aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaChecking.cpp
blob: 4eed01872246c205b1498b4a089a799749121cdb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements extra semantic analysis beyond what is enforced 
//  by the C type system.
//
//===----------------------------------------------------------------------===//

#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Lex/Preprocessor.h"
#include <limits>
using namespace clang;

/// getLocationOfStringLiteralByte - Return a source location that points to the
/// specified byte of the specified string literal.
///
/// Strings are amazingly complex.  They can be formed from multiple tokens and
/// can have escape sequences in them in addition to the usual trigraph and
/// escaped newline business.  This routine handles this complexity.
///
SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
                                                    unsigned ByteNo) const {
  assert(!SL->isWide() && "This doesn't work for wide strings yet");
  
  // Loop over all of the tokens in this string until we find the one that
  // contains the byte we're looking for.
  unsigned TokNo = 0;
  while (1) {
    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
   
    // Get the spelling of the string so that we can get the data that makes up
    // the string literal, not the identifier for the macro it is potentially
    // expanded through.
    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);

    // Re-lex the token to get its length and original spelling.
    std::pair<FileID, unsigned> LocInfo =
      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
    std::pair<const char *,const char *> Buffer =
      SourceMgr.getBufferData(LocInfo.first);
    const char *StrData = Buffer.first+LocInfo.second;
    
    // Create a langops struct and enable trigraphs.  This is sufficient for
    // relexing tokens.
    LangOptions LangOpts;
    LangOpts.Trigraphs = true;
    
    // Create a lexer starting at the beginning of this token.
    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
                   Buffer.second);
    Token TheTok;
    TheLexer.LexFromRawLexer(TheTok);
    
    // Use the StringLiteralParser to compute the length of the string in bytes.
    StringLiteralParser SLP(&TheTok, 1, PP);
    unsigned TokNumBytes = SLP.GetStringLength();
    
    // If the byte is in this token, return the location of the byte.
    if (ByteNo < TokNumBytes ||
        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
      unsigned Offset = 
        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
     
      // Now that we know the offset of the token in the spelling, use the
      // preprocessor to get the offset in the original source.
      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
    }
    
    // Move to the next string token.
    ++TokNo;
    ByteNo -= TokNumBytes;
  }
}


/// CheckFunctionCall - Check a direct function call for various correctness
/// and safety properties not strictly enforced by the C type system.
Action::OwningExprResult
Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
  OwningExprResult TheCallResult(Owned(TheCall));
  // Get the IdentifierInfo* for the called function.
  IdentifierInfo *FnInfo = FDecl->getIdentifier();

  // None of the checks below are needed for functions that don't have
  // simple names (e.g., C++ conversion functions).
  if (!FnInfo)
    return move(TheCallResult);

  switch (FDecl->getBuiltinID(Context)) {
  case Builtin::BI__builtin___CFStringMakeConstantString:
    assert(TheCall->getNumArgs() == 1 &&
           "Wrong # arguments to builtin CFStringMakeConstantString");
    if (CheckObjCString(TheCall->getArg(0)))
      return ExprError();
    return move(TheCallResult);
  case Builtin::BI__builtin_stdarg_start:
  case Builtin::BI__builtin_va_start:
    if (SemaBuiltinVAStart(TheCall))
      return ExprError();
    return move(TheCallResult);
  case Builtin::BI__builtin_isgreater:
  case Builtin::BI__builtin_isgreaterequal:
  case Builtin::BI__builtin_isless:
  case Builtin::BI__builtin_islessequal:
  case Builtin::BI__builtin_islessgreater:
  case Builtin::BI__builtin_isunordered:
    if (SemaBuiltinUnorderedCompare(TheCall))
      return ExprError();
    return move(TheCallResult);
  case Builtin::BI__builtin_return_address:
  case Builtin::BI__builtin_frame_address:
    if (SemaBuiltinStackAddress(TheCall))
      return ExprError();
    return move(TheCallResult);
  case Builtin::BI__builtin_shufflevector:
    return SemaBuiltinShuffleVector(TheCall);
    // TheCall will be freed by the smart pointer here, but that's fine, since
    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
  case Builtin::BI__builtin_prefetch:
    if (SemaBuiltinPrefetch(TheCall))
      return ExprError();
    return move(TheCallResult);
  case Builtin::BI__builtin_object_size:
    if (SemaBuiltinObjectSize(TheCall))
      return ExprError();
    return move(TheCallResult);
  case Builtin::BI__builtin_longjmp:
    if (SemaBuiltinLongjmp(TheCall))
      return ExprError();
    return move(TheCallResult);
  case Builtin::BI__sync_fetch_and_add:
  case Builtin::BI__sync_fetch_and_sub:
  case Builtin::BI__sync_fetch_and_or:
  case Builtin::BI__sync_fetch_and_and:
  case Builtin::BI__sync_fetch_and_xor:
  case Builtin::BI__sync_fetch_and_nand:
  case Builtin::BI__sync_add_and_fetch:
  case Builtin::BI__sync_sub_and_fetch:
  case Builtin::BI__sync_and_and_fetch:
  case Builtin::BI__sync_or_and_fetch:
  case Builtin::BI__sync_xor_and_fetch:
  case Builtin::BI__sync_nand_and_fetch:
  case Builtin::BI__sync_val_compare_and_swap:
  case Builtin::BI__sync_bool_compare_and_swap:
  case Builtin::BI__sync_lock_test_and_set:
  case Builtin::BI__sync_lock_release:
    if (SemaBuiltinAtomicOverloaded(TheCall))
      return ExprError();
    return move(TheCallResult);
  }

  // FIXME: This mechanism should be abstracted to be less fragile and
  // more efficient. For example, just map function ids to custom
  // handlers.

  // Printf checking.
  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
    if (Format->getType() == "printf") {
      bool HasVAListArg = Format->getFirstArg() == 0;
      if (!HasVAListArg) {
        if (const FunctionProtoType *Proto 
            = FDecl->getType()->getAsFunctionProtoType())
        HasVAListArg = !Proto->isVariadic();
      }
      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
    }
  }
  for (const Attr *attr = FDecl->getAttrs(); 
       attr; attr = attr->getNext()) {
    if (const NonNullAttr *NonNull = dyn_cast<NonNullAttr>(attr))
      CheckNonNullArguments(NonNull, TheCall);
  }

  return move(TheCallResult);
}

Action::OwningExprResult
Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {

  OwningExprResult TheCallResult(Owned(TheCall));
  // Printf checking.
  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
  if (!Format)
    return move(TheCallResult);
  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
  if (!V)
    return move(TheCallResult);
  QualType Ty = V->getType();
  if (!Ty->isBlockPointerType())
    return move(TheCallResult);
  if (Format->getType() == "printf") {
      bool HasVAListArg = Format->getFirstArg() == 0;
      if (!HasVAListArg) {
        const FunctionType *FT = 
          Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
        if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
          HasVAListArg = !Proto->isVariadic();
      }
      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
  }
  return move(TheCallResult);
}

/// SemaBuiltinAtomicOverloaded - We have a call to a function like
/// __sync_fetch_and_add, which is an overloaded function based on the pointer
/// type of its first argument.  The main ActOnCallExpr routines have already
/// promoted the types of arguments because all of these calls are prototyped as
/// void(...).
///
/// This function goes through and does final semantic checking for these
/// builtins,
bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());

  // Ensure that we have at least one argument to do type inference from.
  if (TheCall->getNumArgs() < 1)
    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
              << 0 << TheCall->getCallee()->getSourceRange();
  
  // Inspect the first argument of the atomic builtin.  This should always be
  // a pointer type, whose element is an integral scalar or pointer type.
  // Because it is a pointer type, we don't have to worry about any implicit
  // casts here.
  Expr *FirstArg = TheCall->getArg(0);
  if (!FirstArg->getType()->isPointerType())
    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
             << FirstArg->getType() << FirstArg->getSourceRange();
  
  QualType ValType = FirstArg->getType()->getAsPointerType()->getPointeeType();
  if (!ValType->isIntegerType() && !ValType->isPointerType() && 
      !ValType->isBlockPointerType())
    return Diag(DRE->getLocStart(),
                diag::err_atomic_builtin_must_be_pointer_intptr)
             << FirstArg->getType() << FirstArg->getSourceRange();

  // We need to figure out which concrete builtin this maps onto.  For example,
  // __sync_fetch_and_add with a 2 byte object turns into
  // __sync_fetch_and_add_2.
#define BUILTIN_ROW(x) \
  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
    Builtin::BI##x##_8, Builtin::BI##x##_16 }
  
  static const unsigned BuiltinIndices[][5] = {
    BUILTIN_ROW(__sync_fetch_and_add),
    BUILTIN_ROW(__sync_fetch_and_sub),
    BUILTIN_ROW(__sync_fetch_and_or),
    BUILTIN_ROW(__sync_fetch_and_and),
    BUILTIN_ROW(__sync_fetch_and_xor),
    BUILTIN_ROW(__sync_fetch_and_nand),
    
    BUILTIN_ROW(__sync_add_and_fetch),
    BUILTIN_ROW(__sync_sub_and_fetch),
    BUILTIN_ROW(__sync_and_and_fetch),
    BUILTIN_ROW(__sync_or_and_fetch),
    BUILTIN_ROW(__sync_xor_and_fetch),
    BUILTIN_ROW(__sync_nand_and_fetch),
    
    BUILTIN_ROW(__sync_val_compare_and_swap),
    BUILTIN_ROW(__sync_bool_compare_and_swap),
    BUILTIN_ROW(__sync_lock_test_and_set),
    BUILTIN_ROW(__sync_lock_release)
  };
#undef BUILTIN_ROW  
  
  // Determine the index of the size.
  unsigned SizeIndex;
  switch (Context.getTypeSize(ValType)/8) {
  case 1: SizeIndex = 0; break;
  case 2: SizeIndex = 1; break;
  case 4: SizeIndex = 2; break;
  case 8: SizeIndex = 3; break;
  case 16: SizeIndex = 4; break;
  default:
    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
             << FirstArg->getType() << FirstArg->getSourceRange();
  }
  
  // Each of these builtins has one pointer argument, followed by some number of
  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
  // that we ignore.  Find out which row of BuiltinIndices to read from as well
  // as the number of fixed args.
  unsigned BuiltinID = FDecl->getBuiltinID(Context);
  unsigned BuiltinIndex, NumFixed = 1;
  switch (BuiltinID) {
  default: assert(0 && "Unknown overloaded atomic builtin!");
  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
  case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
      
  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 9; break;
  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
  case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
      
  case Builtin::BI__sync_val_compare_and_swap:
    BuiltinIndex = 12;
    NumFixed = 2;
    break;
  case Builtin::BI__sync_bool_compare_and_swap:
    BuiltinIndex = 13;
    NumFixed = 2;
    break;
  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
  case Builtin::BI__sync_lock_release:
    BuiltinIndex = 15;
    NumFixed = 0;
    break;
  }
  
  // Now that we know how many fixed arguments we expect, first check that we
  // have at least that many.
  if (TheCall->getNumArgs() < 1+NumFixed)
    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
            << 0 << TheCall->getCallee()->getSourceRange();
  
  
  // Get the decl for the concrete builtin from this, we can tell what the
  // concrete integer type we should convert to is.
  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
  FunctionDecl *NewBuiltinDecl = 
    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
                                           TUScope, false, DRE->getLocStart()));
  const FunctionProtoType *BuiltinFT =
    NewBuiltinDecl->getType()->getAsFunctionProtoType();
  ValType = BuiltinFT->getArgType(0)->getAsPointerType()->getPointeeType();
  
  // If the first type needs to be converted (e.g. void** -> int*), do it now.
  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), false);
    TheCall->setArg(0, FirstArg);
  }
  
  // Next, walk the valid ones promoting to the right type.
  for (unsigned i = 0; i != NumFixed; ++i) {
    Expr *Arg = TheCall->getArg(i+1);
    
    // If the argument is an implicit cast, then there was a promotion due to
    // "...", just remove it now.
    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
      Arg = ICE->getSubExpr();
      ICE->setSubExpr(0);
      ICE->Destroy(Context);
      TheCall->setArg(i+1, Arg);
    }
    
    // GCC does an implicit conversion to the pointer or integer ValType.  This
    // can fail in some cases (1i -> int**), check for this error case now.
    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg))
      return true;
    
    // Okay, we have something that *can* be converted to the right type.  Check
    // to see if there is a potentially weird extension going on here.  This can
    // happen when you do an atomic operation on something like an char* and
    // pass in 42.  The 42 gets converted to char.  This is even more strange
    // for things like 45.123 -> char, etc.
    // FIXME: Do this check.  
    ImpCastExprToType(Arg, ValType, false);
    TheCall->setArg(i+1, Arg);
  }
  
  // Switch the DeclRefExpr to refer to the new decl.
  DRE->setDecl(NewBuiltinDecl);
  DRE->setType(NewBuiltinDecl->getType());
  
  // Set the callee in the CallExpr.
  // FIXME: This leaks the original parens and implicit casts.
  Expr *PromotedCall = DRE;
  UsualUnaryConversions(PromotedCall);
  TheCall->setCallee(PromotedCall);
  

  // Change the result type of the call to match the result type of the decl.
  TheCall->setType(NewBuiltinDecl->getResultType());
  return false;
}


/// CheckObjCString - Checks that the argument to the builtin
/// CFString constructor is correct
/// FIXME: GCC currently emits the following warning:
/// "warning: input conversion stopped due to an input byte that does not 
///           belong to the input codeset UTF-8"
/// Note: It might also make sense to do the UTF-16 conversion here (would
/// simplify the backend).
bool Sema::CheckObjCString(Expr *Arg) {
  Arg = Arg->IgnoreParenCasts();
  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);

  if (!Literal || Literal->isWide()) {
    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
      << Arg->getSourceRange();
    return true;
  }
  
  const char *Data = Literal->getStrData();
  unsigned Length = Literal->getByteLength();
  
  for (unsigned i = 0; i < Length; ++i) {
    if (!Data[i]) {
      Diag(getLocationOfStringLiteralByte(Literal, i),
           diag::warn_cfstring_literal_contains_nul_character)
        << Arg->getSourceRange();
      break;
    }
  }
  
  return false;
}

/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
/// Emit an error and return true on failure, return false on success.
bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
  Expr *Fn = TheCall->getCallee();
  if (TheCall->getNumArgs() > 2) {
    Diag(TheCall->getArg(2)->getLocStart(),
         diag::err_typecheck_call_too_many_args)
      << 0 /*function call*/ << Fn->getSourceRange()
      << SourceRange(TheCall->getArg(2)->getLocStart(), 
                     (*(TheCall->arg_end()-1))->getLocEnd());
    return true;
  }

  if (TheCall->getNumArgs() < 2) {
    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
      << 0 /*function call*/;
  }

  // Determine whether the current function is variadic or not.
  bool isVariadic;
  if (CurBlock)
    isVariadic = CurBlock->isVariadic;
  else if (getCurFunctionDecl()) {
    if (FunctionProtoType* FTP =
            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
      isVariadic = FTP->isVariadic();
    else
      isVariadic = false;
  } else {
    isVariadic = getCurMethodDecl()->isVariadic();
  }
  
  if (!isVariadic) {
    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
    return true;
  }
  
  // Verify that the second argument to the builtin is the last argument of the
  // current function or method.
  bool SecondArgIsLastNamedArgument = false;
  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
  
  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
      // FIXME: This isn't correct for methods (results in bogus warning).
      // Get the last formal in the current function.
      const ParmVarDecl *LastArg;
      if (CurBlock)
        LastArg = *(CurBlock->TheDecl->param_end()-1);
      else if (FunctionDecl *FD = getCurFunctionDecl())
        LastArg = *(FD->param_end()-1);
      else
        LastArg = *(getCurMethodDecl()->param_end()-1);
      SecondArgIsLastNamedArgument = PV == LastArg;
    }
  }
  
  if (!SecondArgIsLastNamedArgument)
    Diag(TheCall->getArg(1)->getLocStart(), 
         diag::warn_second_parameter_of_va_start_not_last_named_argument);
  return false;
}

/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
/// friends.  This is declared to take (...), so we have to check everything.
bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
  if (TheCall->getNumArgs() < 2)
    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
      << 0 /*function call*/;
  if (TheCall->getNumArgs() > 2)
    return Diag(TheCall->getArg(2)->getLocStart(), 
                diag::err_typecheck_call_too_many_args)
      << 0 /*function call*/
      << SourceRange(TheCall->getArg(2)->getLocStart(),
                     (*(TheCall->arg_end()-1))->getLocEnd());
  
  Expr *OrigArg0 = TheCall->getArg(0);
  Expr *OrigArg1 = TheCall->getArg(1);

  // Do standard promotions between the two arguments, returning their common
  // type.
  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);

  // Make sure any conversions are pushed back into the call; this is
  // type safe since unordered compare builtins are declared as "_Bool
  // foo(...)".
  TheCall->setArg(0, OrigArg0);
  TheCall->setArg(1, OrigArg1);
  
  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
    return false;

  // If the common type isn't a real floating type, then the arguments were
  // invalid for this operation.
  if (!Res->isRealFloatingType())
    return Diag(OrigArg0->getLocStart(), 
                diag::err_typecheck_call_invalid_ordered_compare)
      << OrigArg0->getType() << OrigArg1->getType()
      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
  
  return false;
}

bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
  // The signature for these builtins is exact; the only thing we need
  // to check is that the argument is a constant.
  SourceLocation Loc;
  if (!TheCall->getArg(0)->isTypeDependent() &&
      !TheCall->getArg(0)->isValueDependent() &&
      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
  
  return false;
}

/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
// This is declared to take (...), so we have to check everything.
Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
  if (TheCall->getNumArgs() < 3)
    return ExprError(Diag(TheCall->getLocEnd(),
                          diag::err_typecheck_call_too_few_args)
      << 0 /*function call*/ << TheCall->getSourceRange());

  unsigned numElements = std::numeric_limits<unsigned>::max();
  if (!TheCall->getArg(0)->isTypeDependent() &&
      !TheCall->getArg(1)->isTypeDependent()) {
    QualType FAType = TheCall->getArg(0)->getType();
    QualType SAType = TheCall->getArg(1)->getType();
    
    if (!FAType->isVectorType() || !SAType->isVectorType()) {
      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
        << SourceRange(TheCall->getArg(0)->getLocStart(), 
                       TheCall->getArg(1)->getLocEnd());
      return ExprError();
    }
    
    if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
        Context.getCanonicalType(SAType).getUnqualifiedType()) {
      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
        << SourceRange(TheCall->getArg(0)->getLocStart(), 
                       TheCall->getArg(1)->getLocEnd());
      return ExprError();
    }

    numElements = FAType->getAsVectorType()->getNumElements();
    if (TheCall->getNumArgs() != numElements+2) {
      if (TheCall->getNumArgs() < numElements+2)
        return ExprError(Diag(TheCall->getLocEnd(),
                              diag::err_typecheck_call_too_few_args)
                 << 0 /*function call*/ << TheCall->getSourceRange());
      return ExprError(Diag(TheCall->getLocEnd(),
                            diag::err_typecheck_call_too_many_args)
                 << 0 /*function call*/ << TheCall->getSourceRange());
    }
  }

  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
    if (TheCall->getArg(i)->isTypeDependent() ||
        TheCall->getArg(i)->isValueDependent())
      continue;

    llvm::APSInt Result(32);
    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
      return ExprError(Diag(TheCall->getLocStart(),
                  diag::err_shufflevector_nonconstant_argument)
                << TheCall->getArg(i)->getSourceRange());

    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
      return ExprError(Diag(TheCall->getLocStart(),
                  diag::err_shufflevector_argument_too_large)
               << TheCall->getArg(i)->getSourceRange());
  }

  llvm::SmallVector<Expr*, 32> exprs;

  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
    exprs.push_back(TheCall->getArg(i));
    TheCall->setArg(i, 0);
  }

  return Owned(new (Context) ShuffleVectorExpr(exprs.begin(), exprs.size(),
                                               exprs[0]->getType(),
                                            TheCall->getCallee()->getLocStart(),
                                            TheCall->getRParenLoc()));
}

/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
// This is declared to take (const void*, ...) and can take two
// optional constant int args.
bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
  unsigned NumArgs = TheCall->getNumArgs();

  if (NumArgs > 3)
    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
             << 0 /*function call*/ << TheCall->getSourceRange();

  // Argument 0 is checked for us and the remaining arguments must be
  // constant integers.
  for (unsigned i = 1; i != NumArgs; ++i) {
    Expr *Arg = TheCall->getArg(i);
    if (Arg->isTypeDependent())
      continue;

    QualType RWType = Arg->getType();

    const BuiltinType *BT = RWType->getAsBuiltinType();
    llvm::APSInt Result;
    if (!BT || BT->getKind() != BuiltinType::Int)
      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());

    if (Arg->isValueDependent())
      continue;

    if (!Arg->isIntegerConstantExpr(Result, Context))
      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
    
    // FIXME: gcc issues a warning and rewrites these to 0. These
    // seems especially odd for the third argument since the default
    // is 3.
    if (i == 1) {
      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
             << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
    } else {
      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
            << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
    }
  }

  return false;
}

/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
/// int type). This simply type checks that type is one of the defined
/// constants (0-3).
bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
  Expr *Arg = TheCall->getArg(1);
  if (Arg->isTypeDependent())
    return false;

  QualType ArgType = Arg->getType();  
  const BuiltinType *BT = ArgType->getAsBuiltinType();  
  llvm::APSInt Result(32);
  if (!BT || BT->getKind() != BuiltinType::Int)
    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());

  if (Arg->isValueDependent())
    return false;

  if (!Arg->isIntegerConstantExpr(Result, Context)) {
    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
  }

  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
  }

  return false;
}

/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
/// This checks that val is a constant 1.
bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
  Expr *Arg = TheCall->getArg(1);
  if (Arg->isTypeDependent() || Arg->isValueDependent())
    return false;

  llvm::APSInt Result(32);
  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());

  return false;
}

// Handle i > 1 ? "x" : "y", recursivelly
bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
                                  bool HasVAListArg,
                                  unsigned format_idx, unsigned firstDataArg) {
  if (E->isTypeDependent() || E->isValueDependent())
    return false;

  switch (E->getStmtClass()) {
  case Stmt::ConditionalOperatorClass: {
    const ConditionalOperator *C = cast<ConditionalOperator>(E);
    return SemaCheckStringLiteral(C->getLHS(), TheCall,
                                  HasVAListArg, format_idx, firstDataArg)
        && SemaCheckStringLiteral(C->getRHS(), TheCall,
                                  HasVAListArg, format_idx, firstDataArg);
  }

  case Stmt::ImplicitCastExprClass: {
    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
                                  format_idx, firstDataArg);
  }

  case Stmt::ParenExprClass: {
    const ParenExpr *Expr = cast<ParenExpr>(E);
    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
                                  format_idx, firstDataArg);
  }
      
  case Stmt::DeclRefExprClass: {
    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
    
    // As an exception, do not flag errors for variables binding to
    // const string literals.
    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
      bool isConstant = false;
      QualType T = DR->getType();

      if (const ArrayType *AT = Context.getAsArrayType(T)) {
        isConstant = AT->getElementType().isConstant(Context);
      }
      else if (const PointerType *PT = T->getAsPointerType()) {
        isConstant = T.isConstant(Context) && 
                     PT->getPointeeType().isConstant(Context);
      }
        
      if (isConstant) {
        const VarDecl *Def = 0;
        if (const Expr *Init = VD->getDefinition(Def))
          return SemaCheckStringLiteral(Init, TheCall,
                                        HasVAListArg, format_idx, firstDataArg);
      }
      
      // For vprintf* functions (i.e., HasVAListArg==true), we add a
      // special check to see if the format string is a function parameter
      // of the function calling the printf function.  If the function
      // has an attribute indicating it is a printf-like function, then we
      // should suppress warnings concerning non-literals being used in a call
      // to a vprintf function.  For example:
      //
      // void
      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
      //      va_list ap;
      //      va_start(ap, fmt);
      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
      //      ...
      //
      //
      //  FIXME: We don't have full attribute support yet, so just check to see
      //    if the argument is a DeclRefExpr that references a parameter.  We'll
      //    add proper support for checking the attribute later.
      if (HasVAListArg)
        if (isa<ParmVarDecl>(VD))
          return true;
    }
        
    return false;
  }

  case Stmt::CallExprClass: {
    const CallExpr *CE = cast<CallExpr>(E);
    if (const ImplicitCastExpr *ICE 
          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
            unsigned ArgIndex = FA->getFormatIdx();
            const Expr *Arg = CE->getArg(ArgIndex - 1);
            
            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg, 
                                          format_idx, firstDataArg);
          }
        }
      }
    }
    
    return false;
  }
  case Stmt::ObjCStringLiteralClass:
  case Stmt::StringLiteralClass: {
    const StringLiteral *StrE = NULL;
    
    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
      StrE = ObjCFExpr->getString();
    else
      StrE = cast<StringLiteral>(E);
    
    if (StrE) {
      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx, 
                        firstDataArg);
      return true;
    }
    
    return false;
  }
      
  default:
    return false;
  }
}

void
Sema::CheckNonNullArguments(const NonNullAttr *NonNull, const CallExpr *TheCall)
{
  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
       i != e; ++i) {
    const Expr *ArgExpr = TheCall->getArg(*i);
    if (ArgExpr->isNullPointerConstant(Context))
      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
        << ArgExpr->getSourceRange();
  }
}

/// CheckPrintfArguments - Check calls to printf (and similar functions) for
/// correct use of format strings.  
///
///  HasVAListArg - A predicate indicating whether the printf-like
///    function is passed an explicit va_arg argument (e.g., vprintf)
///
///  format_idx - The index into Args for the format string.
///
/// Improper format strings to functions in the printf family can be
/// the source of bizarre bugs and very serious security holes.  A
/// good source of information is available in the following paper
/// (which includes additional references):
///
///  FormatGuard: Automatic Protection From printf Format String
///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
///
/// Functionality implemented:
///
///  We can statically check the following properties for string
///  literal format strings for non v.*printf functions (where the
///  arguments are passed directly):
//
///  (1) Are the number of format conversions equal to the number of
///      data arguments?
///
///  (2) Does each format conversion correctly match the type of the
///      corresponding data argument?  (TODO)
///
/// Moreover, for all printf functions we can:
///
///  (3) Check for a missing format string (when not caught by type checking).
///
///  (4) Check for no-operation flags; e.g. using "#" with format
///      conversion 'c'  (TODO)
///
///  (5) Check the use of '%n', a major source of security holes.
///
///  (6) Check for malformed format conversions that don't specify anything.
///
///  (7) Check for empty format strings.  e.g: printf("");
///
///  (8) Check that the format string is a wide literal.
///
///  (9) Also check the arguments of functions with the __format__ attribute.
///      (TODO).
///
/// All of these checks can be done by parsing the format string.
///
/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
void
Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg, 
                           unsigned format_idx, unsigned firstDataArg) {
  const Expr *Fn = TheCall->getCallee();

  // CHECK: printf-like function is called with no format string.  
  if (format_idx >= TheCall->getNumArgs()) {
    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
      << Fn->getSourceRange();
    return;
  }
  
  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
  
  // CHECK: format string is not a string literal.
  // 
  // Dynamically generated format strings are difficult to
  // automatically vet at compile time.  Requiring that format strings
  // are string literals: (1) permits the checking of format strings by
  // the compiler and thereby (2) can practically remove the source of
  // many format string exploits.

  // Format string can be either ObjC string (e.g. @"%d") or 
  // C string (e.g. "%d")
  // ObjC string uses the same format specifiers as C string, so we can use 
  // the same format string checking logic for both ObjC and C strings.
  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
                             firstDataArg))
    return;  // Literal format string found, check done!

  // If there are no arguments specified, warn with -Wformat-security, otherwise
  // warn only with -Wformat-nonliteral.
  if (TheCall->getNumArgs() == format_idx+1)
    Diag(TheCall->getArg(format_idx)->getLocStart(), 
         diag::warn_printf_nonliteral_noargs)
      << OrigFormatExpr->getSourceRange();
  else
    Diag(TheCall->getArg(format_idx)->getLocStart(), 
         diag::warn_printf_nonliteral)
           << OrigFormatExpr->getSourceRange();
}

void Sema::CheckPrintfString(const StringLiteral *FExpr,
                             const Expr *OrigFormatExpr,
                             const CallExpr *TheCall, bool HasVAListArg,
                             unsigned format_idx, unsigned firstDataArg) {

  const ObjCStringLiteral *ObjCFExpr =
    dyn_cast<ObjCStringLiteral>(OrigFormatExpr);

  // CHECK: is the format string a wide literal?
  if (FExpr->isWide()) {
    Diag(FExpr->getLocStart(),
         diag::warn_printf_format_string_is_wide_literal)
      << OrigFormatExpr->getSourceRange();
    return;
  }

  // Str - The format string.  NOTE: this is NOT null-terminated!
  const char *Str = FExpr->getStrData();

  // CHECK: empty format string?
  unsigned StrLen = FExpr->getByteLength();
  
  if (StrLen == 0) {
    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
      << OrigFormatExpr->getSourceRange();
    return;
  }

  // We process the format string using a binary state machine.  The
  // current state is stored in CurrentState.
  enum {
    state_OrdChr,
    state_Conversion
  } CurrentState = state_OrdChr;
  
  // numConversions - The number of conversions seen so far.  This is
  //  incremented as we traverse the format string.
  unsigned numConversions = 0;

  // numDataArgs - The number of data arguments after the format
  //  string.  This can only be determined for non vprintf-like
  //  functions.  For those functions, this value is 1 (the sole
  //  va_arg argument).
  unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;

  // Inspect the format string.
  unsigned StrIdx = 0;
  
  // LastConversionIdx - Index within the format string where we last saw
  //  a '%' character that starts a new format conversion.
  unsigned LastConversionIdx = 0;
  
  for (; StrIdx < StrLen; ++StrIdx) {
    
    // Is the number of detected conversion conversions greater than
    // the number of matching data arguments?  If so, stop.
    if (!HasVAListArg && numConversions > numDataArgs) break;
    
    // Handle "\0"
    if (Str[StrIdx] == '\0') {
      // The string returned by getStrData() is not null-terminated,
      // so the presence of a null character is likely an error.
      Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
           diag::warn_printf_format_string_contains_null_char)
        <<  OrigFormatExpr->getSourceRange();
      return;
    }
    
    // Ordinary characters (not processing a format conversion).
    if (CurrentState == state_OrdChr) {
      if (Str[StrIdx] == '%') {
        CurrentState = state_Conversion;
        LastConversionIdx = StrIdx;
      }
      continue;
    }

    // Seen '%'.  Now processing a format conversion.
    switch (Str[StrIdx]) {
    // Handle dynamic precision or width specifier.     
    case '*': {
      ++numConversions;
      
      if (!HasVAListArg) {
        if (numConversions > numDataArgs) {
          SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);

          if (Str[StrIdx-1] == '.')
            Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
              << OrigFormatExpr->getSourceRange();
          else
            Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
              << OrigFormatExpr->getSourceRange();
          
          // Don't do any more checking.  We'll just emit spurious errors.
          return;
        }
      
        // Perform type checking on width/precision specifier.
        const Expr *E = TheCall->getArg(format_idx+numConversions);
        if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
          if (BT->getKind() == BuiltinType::Int)
            break;
        
        SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
        
        if (Str[StrIdx-1] == '.')
          Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
          << E->getType() << E->getSourceRange();
        else
          Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
          << E->getType() << E->getSourceRange();
        
        break;        
      }
    }
      
    // Characters which can terminate a format conversion
    // (e.g. "%d").  Characters that specify length modifiers or
    // other flags are handled by the default case below.
    //
    // FIXME: additional checks will go into the following cases.                
    case 'i':
    case 'd':
    case 'o': 
    case 'u': 
    case 'x':
    case 'X':
    case 'D':
    case 'O':
    case 'U':
    case 'e':
    case 'E':
    case 'f':
    case 'F':
    case 'g':
    case 'G':
    case 'a':
    case 'A':
    case 'c':
    case 'C':
    case 'S':
    case 's':
    case 'p': 
      ++numConversions;
      CurrentState = state_OrdChr;
      break;

    case 'm':
      // FIXME: Warn in situations where this isn't supported!
      CurrentState = state_OrdChr;
      break;

    // CHECK: Are we using "%n"?  Issue a warning.
    case 'n': {
      ++numConversions;
      CurrentState = state_OrdChr;
      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
                                                          LastConversionIdx);
                                   
      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
      break;
    }
             
    // Handle "%@"
    case '@':
      // %@ is allowed in ObjC format strings only.
      if(ObjCFExpr != NULL)
        CurrentState = state_OrdChr; 
      else {
        // Issue a warning: invalid format conversion.
        SourceLocation Loc = 
          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
    
        Diag(Loc, diag::warn_printf_invalid_conversion)
          <<  std::string(Str+LastConversionIdx,
                          Str+std::min(LastConversionIdx+2, StrLen))
          << OrigFormatExpr->getSourceRange();
      }
      ++numConversions;
      break;
    
    // Handle "%%"
    case '%':
      // Sanity check: Was the first "%" character the previous one?
      // If not, we will assume that we have a malformed format
      // conversion, and that the current "%" character is the start
      // of a new conversion.
      if (StrIdx - LastConversionIdx == 1)
        CurrentState = state_OrdChr; 
      else {
        // Issue a warning: invalid format conversion.
        SourceLocation Loc =
          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
            
        Diag(Loc, diag::warn_printf_invalid_conversion)
          << std::string(Str+LastConversionIdx, Str+StrIdx)
          << OrigFormatExpr->getSourceRange();
             
        // This conversion is broken.  Advance to the next format
        // conversion.
        LastConversionIdx = StrIdx;
        ++numConversions;
      }
      break;
              
    default:
      // This case catches all other characters: flags, widths, etc.
      // We should eventually process those as well.
      break;
    }
  }

  if (CurrentState == state_Conversion) {
    // Issue a warning: invalid format conversion.
    SourceLocation Loc =
      getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
    
    Diag(Loc, diag::warn_printf_invalid_conversion)
      << std::string(Str+LastConversionIdx,
                     Str+std::min(LastConversionIdx+2, StrLen))
      << OrigFormatExpr->getSourceRange();
    return;
  }
  
  if (!HasVAListArg) {
    // CHECK: Does the number of format conversions exceed the number
    //        of data arguments?
    if (numConversions > numDataArgs) {
      SourceLocation Loc =
        getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
                                   
      Diag(Loc, diag::warn_printf_insufficient_data_args)
        << OrigFormatExpr->getSourceRange();
    }
    // CHECK: Does the number of data arguments exceed the number of
    //        format conversions in the format string?
    else if (numConversions < numDataArgs)
      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
           diag::warn_printf_too_many_data_args)
        << OrigFormatExpr->getSourceRange();
  }
}

//===--- CHECK: Return Address of Stack Variable --------------------------===//

static DeclRefExpr* EvalVal(Expr *E);
static DeclRefExpr* EvalAddr(Expr* E);

/// CheckReturnStackAddr - Check if a return statement returns the address
///   of a stack variable.
void
Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
                           SourceLocation ReturnLoc) {
   
  // Perform checking for returned stack addresses.
  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
    if (DeclRefExpr *DR = EvalAddr(RetValExp))
      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
    
    // Skip over implicit cast expressions when checking for block expressions.
    if (ImplicitCastExpr *IcExpr = 
          dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
      RetValExp = IcExpr->getSubExpr();

    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
      if (C->hasBlockDeclRefExprs())
        Diag(C->getLocStart(), diag::err_ret_local_block)
          << C->getSourceRange();
  }
  // Perform checking for stack values returned by reference.
  else if (lhsType->isReferenceType()) {
    // Check for a reference to the stack
    if (DeclRefExpr *DR = EvalVal(RetValExp))
      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
  }
}

/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
///  check if the expression in a return statement evaluates to an address
///  to a location on the stack.  The recursion is used to traverse the
///  AST of the return expression, with recursion backtracking when we
///  encounter a subexpression that (1) clearly does not lead to the address
///  of a stack variable or (2) is something we cannot determine leads to
///  the address of a stack variable based on such local checking.
///
///  EvalAddr processes expressions that are pointers that are used as
///  references (and not L-values).  EvalVal handles all other values.
///  At the base case of the recursion is a check for a DeclRefExpr* in 
///  the refers to a stack variable.
///
///  This implementation handles:
///
///   * pointer-to-pointer casts
///   * implicit conversions from array references to pointers
///   * taking the address of fields
///   * arbitrary interplay between "&" and "*" operators
///   * pointer arithmetic from an address of a stack variable
///   * taking the address of an array element where the array is on the stack
static DeclRefExpr* EvalAddr(Expr *E) {
  // We should only be called for evaluating pointer expressions.
  assert((E->getType()->isPointerType() ||
          E->getType()->isBlockPointerType() ||
          E->getType()->isObjCQualifiedIdType()) &&
         "EvalAddr only works on pointers");
    
  // Our "symbolic interpreter" is just a dispatch off the currently
  // viewed AST node.  We then recursively traverse the AST by calling
  // EvalAddr and EvalVal appropriately.
  switch (E->getStmtClass()) {
  case Stmt::ParenExprClass:
    // Ignore parentheses.
    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());

  case Stmt::UnaryOperatorClass: {
    // The only unary operator that make sense to handle here
    // is AddrOf.  All others don't make sense as pointers.
    UnaryOperator *U = cast<UnaryOperator>(E);
    
    if (U->getOpcode() == UnaryOperator::AddrOf)
      return EvalVal(U->getSubExpr());
    else
      return NULL;
  }
  
  case Stmt::BinaryOperatorClass: {
    // Handle pointer arithmetic.  All other binary operators are not valid
    // in this context.
    BinaryOperator *B = cast<BinaryOperator>(E);
    BinaryOperator::Opcode op = B->getOpcode();
      
    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
      return NULL;
      
    Expr *Base = B->getLHS();

    // Determine which argument is the real pointer base.  It could be
    // the RHS argument instead of the LHS.
    if (!Base->getType()->isPointerType()) Base = B->getRHS();
      
    assert (Base->getType()->isPointerType());
    return EvalAddr(Base);
  }

  // For conditional operators we need to see if either the LHS or RHS are
  // valid DeclRefExpr*s.  If one of them is valid, we return it.
  case Stmt::ConditionalOperatorClass: {
    ConditionalOperator *C = cast<ConditionalOperator>(E);
    
    // Handle the GNU extension for missing LHS.
    if (Expr *lhsExpr = C->getLHS())
      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
        return LHS;

     return EvalAddr(C->getRHS());
  }
    
  // For casts, we need to handle conversions from arrays to
  // pointer values, and pointer-to-pointer conversions.
  case Stmt::ImplicitCastExprClass:
  case Stmt::CStyleCastExprClass:
  case Stmt::CXXFunctionalCastExprClass: {
    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
    QualType T = SubExpr->getType();
    
    if (SubExpr->getType()->isPointerType() ||
        SubExpr->getType()->isBlockPointerType() ||
        SubExpr->getType()->isObjCQualifiedIdType())
      return EvalAddr(SubExpr);
    else if (T->isArrayType())
      return EvalVal(SubExpr);
    else
      return 0;
  }
    
  // C++ casts.  For dynamic casts, static casts, and const casts, we
  // are always converting from a pointer-to-pointer, so we just blow
  // through the cast.  In the case the dynamic cast doesn't fail (and
  // return NULL), we take the conservative route and report cases
  // where we return the address of a stack variable.  For Reinterpre
  // FIXME: The comment about is wrong; we're not always converting
  // from pointer to pointer. I'm guessing that this code should also
  // handle references to objects.  
  case Stmt::CXXStaticCastExprClass: 
  case Stmt::CXXDynamicCastExprClass: 
  case Stmt::CXXConstCastExprClass:
  case Stmt::CXXReinterpretCastExprClass: {
      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
        return EvalAddr(S);
      else
        return NULL;
  }
    
  // Everything else: we simply don't reason about them.
  default:
    return NULL;
  }
}
  

///  EvalVal - This function is complements EvalAddr in the mutual recursion.
///   See the comments for EvalAddr for more details.
static DeclRefExpr* EvalVal(Expr *E) {
  
  // We should only be called for evaluating non-pointer expressions, or
  // expressions with a pointer type that are not used as references but instead
  // are l-values (e.g., DeclRefExpr with a pointer type).
    
  // Our "symbolic interpreter" is just a dispatch off the currently
  // viewed AST node.  We then recursively traverse the AST by calling
  // EvalAddr and EvalVal appropriately.
  switch (E->getStmtClass()) {
  case Stmt::DeclRefExprClass: 
  case Stmt::QualifiedDeclRefExprClass: {
    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
    //  at code that refers to a variable's name.  We check if it has local
    //  storage within the function, and if so, return the expression.
    DeclRefExpr *DR = cast<DeclRefExpr>(E);
      
    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
      if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
      
    return NULL;
  }
        
  case Stmt::ParenExprClass:
    // Ignore parentheses.
    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
  
  case Stmt::UnaryOperatorClass: {
    // The only unary operator that make sense to handle here
    // is Deref.  All others don't resolve to a "name."  This includes
    // handling all sorts of rvalues passed to a unary operator.
    UnaryOperator *U = cast<UnaryOperator>(E);
              
    if (U->getOpcode() == UnaryOperator::Deref)
      return EvalAddr(U->getSubExpr());

    return NULL;
  }
  
  case Stmt::ArraySubscriptExprClass: {
    // Array subscripts are potential references to data on the stack.  We
    // retrieve the DeclRefExpr* for the array variable if it indeed
    // has local storage.
    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
  }
    
  case Stmt::ConditionalOperatorClass: {
    // For conditional operators we need to see if either the LHS or RHS are
    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
    ConditionalOperator *C = cast<ConditionalOperator>(E);

    // Handle the GNU extension for missing LHS.
    if (Expr *lhsExpr = C->getLHS())
      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
        return LHS;

    return EvalVal(C->getRHS());
  }
  
  // Accesses to members are potential references to data on the stack.
  case Stmt::MemberExprClass: {
    MemberExpr *M = cast<MemberExpr>(E);
      
    // Check for indirect access.  We only want direct field accesses.
    if (!M->isArrow())
      return EvalVal(M->getBase());
    else
      return NULL;
  }
    
  // Everything else: we simply don't reason about them.
  default:
    return NULL;
  }
}

//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//

/// Check for comparisons of floating point operands using != and ==.
/// Issue a warning if these are no self-comparisons, as they are not likely
/// to do what the programmer intended.
void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
  bool EmitWarning = true;
  
  Expr* LeftExprSansParen = lex->IgnoreParens();
  Expr* RightExprSansParen = rex->IgnoreParens();

  // Special case: check for x == x (which is OK).
  // Do not emit warnings for such cases.
  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
      if (DRL->getDecl() == DRR->getDecl())
        EmitWarning = false;
  
  
  // Special case: check for comparisons against literals that can be exactly
  //  represented by APFloat.  In such cases, do not emit a warning.  This
  //  is a heuristic: often comparison against such literals are used to
  //  detect if a value in a variable has not changed.  This clearly can
  //  lead to false negatives.
  if (EmitWarning) {
    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
      if (FLL->isExact())
        EmitWarning = false;
    }
    else
      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
        if (FLR->isExact())
          EmitWarning = false;
    }
  }
  
  // Check for comparisons with builtin types.
  if (EmitWarning)
    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
      if (CL->isBuiltinCall(Context))
        EmitWarning = false;
  
  if (EmitWarning)
    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
      if (CR->isBuiltinCall(Context))
        EmitWarning = false;
  
  // Emit the diagnostic.
  if (EmitWarning)
    Diag(loc, diag::warn_floatingpoint_eq)
      << lex->getSourceRange() << rex->getSourceRange();
}