(const LoadInst &I);
  void visitStoreToSwiftError(const StoreInst &I);

  void visitInlineAsm(ImmutableCallSite CS);
  const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
  void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
  void visitConstrainedFPIntrinsic(const CallInst &I, unsigned Intrinsic);

  void visitVAStart(const CallInst &I);
  void visitVAArg(const VAArgInst &I);
  void visitVAEnd(const CallInst &I);
  void visitVACopy(const CallInst &I);
  void visitStackmap(const CallInst &I);
  void visitPatchpoint(ImmutableCallSite CS,
                       const BasicBlock *EHPadBB = nullptr);

  // These two are implemented in StatepointLowering.cpp
  void visitGCRelocate(const GCRelocateInst &I);
  void visitGCResult(const GCResultInst &I);

  void visitUserOp1(const Instruction &I) {
    llvm_unreachable("UserOp1 should not exist at instruction selection time!");
  }
  void visitUserOp2(const Instruction &I) {
    llvm_unreachable("UserOp2 should not exist at instruction selection time!");
  }

  void processIntegerCallValue(const Instruction &I,
                               SDValue Value, bool IsSigned);

  void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);

  void emitInlineAsmError(ImmutableCallSite CS, const Twine &Message);

  /// EmitFuncArgumentDbgValue - If V is an function argument then create
  /// corresponding DBG_VALUE machine instruction for it now. At the end of
  /// instruction selection, they will be inserted to the entry BB.
  bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable,
                                DIExpression *Expr, DILocation *DL,
                                int64_t Offset, bool IsDbgDeclare,
                                const SDValue &N);

  /// Return the next block after MBB, or nullptr if there is none.
  MachineBasicBlock *NextBlock(MachineBasicBlock *MBB);

  /// Update the DAG and DAG builder with the relevant information after
  /// a new root node has been created which could be a tail call.
  void updateDAGForMaybeTailCall(SDValue MaybeTC);

  /// Return the appropriate SDDbgValue based on N.
  SDDbgValue *getDbgValue(SDValue N, DILocalVariable *Variable,
                          DIExpression *Expr, int64_t Offset,
                          const DebugLoc &dl, unsigned DbgSDNodeOrder);
};

/// RegsForValue - This struct represents the registers (physical or virtual)
/// that a particular set of values is assigned, and the type information about
/// the value. The most common situation is to represent one value at a time,
/// but struct or array values are handled element-wise as multiple values.  The
/// splitting of aggregates is performed recursively, so that we never have
/// aggregate-typed registers. The values at this point do not necessarily have
/// legal types, so each value may require one or more registers of some legal
/// type.
///
struct RegsForValue {
  /// The value types of the values, which may not be legal, and
  /// may need be promoted or synthesized from one or more registers.
  SmallVector<EVT, 4> ValueVTs;

  /// The value types of the registers. This is the same size as ValueVTs and it
  /// records, for each value, what the type of the assigned register or
  /// registers are. (Individual values are never synthesized from more than one
  /// type of register.)
  ///
  /// With virtual registers, the contents of RegVTs is redundant with TLI's
  /// getRegisterType member function, however when with physical registers
  /// it is necessary to have a separate record of the types.
  SmallVector<MVT, 4> RegVTs;

  /// This list holds the registers assigned to the values.
  /// Each legal or promoted value requires one register, and each
  /// expanded value requires multiple registers.
  SmallVector<unsigned, 4> Regs;

  RegsForValue();

  RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt, EVT valuevt);

  RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
               const DataLayout &DL, unsigned Reg, Type *Ty);

  /// Add the specified values to this one.
  void append(const RegsForValue &RHS) {
    ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
    RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
    Regs.append(RHS.Regs.begin(), RHS.Regs.end());
  }

  /// Emit a series of CopyFromReg nodes that copies from this value and returns
  /// the result as a ValueVTs value. This uses Chain/Flag as the input and
  /// updates them for the output Chain/Flag. If the Flag pointer is NULL, no
  /// flag is used.
  SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
                          const SDLoc &dl, SDValue &Chain, SDValue *Flag,
                          const Value *V = nullptr) const;

  /// Emit a series of CopyToReg nodes that copies the specified value into the
  /// registers specified by this object. This uses Chain/Flag as the input and
  /// updates them for the output Chain/Flag. If the Flag pointer is nullptr, no
  /// flag is used. If V is not nullptr, then it is used in printing better
  /// diagnostic messages on error.
  void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl,
                     SDValue &Chain, SDValue *Flag, const Value *V = nullptr,
                     ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;

  /// Add this value to the specified inlineasm node operand list. This adds the
  /// code marker, matching input operand index (if applicable), and includes
  /// the number of values added into it.
  void AddInlineAsmOperands(unsigned Kind, bool HasMatching,
                            unsigned MatchingIdx, const SDLoc &dl,
                            SelectionDAG &DAG, std::vector<SDValue> &Ops) const;
};

} // end namespace llvm

#endif