aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaChecking.cpp
blob: 3fac79deba4b1fe1cfafa3cbb56a00e16cca5fb0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements extra semantic analysis beyond what is enforced
//  by the C type system.
//
//===----------------------------------------------------------------------===//

#include "Sema.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/Analyses/ReachableCode.h"
#include "clang/Analysis/Analyses/PrintfFormatString.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include <limits>
#include <queue>
using namespace clang;

/// getLocationOfStringLiteralByte - Return a source location that points to the
/// specified byte of the specified string literal.
///
/// Strings are amazingly complex.  They can be formed from multiple tokens and
/// can have escape sequences in them in addition to the usual trigraph and
/// escaped newline business.  This routine handles this complexity.
///
SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
                                                    unsigned ByteNo) const {
  assert(!SL->isWide() && "This doesn't work for wide strings yet");

  // Loop over all of the tokens in this string until we find the one that
  // contains the byte we're looking for.
  unsigned TokNo = 0;
  while (1) {
    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);

    // Get the spelling of the string so that we can get the data that makes up
    // the string literal, not the identifier for the macro it is potentially
    // expanded through.
    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);

    // Re-lex the token to get its length and original spelling.
    std::pair<FileID, unsigned> LocInfo =
      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
    bool Invalid = false;
    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
    if (Invalid)
      return StrTokSpellingLoc;
      
    const char *StrData = Buffer.data()+LocInfo.second;

    // Create a langops struct and enable trigraphs.  This is sufficient for
    // relexing tokens.
    LangOptions LangOpts;
    LangOpts.Trigraphs = true;

    // Create a lexer starting at the beginning of this token.
    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
                   Buffer.end());
    Token TheTok;
    TheLexer.LexFromRawLexer(TheTok);

    // Use the StringLiteralParser to compute the length of the string in bytes.
    StringLiteralParser SLP(&TheTok, 1, PP);
    unsigned TokNumBytes = SLP.GetStringLength();

    // If the byte is in this token, return the location of the byte.
    if (ByteNo < TokNumBytes ||
        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
      unsigned Offset =
        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);

      // Now that we know the offset of the token in the spelling, use the
      // preprocessor to get the offset in the original source.
      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
    }

    // Move to the next string token.
    ++TokNo;
    ByteNo -= TokNumBytes;
  }
}

/// CheckablePrintfAttr - does a function call have a "printf" attribute
/// and arguments that merit checking?
bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
  if (Format->getType() == "printf") return true;
  if (Format->getType() == "printf0") {
    // printf0 allows null "format" string; if so don't check format/args
    unsigned format_idx = Format->getFormatIdx() - 1;
    // Does the index refer to the implicit object argument?
    if (isa<CXXMemberCallExpr>(TheCall)) {
      if (format_idx == 0)
        return false;
      --format_idx;
    }
    if (format_idx < TheCall->getNumArgs()) {
      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
      if (!Format->isNullPointerConstant(Context,
                                         Expr::NPC_ValueDependentIsNull))
        return true;
    }
  }
  return false;
}

Action::OwningExprResult
Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
  OwningExprResult TheCallResult(Owned(TheCall));

  switch (BuiltinID) {
  case Builtin::BI__builtin___CFStringMakeConstantString:
    assert(TheCall->getNumArgs() == 1 &&
           "Wrong # arguments to builtin CFStringMakeConstantString");
    if (CheckObjCString(TheCall->getArg(0)))
      return ExprError();
    break;
  case Builtin::BI__builtin_stdarg_start:
  case Builtin::BI__builtin_va_start:
    if (SemaBuiltinVAStart(TheCall))
      return ExprError();
    break;
  case Builtin::BI__builtin_isgreater:
  case Builtin::BI__builtin_isgreaterequal:
  case Builtin::BI__builtin_isless:
  case Builtin::BI__builtin_islessequal:
  case Builtin::BI__builtin_islessgreater:
  case Builtin::BI__builtin_isunordered:
    if (SemaBuiltinUnorderedCompare(TheCall))
      return ExprError();
    break;
  case Builtin::BI__builtin_fpclassify:
    if (SemaBuiltinFPClassification(TheCall, 6))
      return ExprError();
    break;
  case Builtin::BI__builtin_isfinite:
  case Builtin::BI__builtin_isinf:
  case Builtin::BI__builtin_isinf_sign:
  case Builtin::BI__builtin_isnan:
  case Builtin::BI__builtin_isnormal:
    if (SemaBuiltinFPClassification(TheCall, 1))
      return ExprError();
    break;
  case Builtin::BI__builtin_return_address:
  case Builtin::BI__builtin_frame_address:
    if (SemaBuiltinStackAddress(TheCall))
      return ExprError();
    break;
  case Builtin::BI__builtin_eh_return_data_regno:
    if (SemaBuiltinEHReturnDataRegNo(TheCall))
      return ExprError();
    break;
  case Builtin::BI__builtin_shufflevector:
    return SemaBuiltinShuffleVector(TheCall);
    // TheCall will be freed by the smart pointer here, but that's fine, since
    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
  case Builtin::BI__builtin_prefetch:
    if (SemaBuiltinPrefetch(TheCall))
      return ExprError();
    break;
  case Builtin::BI__builtin_object_size:
    if (SemaBuiltinObjectSize(TheCall))
      return ExprError();
    break;
  case Builtin::BI__builtin_longjmp:
    if (SemaBuiltinLongjmp(TheCall))
      return ExprError();
    break;
  case Builtin::BI__sync_fetch_and_add:
  case Builtin::BI__sync_fetch_and_sub:
  case Builtin::BI__sync_fetch_and_or:
  case Builtin::BI__sync_fetch_and_and:
  case Builtin::BI__sync_fetch_and_xor:
  case Builtin::BI__sync_fetch_and_nand:
  case Builtin::BI__sync_add_and_fetch:
  case Builtin::BI__sync_sub_and_fetch:
  case Builtin::BI__sync_and_and_fetch:
  case Builtin::BI__sync_or_and_fetch:
  case Builtin::BI__sync_xor_and_fetch:
  case Builtin::BI__sync_nand_and_fetch:
  case Builtin::BI__sync_val_compare_and_swap:
  case Builtin::BI__sync_bool_compare_and_swap:
  case Builtin::BI__sync_lock_test_and_set:
  case Builtin::BI__sync_lock_release:
    if (SemaBuiltinAtomicOverloaded(TheCall))
      return ExprError();
    break;
  }

  return move(TheCallResult);
}

/// CheckFunctionCall - Check a direct function call for various correctness
/// and safety properties not strictly enforced by the C type system.
bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
  // Get the IdentifierInfo* for the called function.
  IdentifierInfo *FnInfo = FDecl->getIdentifier();

  // None of the checks below are needed for functions that don't have
  // simple names (e.g., C++ conversion functions).
  if (!FnInfo)
    return false;

  // FIXME: This mechanism should be abstracted to be less fragile and
  // more efficient. For example, just map function ids to custom
  // handlers.

  // Printf checking.
  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
    if (CheckablePrintfAttr(Format, TheCall)) {
      bool HasVAListArg = Format->getFirstArg() == 0;
      if (!HasVAListArg) {
        if (const FunctionProtoType *Proto
            = FDecl->getType()->getAs<FunctionProtoType>())
          HasVAListArg = !Proto->isVariadic();
      }
      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
    }
  }

  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
       NonNull = NonNull->getNext<NonNullAttr>())
    CheckNonNullArguments(NonNull, TheCall);

  return false;
}

bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
  // Printf checking.
  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
  if (!Format)
    return false;

  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
  if (!V)
    return false;

  QualType Ty = V->getType();
  if (!Ty->isBlockPointerType())
    return false;

  if (!CheckablePrintfAttr(Format, TheCall))
    return false;

  bool HasVAListArg = Format->getFirstArg() == 0;
  if (!HasVAListArg) {
    const FunctionType *FT =
      Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
      HasVAListArg = !Proto->isVariadic();
  }
  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
                       HasVAListArg ? 0 : Format->getFirstArg() - 1);

  return false;
}

/// SemaBuiltinAtomicOverloaded - We have a call to a function like
/// __sync_fetch_and_add, which is an overloaded function based on the pointer
/// type of its first argument.  The main ActOnCallExpr routines have already
/// promoted the types of arguments because all of these calls are prototyped as
/// void(...).
///
/// This function goes through and does final semantic checking for these
/// builtins,
bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());

  // Ensure that we have at least one argument to do type inference from.
  if (TheCall->getNumArgs() < 1)
    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
              << 0 << TheCall->getCallee()->getSourceRange();

  // Inspect the first argument of the atomic builtin.  This should always be
  // a pointer type, whose element is an integral scalar or pointer type.
  // Because it is a pointer type, we don't have to worry about any implicit
  // casts here.
  Expr *FirstArg = TheCall->getArg(0);
  if (!FirstArg->getType()->isPointerType())
    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
             << FirstArg->getType() << FirstArg->getSourceRange();

  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
      !ValType->isBlockPointerType())
    return Diag(DRE->getLocStart(),
                diag::err_atomic_builtin_must_be_pointer_intptr)
             << FirstArg->getType() << FirstArg->getSourceRange();

  // We need to figure out which concrete builtin this maps onto.  For example,
  // __sync_fetch_and_add with a 2 byte object turns into
  // __sync_fetch_and_add_2.
#define BUILTIN_ROW(x) \
  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
    Builtin::BI##x##_8, Builtin::BI##x##_16 }

  static const unsigned BuiltinIndices[][5] = {
    BUILTIN_ROW(__sync_fetch_and_add),
    BUILTIN_ROW(__sync_fetch_and_sub),
    BUILTIN_ROW(__sync_fetch_and_or),
    BUILTIN_ROW(__sync_fetch_and_and),
    BUILTIN_ROW(__sync_fetch_and_xor),
    BUILTIN_ROW(__sync_fetch_and_nand),

    BUILTIN_ROW(__sync_add_and_fetch),
    BUILTIN_ROW(__sync_sub_and_fetch),
    BUILTIN_ROW(__sync_and_and_fetch),
    BUILTIN_ROW(__sync_or_and_fetch),
    BUILTIN_ROW(__sync_xor_and_fetch),
    BUILTIN_ROW(__sync_nand_and_fetch),

    BUILTIN_ROW(__sync_val_compare_and_swap),
    BUILTIN_ROW(__sync_bool_compare_and_swap),
    BUILTIN_ROW(__sync_lock_test_and_set),
    BUILTIN_ROW(__sync_lock_release)
  };
#undef BUILTIN_ROW

  // Determine the index of the size.
  unsigned SizeIndex;
  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
  case 1: SizeIndex = 0; break;
  case 2: SizeIndex = 1; break;
  case 4: SizeIndex = 2; break;
  case 8: SizeIndex = 3; break;
  case 16: SizeIndex = 4; break;
  default:
    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
             << FirstArg->getType() << FirstArg->getSourceRange();
  }

  // Each of these builtins has one pointer argument, followed by some number of
  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
  // that we ignore.  Find out which row of BuiltinIndices to read from as well
  // as the number of fixed args.
  unsigned BuiltinID = FDecl->getBuiltinID();
  unsigned BuiltinIndex, NumFixed = 1;
  switch (BuiltinID) {
  default: assert(0 && "Unknown overloaded atomic builtin!");
  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
  case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;

  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 9; break;
  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
  case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;

  case Builtin::BI__sync_val_compare_and_swap:
    BuiltinIndex = 12;
    NumFixed = 2;
    break;
  case Builtin::BI__sync_bool_compare_and_swap:
    BuiltinIndex = 13;
    NumFixed = 2;
    break;
  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
  case Builtin::BI__sync_lock_release:
    BuiltinIndex = 15;
    NumFixed = 0;
    break;
  }

  // Now that we know how many fixed arguments we expect, first check that we
  // have at least that many.
  if (TheCall->getNumArgs() < 1+NumFixed)
    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
            << 0 << TheCall->getCallee()->getSourceRange();


  // Get the decl for the concrete builtin from this, we can tell what the
  // concrete integer type we should convert to is.
  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
  FunctionDecl *NewBuiltinDecl =
    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
                                           TUScope, false, DRE->getLocStart()));
  const FunctionProtoType *BuiltinFT =
    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();

  // If the first type needs to be converted (e.g. void** -> int*), do it now.
  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
    TheCall->setArg(0, FirstArg);
  }

  // Next, walk the valid ones promoting to the right type.
  for (unsigned i = 0; i != NumFixed; ++i) {
    Expr *Arg = TheCall->getArg(i+1);

    // If the argument is an implicit cast, then there was a promotion due to
    // "...", just remove it now.
    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
      Arg = ICE->getSubExpr();
      ICE->setSubExpr(0);
      ICE->Destroy(Context);
      TheCall->setArg(i+1, Arg);
    }

    // GCC does an implicit conversion to the pointer or integer ValType.  This
    // can fail in some cases (1i -> int**), check for this error case now.
    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
    CXXMethodDecl *ConversionDecl = 0;
    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind,
                       ConversionDecl))
      return true;

    // Okay, we have something that *can* be converted to the right type.  Check
    // to see if there is a potentially weird extension going on here.  This can
    // happen when you do an atomic operation on something like an char* and
    // pass in 42.  The 42 gets converted to char.  This is even more strange
    // for things like 45.123 -> char, etc.
    // FIXME: Do this check.
    ImpCastExprToType(Arg, ValType, Kind, /*isLvalue=*/false);
    TheCall->setArg(i+1, Arg);
  }

  // Switch the DeclRefExpr to refer to the new decl.
  DRE->setDecl(NewBuiltinDecl);
  DRE->setType(NewBuiltinDecl->getType());

  // Set the callee in the CallExpr.
  // FIXME: This leaks the original parens and implicit casts.
  Expr *PromotedCall = DRE;
  UsualUnaryConversions(PromotedCall);
  TheCall->setCallee(PromotedCall);


  // Change the result type of the call to match the result type of the decl.
  TheCall->setType(NewBuiltinDecl->getResultType());
  return false;
}


/// CheckObjCString - Checks that the argument to the builtin
/// CFString constructor is correct
/// FIXME: GCC currently emits the following warning:
/// "warning: input conversion stopped due to an input byte that does not
///           belong to the input codeset UTF-8"
/// Note: It might also make sense to do the UTF-16 conversion here (would
/// simplify the backend).
bool Sema::CheckObjCString(Expr *Arg) {
  Arg = Arg->IgnoreParenCasts();
  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);

  if (!Literal || Literal->isWide()) {
    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
      << Arg->getSourceRange();
    return true;
  }

  const char *Data = Literal->getStrData();
  unsigned Length = Literal->getByteLength();

  for (unsigned i = 0; i < Length; ++i) {
    if (!Data[i]) {
      Diag(getLocationOfStringLiteralByte(Literal, i),
           diag::warn_cfstring_literal_contains_nul_character)
        << Arg->getSourceRange();
      break;
    }
  }

  return false;
}

/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
/// Emit an error and return true on failure, return false on success.
bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
  Expr *Fn = TheCall->getCallee();
  if (TheCall->getNumArgs() > 2) {
    Diag(TheCall->getArg(2)->getLocStart(),
         diag::err_typecheck_call_too_many_args)
      << 0 /*function call*/ << Fn->getSourceRange()
      << SourceRange(TheCall->getArg(2)->getLocStart(),
                     (*(TheCall->arg_end()-1))->getLocEnd());
    return true;
  }

  if (TheCall->getNumArgs() < 2) {
    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
      << 0 /*function call*/;
  }

  // Determine whether the current function is variadic or not.
  BlockScopeInfo *CurBlock = getCurBlock();
  bool isVariadic;
  if (CurBlock)
    isVariadic = CurBlock->isVariadic;
  else if (getCurFunctionDecl()) {
    if (FunctionProtoType* FTP =
            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
      isVariadic = FTP->isVariadic();
    else
      isVariadic = false;
  } else {
    isVariadic = getCurMethodDecl()->isVariadic();
  }

  if (!isVariadic) {
    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
    return true;
  }

  // Verify that the second argument to the builtin is the last argument of the
  // current function or method.
  bool SecondArgIsLastNamedArgument = false;
  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();

  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
      // FIXME: This isn't correct for methods (results in bogus warning).
      // Get the last formal in the current function.
      const ParmVarDecl *LastArg;
      if (CurBlock)
        LastArg = *(CurBlock->TheDecl->param_end()-1);
      else if (FunctionDecl *FD = getCurFunctionDecl())
        LastArg = *(FD->param_end()-1);
      else
        LastArg = *(getCurMethodDecl()->param_end()-1);
      SecondArgIsLastNamedArgument = PV == LastArg;
    }
  }

  if (!SecondArgIsLastNamedArgument)
    Diag(TheCall->getArg(1)->getLocStart(),
         diag::warn_second_parameter_of_va_start_not_last_named_argument);
  return false;
}

/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
/// friends.  This is declared to take (...), so we have to check everything.
bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
  if (TheCall->getNumArgs() < 2)
    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
      << 0 /*function call*/;
  if (TheCall->getNumArgs() > 2)
    return Diag(TheCall->getArg(2)->getLocStart(),
                diag::err_typecheck_call_too_many_args)
      << 0 /*function call*/
      << SourceRange(TheCall->getArg(2)->getLocStart(),
                     (*(TheCall->arg_end()-1))->getLocEnd());

  Expr *OrigArg0 = TheCall->getArg(0);
  Expr *OrigArg1 = TheCall->getArg(1);

  // Do standard promotions between the two arguments, returning their common
  // type.
  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);

  // Make sure any conversions are pushed back into the call; this is
  // type safe since unordered compare builtins are declared as "_Bool
  // foo(...)".
  TheCall->setArg(0, OrigArg0);
  TheCall->setArg(1, OrigArg1);

  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
    return false;

  // If the common type isn't a real floating type, then the arguments were
  // invalid for this operation.
  if (!Res->isRealFloatingType())
    return Diag(OrigArg0->getLocStart(),
                diag::err_typecheck_call_invalid_ordered_compare)
      << OrigArg0->getType() << OrigArg1->getType()
      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());

  return false;
}

/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
/// __builtin_isnan and friends.  This is declared to take (...), so we have
/// to check everything. We expect the last argument to be a floating point
/// value.
bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
  if (TheCall->getNumArgs() < NumArgs)
    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
      << 0 /*function call*/;
  if (TheCall->getNumArgs() > NumArgs)
    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
                diag::err_typecheck_call_too_many_args)
      << 0 /*function call*/
      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
                     (*(TheCall->arg_end()-1))->getLocEnd());

  Expr *OrigArg = TheCall->getArg(NumArgs-1);

  if (OrigArg->isTypeDependent())
    return false;

  // This operation requires a floating-point number
  if (!OrigArg->getType()->isRealFloatingType())
    return Diag(OrigArg->getLocStart(),
                diag::err_typecheck_call_invalid_unary_fp)
      << OrigArg->getType() << OrigArg->getSourceRange();

  return false;
}

bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
  // The signature for these builtins is exact; the only thing we need
  // to check is that the argument is a constant.
  SourceLocation Loc;
  if (!TheCall->getArg(0)->isTypeDependent() &&
      !TheCall->getArg(0)->isValueDependent() &&
      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();

  return false;
}

/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
// This is declared to take (...), so we have to check everything.
Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
  if (TheCall->getNumArgs() < 3)
    return ExprError(Diag(TheCall->getLocEnd(),
                          diag::err_typecheck_call_too_few_args)
      << 0 /*function call*/ << TheCall->getSourceRange());

  unsigned numElements = std::numeric_limits<unsigned>::max();
  if (!TheCall->getArg(0)->isTypeDependent() &&
      !TheCall->getArg(1)->isTypeDependent()) {
    QualType FAType = TheCall->getArg(0)->getType();
    QualType SAType = TheCall->getArg(1)->getType();

    if (!FAType->isVectorType() || !SAType->isVectorType()) {
      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
        << SourceRange(TheCall->getArg(0)->getLocStart(),
                       TheCall->getArg(1)->getLocEnd());
      return ExprError();
    }

    if (!Context.hasSameUnqualifiedType(FAType, SAType)) {
      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
        << SourceRange(TheCall->getArg(0)->getLocStart(),
                       TheCall->getArg(1)->getLocEnd());
      return ExprError();
    }

    numElements = FAType->getAs<VectorType>()->getNumElements();
    if (TheCall->getNumArgs() != numElements+2) {
      if (TheCall->getNumArgs() < numElements+2)
        return ExprError(Diag(TheCall->getLocEnd(),
                              diag::err_typecheck_call_too_few_args)
                 << 0 /*function call*/ << TheCall->getSourceRange());
      return ExprError(Diag(TheCall->getLocEnd(),
                            diag::err_typecheck_call_too_many_args)
                 << 0 /*function call*/ << TheCall->getSourceRange());
    }
  }

  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
    if (TheCall->getArg(i)->isTypeDependent() ||
        TheCall->getArg(i)->isValueDependent())
      continue;

    llvm::APSInt Result(32);
    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
      return ExprError(Diag(TheCall->getLocStart(),
                  diag::err_shufflevector_nonconstant_argument)
                << TheCall->getArg(i)->getSourceRange());

    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
      return ExprError(Diag(TheCall->getLocStart(),
                  diag::err_shufflevector_argument_too_large)
               << TheCall->getArg(i)->getSourceRange());
  }

  llvm::SmallVector<Expr*, 32> exprs;

  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
    exprs.push_back(TheCall->getArg(i));
    TheCall->setArg(i, 0);
  }

  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
                                            exprs.size(), exprs[0]->getType(),
                                            TheCall->getCallee()->getLocStart(),
                                            TheCall->getRParenLoc()));
}

/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
// This is declared to take (const void*, ...) and can take two
// optional constant int args.
bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
  unsigned NumArgs = TheCall->getNumArgs();

  if (NumArgs > 3)
    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
             << 0 /*function call*/ << TheCall->getSourceRange();

  // Argument 0 is checked for us and the remaining arguments must be
  // constant integers.
  for (unsigned i = 1; i != NumArgs; ++i) {
    Expr *Arg = TheCall->getArg(i);
    if (Arg->isTypeDependent())
      continue;

    if (!Arg->getType()->isIntegralType())
      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_type)
              << Arg->getSourceRange();

    ImpCastExprToType(Arg, Context.IntTy, CastExpr::CK_IntegralCast);
    TheCall->setArg(i, Arg);

    if (Arg->isValueDependent())
      continue;

    llvm::APSInt Result;
    if (!Arg->isIntegerConstantExpr(Result, Context))
      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_ice)
        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());

    // FIXME: gcc issues a warning and rewrites these to 0. These
    // seems especially odd for the third argument since the default
    // is 3.
    if (i == 1) {
      if (Result.getLimitedValue() > 1)
        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
             << "0" << "1" << Arg->getSourceRange();
    } else {
      if (Result.getLimitedValue() > 3)
        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
            << "0" << "3" << Arg->getSourceRange();
    }
  }

  return false;
}

/// SemaBuiltinEHReturnDataRegNo - Handle __builtin_eh_return_data_regno, the
/// operand must be an integer constant.
bool Sema::SemaBuiltinEHReturnDataRegNo(CallExpr *TheCall) {
  llvm::APSInt Result;
  if (!TheCall->getArg(0)->isIntegerConstantExpr(Result, Context))
    return Diag(TheCall->getLocStart(), diag::err_expr_not_ice)
      << TheCall->getArg(0)->getSourceRange();

  return false;
}


/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
/// int type). This simply type checks that type is one of the defined
/// constants (0-3).
// For compatability check 0-3, llvm only handles 0 and 2.
bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
  Expr *Arg = TheCall->getArg(1);
  if (Arg->isTypeDependent())
    return false;

  QualType ArgType = Arg->getType();
  const BuiltinType *BT = ArgType->getAs<BuiltinType>();
  llvm::APSInt Result(32);
  if (!BT || BT->getKind() != BuiltinType::Int)
    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());

  if (Arg->isValueDependent())
    return false;

  if (!Arg->isIntegerConstantExpr(Result, Context)) {
    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
  }

  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
  }

  return false;
}

/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
/// This checks that val is a constant 1.
bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
  Expr *Arg = TheCall->getArg(1);
  if (Arg->isTypeDependent() || Arg->isValueDependent())
    return false;

  llvm::APSInt Result(32);
  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());

  return false;
}

// Handle i > 1 ? "x" : "y", recursivelly
bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
                                  bool HasVAListArg,
                                  unsigned format_idx, unsigned firstDataArg) {
  if (E->isTypeDependent() || E->isValueDependent())
    return false;

  switch (E->getStmtClass()) {
  case Stmt::ConditionalOperatorClass: {
    const ConditionalOperator *C = cast<ConditionalOperator>(E);
    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
                                  HasVAListArg, format_idx, firstDataArg)
        && SemaCheckStringLiteral(C->getRHS(), TheCall,
                                  HasVAListArg, format_idx, firstDataArg);
  }

  case Stmt::ImplicitCastExprClass: {
    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
                                  format_idx, firstDataArg);
  }

  case Stmt::ParenExprClass: {
    const ParenExpr *Expr = cast<ParenExpr>(E);
    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
                                  format_idx, firstDataArg);
  }

  case Stmt::DeclRefExprClass: {
    const DeclRefExpr *DR = cast<DeclRefExpr>(E);

    // As an exception, do not flag errors for variables binding to
    // const string literals.
    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
      bool isConstant = false;
      QualType T = DR->getType();

      if (const ArrayType *AT = Context.getAsArrayType(T)) {
        isConstant = AT->getElementType().isConstant(Context);
      } else if (const PointerType *PT = T->getAs<PointerType>()) {
        isConstant = T.isConstant(Context) &&
                     PT->getPointeeType().isConstant(Context);
      }

      if (isConstant) {
        if (const Expr *Init = VD->getAnyInitializer())
          return SemaCheckStringLiteral(Init, TheCall,
                                        HasVAListArg, format_idx, firstDataArg);
      }

      // For vprintf* functions (i.e., HasVAListArg==true), we add a
      // special check to see if the format string is a function parameter
      // of the function calling the printf function.  If the function
      // has an attribute indicating it is a printf-like function, then we
      // should suppress warnings concerning non-literals being used in a call
      // to a vprintf function.  For example:
      //
      // void
      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
      //      va_list ap;
      //      va_start(ap, fmt);
      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
      //      ...
      //
      //
      //  FIXME: We don't have full attribute support yet, so just check to see
      //    if the argument is a DeclRefExpr that references a parameter.  We'll
      //    add proper support for checking the attribute later.
      if (HasVAListArg)
        if (isa<ParmVarDecl>(VD))
          return true;
    }

    return false;
  }

  case Stmt::CallExprClass: {
    const CallExpr *CE = cast<CallExpr>(E);
    if (const ImplicitCastExpr *ICE
          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
            unsigned ArgIndex = FA->getFormatIdx();
            const Expr *Arg = CE->getArg(ArgIndex - 1);

            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
                                          format_idx, firstDataArg);
          }
        }
      }
    }

    return false;
  }
  case Stmt::ObjCStringLiteralClass:
  case Stmt::StringLiteralClass: {
    const StringLiteral *StrE = NULL;

    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
      StrE = ObjCFExpr->getString();
    else
      StrE = cast<StringLiteral>(E);

    if (StrE) {
      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
                        firstDataArg);
      return true;
    }

    return false;
  }

  default:
    return false;
  }
}

void
Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
                            const CallExpr *TheCall) {
  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
       i != e; ++i) {
    const Expr *ArgExpr = TheCall->getArg(*i);
    if (ArgExpr->isNullPointerConstant(Context,
                                       Expr::NPC_ValueDependentIsNotNull))
      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
        << ArgExpr->getSourceRange();
  }
}

/// CheckPrintfArguments - Check calls to printf (and similar functions) for
/// correct use of format strings.
///
///  HasVAListArg - A predicate indicating whether the printf-like
///    function is passed an explicit va_arg argument (e.g., vprintf)
///
///  format_idx - The index into Args for the format string.
///
/// Improper format strings to functions in the printf family can be
/// the source of bizarre bugs and very serious security holes.  A
/// good source of information is available in the following paper
/// (which includes additional references):
///
///  FormatGuard: Automatic Protection From printf Format String
///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
///
/// TODO:
/// Functionality implemented:
///
///  We can statically check the following properties for string
///  literal format strings for non v.*printf functions (where the
///  arguments are passed directly):
//
///  (1) Are the number of format conversions equal to the number of
///      data arguments?
///
///  (2) Does each format conversion correctly match the type of the
///      corresponding data argument?
///
/// Moreover, for all printf functions we can:
///
///  (3) Check for a missing format string (when not caught by type checking).
///
///  (4) Check for no-operation flags; e.g. using "#" with format
///      conversion 'c'  (TODO)
///
///  (5) Check the use of '%n', a major source of security holes.
///
///  (6) Check for malformed format conversions that don't specify anything.
///
///  (7) Check for empty format strings.  e.g: printf("");
///
///  (8) Check that the format string is a wide literal.
///
/// All of these checks can be done by parsing the format string.
///
void
Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
                           unsigned format_idx, unsigned firstDataArg) {
  const Expr *Fn = TheCall->getCallee();

  // The way the format attribute works in GCC, the implicit this argument
  // of member functions is counted. However, it doesn't appear in our own
  // lists, so decrement format_idx in that case.
  if (isa<CXXMemberCallExpr>(TheCall)) {
    // Catch a format attribute mistakenly referring to the object argument.
    if (format_idx == 0)
      return;
    --format_idx;
    if(firstDataArg != 0)
      --firstDataArg;
  }

  // CHECK: printf-like function is called with no format string.
  if (format_idx >= TheCall->getNumArgs()) {
    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
      << Fn->getSourceRange();
    return;
  }

  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();

  // CHECK: format string is not a string literal.
  //
  // Dynamically generated format strings are difficult to
  // automatically vet at compile time.  Requiring that format strings
  // are string literals: (1) permits the checking of format strings by
  // the compiler and thereby (2) can practically remove the source of
  // many format string exploits.

  // Format string can be either ObjC string (e.g. @"%d") or
  // C string (e.g. "%d")
  // ObjC string uses the same format specifiers as C string, so we can use
  // the same format string checking logic for both ObjC and C strings.
  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
                             firstDataArg))
    return;  // Literal format string found, check done!

  // If there are no arguments specified, warn with -Wformat-security, otherwise
  // warn only with -Wformat-nonliteral.
  if (TheCall->getNumArgs() == format_idx+1)
    Diag(TheCall->getArg(format_idx)->getLocStart(),
         diag::warn_printf_nonliteral_noargs)
      << OrigFormatExpr->getSourceRange();
  else
    Diag(TheCall->getArg(format_idx)->getLocStart(),
         diag::warn_printf_nonliteral)
           << OrigFormatExpr->getSourceRange();
}

namespace {
class CheckPrintfHandler : public analyze_printf::FormatStringHandler {
  Sema &S;
  const StringLiteral *FExpr;
  const Expr *OrigFormatExpr;
  const unsigned NumDataArgs;
  const bool IsObjCLiteral;
  const char *Beg; // Start of format string.
  const bool HasVAListArg;
  const CallExpr *TheCall;
  unsigned FormatIdx;
  llvm::BitVector CoveredArgs;
  bool usesPositionalArgs;
  bool atFirstArg;
public:
  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
                     const Expr *origFormatExpr,
                     unsigned numDataArgs, bool isObjCLiteral,
                     const char *beg, bool hasVAListArg,
                     const CallExpr *theCall, unsigned formatIdx)
    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
      NumDataArgs(numDataArgs),
      IsObjCLiteral(isObjCLiteral), Beg(beg),
      HasVAListArg(hasVAListArg),
      TheCall(theCall), FormatIdx(formatIdx),
      usesPositionalArgs(false), atFirstArg(true) {
        CoveredArgs.resize(numDataArgs);
        CoveredArgs.reset();
      }

  void DoneProcessing();

  void HandleIncompleteFormatSpecifier(const char *startSpecifier,
                                       unsigned specifierLen);

  bool
  HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
                                   const char *startSpecifier,
                                   unsigned specifierLen);

  virtual void HandleInvalidPosition(const char *startSpecifier,
                                     unsigned specifierLen,
                                     analyze_printf::PositionContext p);

  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);

  void HandleNullChar(const char *nullCharacter);

  bool HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS,
                             const char *startSpecifier,
                             unsigned specifierLen);
private:
  SourceRange getFormatStringRange();
  SourceRange getFormatSpecifierRange(const char *startSpecifier,
                                      unsigned specifierLen);
  SourceLocation getLocationOfByte(const char *x);

  bool HandleAmount(const analyze_printf::OptionalAmount &Amt, unsigned k,
                    const char *startSpecifier, unsigned specifierLen);
  void HandleFlags(const analyze_printf::FormatSpecifier &FS,
                   llvm::StringRef flag, llvm::StringRef cspec,
                   const char *startSpecifier, unsigned specifierLen);

  const Expr *getDataArg(unsigned i) const;
};
}

SourceRange CheckPrintfHandler::getFormatStringRange() {
  return OrigFormatExpr->getSourceRange();
}

SourceRange CheckPrintfHandler::
getFormatSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
  return SourceRange(getLocationOfByte(startSpecifier),
                     getLocationOfByte(startSpecifier+specifierLen-1));
}

SourceLocation CheckPrintfHandler::getLocationOfByte(const char *x) {
  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
}

void CheckPrintfHandler::
HandleIncompleteFormatSpecifier(const char *startSpecifier,
                                unsigned specifierLen) {
  SourceLocation Loc = getLocationOfByte(startSpecifier);
  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
    << getFormatSpecifierRange(startSpecifier, specifierLen);
}

void
CheckPrintfHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
                                          analyze_printf::PositionContext p) {
  SourceLocation Loc = getLocationOfByte(startPos);
  S.Diag(Loc, diag::warn_printf_invalid_positional_specifier)
    << (unsigned) p << getFormatSpecifierRange(startPos, posLen);
}

void CheckPrintfHandler::HandleZeroPosition(const char *startPos,
                                            unsigned posLen) {
  SourceLocation Loc = getLocationOfByte(startPos);
  S.Diag(Loc, diag::warn_printf_zero_positional_specifier)
    << getFormatSpecifierRange(startPos, posLen);
}

bool CheckPrintfHandler::
HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
                                 const char *startSpecifier,
                                 unsigned specifierLen) {

  unsigned argIndex = FS.getArgIndex();
  bool keepGoing = true;
  if (argIndex < NumDataArgs) {
    // Consider the argument coverered, even though the specifier doesn't
    // make sense.
    CoveredArgs.set(argIndex);
  }
  else {
    // If argIndex exceeds the number of data arguments we
    // don't issue a warning because that is just a cascade of warnings (and
    // they may have intended '%%' anyway). We don't want to continue processing
    // the format string after this point, however, as we will like just get
    // gibberish when trying to match arguments.
    keepGoing = false;
  }

  const analyze_printf::ConversionSpecifier &CS =
    FS.getConversionSpecifier();
  SourceLocation Loc = getLocationOfByte(CS.getStart());
  S.Diag(Loc, diag::warn_printf_invalid_conversion)
      << llvm::StringRef(CS.getStart(), CS.getLength())
      << getFormatSpecifierRange(startSpecifier, specifierLen);

  return keepGoing;
}

void CheckPrintfHandler::HandleNullChar(const char *nullCharacter) {
  // The presence of a null character is likely an error.
  S.Diag(getLocationOfByte(nullCharacter),
         diag::warn_printf_format_string_contains_null_char)
    << getFormatStringRange();
}

const Expr *CheckPrintfHandler::getDataArg(unsigned i) const {
  return TheCall->getArg(FormatIdx + i + 1);
}



void CheckPrintfHandler::HandleFlags(const analyze_printf::FormatSpecifier &FS,
                                     llvm::StringRef flag,
                                     llvm::StringRef cspec,
                                     const char *startSpecifier,
                                     unsigned specifierLen) {
  const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier();
  S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_nonsensical_flag)
    << flag << cspec << getFormatSpecifierRange(startSpecifier, specifierLen);
}

bool
CheckPrintfHandler::HandleAmount(const analyze_printf::OptionalAmount &Amt,
                                 unsigned k, const char *startSpecifier,
                                 unsigned specifierLen) {

  if (Amt.hasDataArgument()) {
    if (!HasVAListArg) {
      unsigned argIndex = Amt.getArgIndex();
      if (argIndex >= NumDataArgs) {
        S.Diag(getLocationOfByte(Amt.getStart()),
               diag::warn_printf_asterisk_missing_arg)
          << k << getFormatSpecifierRange(startSpecifier, specifierLen);
        // Don't do any more checking.  We will just emit
        // spurious errors.
        return false;
      }

      // Type check the data argument.  It should be an 'int'.
      // Although not in conformance with C99, we also allow the argument to be
      // an 'unsigned int' as that is a reasonably safe case.  GCC also
      // doesn't emit a warning for that case.
      CoveredArgs.set(argIndex);
      const Expr *Arg = getDataArg(argIndex);
      QualType T = Arg->getType();

      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
      assert(ATR.isValid());

      if (!ATR.matchesType(S.Context, T)) {
        S.Diag(getLocationOfByte(Amt.getStart()),
               diag::warn_printf_asterisk_wrong_type)
          << k
          << ATR.getRepresentativeType(S.Context) << T
          << getFormatSpecifierRange(startSpecifier, specifierLen)
          << Arg->getSourceRange();
        // Don't do any more checking.  We will just emit
        // spurious errors.
        return false;
      }
    }
  }
  return true;
}

bool
CheckPrintfHandler::HandleFormatSpecifier(const analyze_printf::FormatSpecifier
                                            &FS,
                                          const char *startSpecifier,
                                          unsigned specifierLen) {

  using namespace analyze_printf;  
  const ConversionSpecifier &CS = FS.getConversionSpecifier();

  if (atFirstArg) {
    atFirstArg = false;
    usesPositionalArgs = FS.usesPositionalArg();
  }
  else if (usesPositionalArgs != FS.usesPositionalArg()) {
    // Cannot mix-and-match positional and non-positional arguments.
    S.Diag(getLocationOfByte(CS.getStart()),
           diag::warn_printf_mix_positional_nonpositional_args)
      << getFormatSpecifierRange(startSpecifier, specifierLen);
    return false;
  }

  // First check if the field width, precision, and conversion specifier
  // have matching data arguments.
  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
                    startSpecifier, specifierLen)) {
    return false;
  }

  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
                    startSpecifier, specifierLen)) {
    return false;
  }

  if (!CS.consumesDataArgument()) {
    // FIXME: Technically specifying a precision or field width here
    // makes no sense.  Worth issuing a warning at some point.
    return true;
  }

  // Consume the argument.
  unsigned argIndex = FS.getArgIndex();
  if (argIndex < NumDataArgs) {
    // The check to see if the argIndex is valid will come later.
    // We set the bit here because we may exit early from this
    // function if we encounter some other error.
    CoveredArgs.set(argIndex);
  }

  // Check for using an Objective-C specific conversion specifier
  // in a non-ObjC literal.
  if (!IsObjCLiteral && CS.isObjCArg()) {
    return HandleInvalidConversionSpecifier(FS, startSpecifier, specifierLen);
  }

  // Are we using '%n'?  Issue a warning about this being
  // a possible security issue.
  if (CS.getKind() == ConversionSpecifier::OutIntPtrArg) {
    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
      << getFormatSpecifierRange(startSpecifier, specifierLen);
    // Continue checking the other format specifiers.
    return true;
  }

  if (CS.getKind() == ConversionSpecifier::VoidPtrArg) {
    if (FS.getPrecision().getHowSpecified() != OptionalAmount::NotSpecified)
      S.Diag(getLocationOfByte(CS.getStart()),
             diag::warn_printf_nonsensical_precision)
        << CS.getCharacters()
        << getFormatSpecifierRange(startSpecifier, specifierLen);
  }
  if (CS.getKind() == ConversionSpecifier::VoidPtrArg ||
      CS.getKind() == ConversionSpecifier::CStrArg) {
    // FIXME: Instead of using "0", "+", etc., eventually get them from
    // the FormatSpecifier.
    if (FS.hasLeadingZeros())
      HandleFlags(FS, "0", CS.getCharacters(), startSpecifier, specifierLen);
    if (FS.hasPlusPrefix())
      HandleFlags(FS, "+", CS.getCharacters(), startSpecifier, specifierLen);
    if (FS.hasSpacePrefix())
      HandleFlags(FS, " ", CS.getCharacters(), startSpecifier, specifierLen);
  }

  // The remaining checks depend on the data arguments.
  if (HasVAListArg)
    return true;

  if (argIndex >= NumDataArgs) {
    S.Diag(getLocationOfByte(CS.getStart()),
           diag::warn_printf_insufficient_data_args)
      << getFormatSpecifierRange(startSpecifier, specifierLen);
    // Don't do any more checking.
    return false;
  }

  // Now type check the data expression that matches the
  // format specifier.
  const Expr *Ex = getDataArg(argIndex);
  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
    // Check if we didn't match because of an implicit cast from a 'char'
    // or 'short' to an 'int'.  This is done because printf is a varargs
    // function.
    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
      if (ICE->getType() == S.Context.IntTy)
        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
          return true;

    S.Diag(getLocationOfByte(CS.getStart()),
           diag::warn_printf_conversion_argument_type_mismatch)
      << ATR.getRepresentativeType(S.Context) << Ex->getType()
      << getFormatSpecifierRange(startSpecifier, specifierLen)
      << Ex->getSourceRange();
  }

  return true;
}

void CheckPrintfHandler::DoneProcessing() {
  // Does the number of data arguments exceed the number of
  // format conversions in the format string?
  if (!HasVAListArg) {
    // Find any arguments that weren't covered.
    CoveredArgs.flip();
    signed notCoveredArg = CoveredArgs.find_first();
    if (notCoveredArg >= 0) {
      assert((unsigned)notCoveredArg < NumDataArgs);
      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
             diag::warn_printf_data_arg_not_used)
        << getFormatStringRange();
    }
  }
}

void Sema::CheckPrintfString(const StringLiteral *FExpr,
                             const Expr *OrigFormatExpr,
                             const CallExpr *TheCall, bool HasVAListArg,
                             unsigned format_idx, unsigned firstDataArg) {

  // CHECK: is the format string a wide literal?
  if (FExpr->isWide()) {
    Diag(FExpr->getLocStart(),
         diag::warn_printf_format_string_is_wide_literal)
    << OrigFormatExpr->getSourceRange();
    return;
  }

  // Str - The format string.  NOTE: this is NOT null-terminated!
  const char *Str = FExpr->getStrData();

  // CHECK: empty format string?
  unsigned StrLen = FExpr->getByteLength();

  if (StrLen == 0) {
    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
    << OrigFormatExpr->getSourceRange();
    return;
  }

  CheckPrintfHandler H(*this, FExpr, OrigFormatExpr,
                       TheCall->getNumArgs() - firstDataArg,
                       isa<ObjCStringLiteral>(OrigFormatExpr), Str,
                       HasVAListArg, TheCall, format_idx);

  if (!analyze_printf::ParseFormatString(H, Str, Str + StrLen))
    H.DoneProcessing();
}

//===--- CHECK: Return Address of Stack Variable --------------------------===//

static DeclRefExpr* EvalVal(Expr *E);
static DeclRefExpr* EvalAddr(Expr* E);

/// CheckReturnStackAddr - Check if a return statement returns the address
///   of a stack variable.
void
Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
                           SourceLocation ReturnLoc) {

  // Perform checking for returned stack addresses.
  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
    if (DeclRefExpr *DR = EvalAddr(RetValExp))
      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();

    // Skip over implicit cast expressions when checking for block expressions.
    RetValExp = RetValExp->IgnoreParenCasts();

    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
      if (C->hasBlockDeclRefExprs())
        Diag(C->getLocStart(), diag::err_ret_local_block)
          << C->getSourceRange();

    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
        << ALE->getSourceRange();

  } else if (lhsType->isReferenceType()) {
    // Perform checking for stack values returned by reference.
    // Check for a reference to the stack
    if (DeclRefExpr *DR = EvalVal(RetValExp))
      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
  }
}

/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
///  check if the expression in a return statement evaluates to an address
///  to a location on the stack.  The recursion is used to traverse the
///  AST of the return expression, with recursion backtracking when we
///  encounter a subexpression that (1) clearly does not lead to the address
///  of a stack variable or (2) is something we cannot determine leads to
///  the address of a stack variable based on such local checking.
///
///  EvalAddr processes expressions that are pointers that are used as
///  references (and not L-values).  EvalVal handles all other values.
///  At the base case of the recursion is a check for a DeclRefExpr* in
///  the refers to a stack variable.
///
///  This implementation handles:
///
///   * pointer-to-pointer casts
///   * implicit conversions from array references to pointers
///   * taking the address of fields
///   * arbitrary interplay between "&" and "*" operators
///   * pointer arithmetic from an address of a stack variable
///   * taking the address of an array element where the array is on the stack
static DeclRefExpr* EvalAddr(Expr *E) {
  // We should only be called for evaluating pointer expressions.
  assert((E->getType()->isAnyPointerType() ||
          E->getType()->isBlockPointerType() ||
          E->getType()->isObjCQualifiedIdType()) &&
         "EvalAddr only works on pointers");

  // Our "symbolic interpreter" is just a dispatch off the currently
  // viewed AST node.  We then recursively traverse the AST by calling
  // EvalAddr and EvalVal appropriately.
  switch (E->getStmtClass()) {
  case Stmt::ParenExprClass:
    // Ignore parentheses.
    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());

  case Stmt::UnaryOperatorClass: {
    // The only unary operator that make sense to handle here
    // is AddrOf.  All others don't make sense as pointers.
    UnaryOperator *U = cast<UnaryOperator>(E);

    if (U->getOpcode() == UnaryOperator::AddrOf)
      return EvalVal(U->getSubExpr());
    else
      return NULL;
  }

  case Stmt::BinaryOperatorClass: {
    // Handle pointer arithmetic.  All other binary operators are not valid
    // in this context.
    BinaryOperator *B = cast<BinaryOperator>(E);
    BinaryOperator::Opcode op = B->getOpcode();

    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
      return NULL;

    Expr *Base = B->getLHS();

    // Determine which argument is the real pointer base.  It could be
    // the RHS argument instead of the LHS.
    if (!Base->getType()->isPointerType()) Base = B->getRHS();

    assert (Base->getType()->isPointerType());
    return EvalAddr(Base);
  }

  // For conditional operators we need to see if either the LHS or RHS are
  // valid DeclRefExpr*s.  If one of them is valid, we return it.
  case Stmt::ConditionalOperatorClass: {
    ConditionalOperator *C = cast<ConditionalOperator>(E);

    // Handle the GNU extension for missing LHS.
    if (Expr *lhsExpr = C->getLHS())
      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
        return LHS;

     return EvalAddr(C->getRHS());
  }

  // For casts, we need to handle conversions from arrays to
  // pointer values, and pointer-to-pointer conversions.
  case Stmt::ImplicitCastExprClass:
  case Stmt::CStyleCastExprClass:
  case Stmt::CXXFunctionalCastExprClass: {
    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
    QualType T = SubExpr->getType();

    if (SubExpr->getType()->isPointerType() ||
        SubExpr->getType()->isBlockPointerType() ||
        SubExpr->getType()->isObjCQualifiedIdType())
      return EvalAddr(SubExpr);
    else if (T->isArrayType())
      return EvalVal(SubExpr);
    else
      return 0;
  }

  // C++ casts.  For dynamic casts, static casts, and const casts, we
  // are always converting from a pointer-to-pointer, so we just blow
  // through the cast.  In the case the dynamic cast doesn't fail (and
  // return NULL), we take the conservative route and report cases
  // where we return the address of a stack variable.  For Reinterpre
  // FIXME: The comment about is wrong; we're not always converting
  // from pointer to pointer. I'm guessing that this code should also
  // handle references to objects.
  case Stmt::CXXStaticCastExprClass:
  case Stmt::CXXDynamicCastExprClass:
  case Stmt::CXXConstCastExprClass:
  case Stmt::CXXReinterpretCastExprClass: {
      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
        return EvalAddr(S);
      else
        return NULL;
  }

  // Everything else: we simply don't reason about them.
  default:
    return NULL;
  }
}


///  EvalVal - This function is complements EvalAddr in the mutual recursion.
///   See the comments for EvalAddr for more details.
static DeclRefExpr* EvalVal(Expr *E) {

  // We should only be called for evaluating non-pointer expressions, or
  // expressions with a pointer type that are not used as references but instead
  // are l-values (e.g., DeclRefExpr with a pointer type).

  // Our "symbolic interpreter" is just a dispatch off the currently
  // viewed AST node.  We then recursively traverse the AST by calling
  // EvalAddr and EvalVal appropriately.
  switch (E->getStmtClass()) {
  case Stmt::DeclRefExprClass: {
    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
    //  at code that refers to a variable's name.  We check if it has local
    //  storage within the function, and if so, return the expression.
    DeclRefExpr *DR = cast<DeclRefExpr>(E);

    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;

    return NULL;
  }

  case Stmt::ParenExprClass:
    // Ignore parentheses.
    return EvalVal(cast<ParenExpr>(E)->getSubExpr());

  case Stmt::UnaryOperatorClass: {
    // The only unary operator that make sense to handle here
    // is Deref.  All others don't resolve to a "name."  This includes
    // handling all sorts of rvalues passed to a unary operator.
    UnaryOperator *U = cast<UnaryOperator>(E);

    if (U->getOpcode() == UnaryOperator::Deref)
      return EvalAddr(U->getSubExpr());

    return NULL;
  }

  case Stmt::ArraySubscriptExprClass: {
    // Array subscripts are potential references to data on the stack.  We
    // retrieve the DeclRefExpr* for the array variable if it indeed
    // has local storage.
    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
  }

  case Stmt::ConditionalOperatorClass: {
    // For conditional operators we need to see if either the LHS or RHS are
    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
    ConditionalOperator *C = cast<ConditionalOperator>(E);

    // Handle the GNU extension for missing LHS.
    if (Expr *lhsExpr = C->getLHS())
      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
        return LHS;

    return EvalVal(C->getRHS());
  }

  // Accesses to members are potential references to data on the stack.
  case Stmt::MemberExprClass: {
    MemberExpr *M = cast<MemberExpr>(E);

    // Check for indirect access.  We only want direct field accesses.
    if (!M->isArrow())
      return EvalVal(M->getBase());
    else
      return NULL;
  }

  // Everything else: we simply don't reason about them.
  default:
    return NULL;
  }
}

//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//

/// Check for comparisons of floating point operands using != and ==.
/// Issue a warning if these are no self-comparisons, as they are not likely
/// to do what the programmer intended.
void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
  bool EmitWarning = true;

  Expr* LeftExprSansParen = lex->IgnoreParens();
  Expr* RightExprSansParen = rex->IgnoreParens();

  // Special case: check for x == x (which is OK).
  // Do not emit warnings for such cases.
  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
      if (DRL->getDecl() == DRR->getDecl())
        EmitWarning = false;


  // Special case: check for comparisons against literals that can be exactly
  //  represented by APFloat.  In such cases, do not emit a warning.  This
  //  is a heuristic: often comparison against such literals are used to
  //  detect if a value in a variable has not changed.  This clearly can
  //  lead to false negatives.
  if (EmitWarning) {
    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
      if (FLL->isExact())
        EmitWarning = false;
    } else
      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
        if (FLR->isExact())
          EmitWarning = false;
    }
  }

  // Check for comparisons with builtin types.
  if (EmitWarning)
    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
      if (CL->isBuiltinCall(Context))
        EmitWarning = false;

  if (EmitWarning)
    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
      if (CR->isBuiltinCall(Context))
        EmitWarning = false;

  // Emit the diagnostic.
  if (EmitWarning)
    Diag(loc, diag::warn_floatingpoint_eq)
      << lex->getSourceRange() << rex->getSourceRange();
}

//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//

namespace {

/// Structure recording the 'active' range of an integer-valued
/// expression.
struct IntRange {
  /// The number of bits active in the int.
  unsigned Width;

  /// True if the int is known not to have negative values.
  bool NonNegative;

  IntRange() {}
  IntRange(unsigned Width, bool NonNegative)
    : Width(Width), NonNegative(NonNegative)
  {}

  // Returns the range of the bool type.
  static IntRange forBoolType() {
    return IntRange(1, true);
  }

  // Returns the range of an integral type.
  static IntRange forType(ASTContext &C, QualType T) {
    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
  }

  // Returns the range of an integeral type based on its canonical
  // representation.
  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
    assert(T->isCanonicalUnqualified());

    if (const VectorType *VT = dyn_cast<VectorType>(T))
      T = VT->getElementType().getTypePtr();
    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
      T = CT->getElementType().getTypePtr();
    if (const EnumType *ET = dyn_cast<EnumType>(T))
      T = ET->getDecl()->getIntegerType().getTypePtr();

    const BuiltinType *BT = cast<BuiltinType>(T);
    assert(BT->isInteger());

    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
  }

  // Returns the supremum of two ranges: i.e. their conservative merge.
  static IntRange join(IntRange L, IntRange R) {
    return IntRange(std::max(L.Width, R.Width),
                    L.NonNegative && R.NonNegative);
  }

  // Returns the infinum of two ranges: i.e. their aggressive merge.
  static IntRange meet(IntRange L, IntRange R) {
    return IntRange(std::min(L.Width, R.Width),
                    L.NonNegative || R.NonNegative);
  }
};

IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
  if (value.isSigned() && value.isNegative())
    return IntRange(value.getMinSignedBits(), false);

  if (value.getBitWidth() > MaxWidth)
    value.trunc(MaxWidth);

  // isNonNegative() just checks the sign bit without considering
  // signedness.
  return IntRange(value.getActiveBits(), true);
}

IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
                       unsigned MaxWidth) {
  if (result.isInt())
    return GetValueRange(C, result.getInt(), MaxWidth);

  if (result.isVector()) {
    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
      R = IntRange::join(R, El);
    }
    return R;
  }

  if (result.isComplexInt()) {
    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
    return IntRange::join(R, I);
  }

  // This can happen with lossless casts to intptr_t of "based" lvalues.
  // Assume it might use arbitrary bits.
  // FIXME: The only reason we need to pass the type in here is to get
  // the sign right on this one case.  It would be nice if APValue
  // preserved this.
  assert(result.isLValue());
  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
}

/// Pseudo-evaluate the given integer expression, estimating the
/// range of values it might take.
///
/// \param MaxWidth - the width to which the value will be truncated
IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
  E = E->IgnoreParens();

  // Try a full evaluation first.
  Expr::EvalResult result;
  if (E->Evaluate(result, C))
    return GetValueRange(C, result.Val, E->getType(), MaxWidth);

  // I think we only want to look through implicit casts here; if the
  // user has an explicit widening cast, we should treat the value as
  // being of the new, wider type.
  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
    if (CE->getCastKind() == CastExpr::CK_NoOp)
      return GetExprRange(C, CE->getSubExpr(), MaxWidth);

    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());

    bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
    if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();

    // Assume that non-integer casts can span the full range of the type.
    if (!isIntegerCast)
      return OutputTypeRange;

    IntRange SubRange
      = GetExprRange(C, CE->getSubExpr(),
                     std::min(MaxWidth, OutputTypeRange.Width));

    // Bail out if the subexpr's range is as wide as the cast type.
    if (SubRange.Width >= OutputTypeRange.Width)
      return OutputTypeRange;

    // Otherwise, we take the smaller width, and we're non-negative if
    // either the output type or the subexpr is.
    return IntRange(SubRange.Width,
                    SubRange.NonNegative || OutputTypeRange.NonNegative);
  }

  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
    // If we can fold the condition, just take that operand.
    bool CondResult;
    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
      return GetExprRange(C, CondResult ? CO->getTrueExpr()
                                        : CO->getFalseExpr(),
                          MaxWidth);

    // Otherwise, conservatively merge.
    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
    return IntRange::join(L, R);
  }

  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
    switch (BO->getOpcode()) {

    // Boolean-valued operations are single-bit and positive.
    case BinaryOperator::LAnd:
    case BinaryOperator::LOr:
    case BinaryOperator::LT:
    case BinaryOperator::GT:
    case BinaryOperator::LE:
    case BinaryOperator::GE:
    case BinaryOperator::EQ:
    case BinaryOperator::NE:
      return IntRange::forBoolType();

    // The type of these compound assignments is the type of the LHS,
    // so the RHS is not necessarily an integer.
    case BinaryOperator::MulAssign:
    case BinaryOperator::DivAssign:
    case BinaryOperator::RemAssign:
    case BinaryOperator::AddAssign:
    case BinaryOperator::SubAssign:
      return IntRange::forType(C, E->getType());

    // Operations with opaque sources are black-listed.
    case BinaryOperator::PtrMemD:
    case BinaryOperator::PtrMemI:
      return IntRange::forType(C, E->getType());

    // Bitwise-and uses the *infinum* of the two source ranges.
    case BinaryOperator::And:
    case BinaryOperator::AndAssign:
      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
                            GetExprRange(C, BO->getRHS(), MaxWidth));

    // Left shift gets black-listed based on a judgement call.
    case BinaryOperator::Shl:
    case BinaryOperator::ShlAssign:
      return IntRange::forType(C, E->getType());

    // Right shift by a constant can narrow its left argument.
    case BinaryOperator::Shr:
    case BinaryOperator::ShrAssign: {
      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);

      // If the shift amount is a positive constant, drop the width by
      // that much.
      llvm::APSInt shift;
      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
          shift.isNonNegative()) {
        unsigned zext = shift.getZExtValue();
        if (zext >= L.Width)
          L.Width = (L.NonNegative ? 0 : 1);
        else
          L.Width -= zext;
      }

      return L;
    }

    // Comma acts as its right operand.
    case BinaryOperator::Comma:
      return GetExprRange(C, BO->getRHS(), MaxWidth);

    // Black-list pointer subtractions.
    case BinaryOperator::Sub:
      if (BO->getLHS()->getType()->isPointerType())
        return IntRange::forType(C, E->getType());
      // fallthrough

    default:
      break;
    }

    // Treat every other operator as if it were closed on the
    // narrowest type that encompasses both operands.
    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
    return IntRange::join(L, R);
  }

  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
    switch (UO->getOpcode()) {
    // Boolean-valued operations are white-listed.
    case UnaryOperator::LNot:
      return IntRange::forBoolType();

    // Operations with opaque sources are black-listed.
    case UnaryOperator::Deref:
    case UnaryOperator::AddrOf: // should be impossible
    case UnaryOperator::OffsetOf:
      return IntRange::forType(C, E->getType());

    default:
      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
    }
  }

  FieldDecl *BitField = E->getBitField();
  if (BitField) {
    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
    unsigned BitWidth = BitWidthAP.getZExtValue();

    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
  }

  return IntRange::forType(C, E->getType());
}

/// Checks whether the given value, which currently has the given
/// source semantics, has the same value when coerced through the
/// target semantics.
bool IsSameFloatAfterCast(const llvm::APFloat &value,
                          const llvm::fltSemantics &Src,
                          const llvm::fltSemantics &Tgt) {
  llvm::APFloat truncated = value;

  bool ignored;
  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);

  return truncated.bitwiseIsEqual(value);
}

/// Checks whether the given value, which currently has the given
/// source semantics, has the same value when coerced through the
/// target semantics.
///
/// The value might be a vector of floats (or a complex number).
bool IsSameFloatAfterCast(const APValue &value,
                          const llvm::fltSemantics &Src,
                          const llvm::fltSemantics &Tgt) {
  if (value.isFloat())
    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);

  if (value.isVector()) {
    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
        return false;
    return true;
  }

  assert(value.isComplexFloat());
  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
}

} // end anonymous namespace

/// \brief Implements -Wsign-compare.
///
/// \param lex the left-hand expression
/// \param rex the right-hand expression
/// \param OpLoc the location of the joining operator
/// \param BinOpc binary opcode or 0
void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc,
                            const BinaryOperator::Opcode* BinOpc) {
  // Don't warn if we're in an unevaluated context.
  if (ExprEvalContexts.back().Context == Unevaluated)
    return;

  // If either expression is value-dependent, don't warn. We'll get another
  // chance at instantiation time.
  if (lex->isValueDependent() || rex->isValueDependent())
    return;

  QualType lt = lex->getType(), rt = rex->getType();

  // Only warn if both operands are integral.
  if (!lt->isIntegerType() || !rt->isIntegerType())
    return;

  // In C, the width of a bitfield determines its type, and the
  // declared type only contributes the signedness.  This duplicates
  // the work that will later be done by UsualUnaryConversions.
  // Eventually, this check will be reorganized in a way that avoids
  // this duplication.
  if (!getLangOptions().CPlusPlus) {
    QualType tmp;
    tmp = Context.isPromotableBitField(lex);
    if (!tmp.isNull()) lt = tmp;
    tmp = Context.isPromotableBitField(rex);
    if (!tmp.isNull()) rt = tmp;
  }

  // The rule is that the signed operand becomes unsigned, so isolate the
  // signed operand.
  Expr *signedOperand = lex, *unsignedOperand = rex;
  QualType signedType = lt, unsignedType = rt;
  if (lt->isSignedIntegerType()) {
    if (rt->isSignedIntegerType()) return;
  } else {
    if (!rt->isSignedIntegerType()) return;
    std::swap(signedOperand, unsignedOperand);
    std::swap(signedType, unsignedType);
  }

  unsigned unsignedWidth = Context.getIntWidth(unsignedType);
  unsigned signedWidth = Context.getIntWidth(signedType);

  // If the unsigned type is strictly smaller than the signed type,
  // then (1) the result type will be signed and (2) the unsigned
  // value will fit fully within the signed type, and thus the result
  // of the comparison will be exact.
  if (signedWidth > unsignedWidth)
    return;

  // Otherwise, calculate the effective ranges.
  IntRange signedRange = GetExprRange(Context, signedOperand, signedWidth);
  IntRange unsignedRange = GetExprRange(Context, unsignedOperand, unsignedWidth);

  // We should never be unable to prove that the unsigned operand is
  // non-negative.
  assert(unsignedRange.NonNegative && "unsigned range includes negative?");

  // If the signed operand is non-negative, then the signed->unsigned
  // conversion won't change it.
  if (signedRange.NonNegative) {
    // Emit warnings for comparisons of unsigned to integer constant 0.
    //   always false: x < 0  (or 0 > x)
    //   always true:  x >= 0 (or 0 <= x)
    llvm::APSInt X;
    if (BinOpc && signedOperand->isIntegerConstantExpr(X, Context) && X == 0) {
      if (signedOperand != lex) {
        if (*BinOpc == BinaryOperator::LT) {
          Diag(OpLoc, diag::warn_lunsigned_always_true_comparison)
            << "< 0" << "false"
            << lex->getSourceRange() << rex->getSourceRange();
        }
        else if (*BinOpc == BinaryOperator::GE) {
          Diag(OpLoc, diag::warn_lunsigned_always_true_comparison)
            << ">= 0" << "true"
            << lex->getSourceRange() << rex->getSourceRange();
        }
      }
      else {
        if (*BinOpc == BinaryOperator::GT) {
          Diag(OpLoc, diag::warn_runsigned_always_true_comparison)
            << "0 >" << "false" 
            << lex->getSourceRange() << rex->getSourceRange();
        } 
        else if (*BinOpc == BinaryOperator::LE) {
          Diag(OpLoc, diag::warn_runsigned_always_true_comparison)
            << "0 <=" << "true" 
            << lex->getSourceRange() << rex->getSourceRange();
        }
      }
    }
    return;
  }

  // For (in)equality comparisons, if the unsigned operand is a
  // constant which cannot collide with a overflowed signed operand,
  // then reinterpreting the signed operand as unsigned will not
  // change the result of the comparison.
  if (BinOpc &&
      (*BinOpc == BinaryOperator::EQ || *BinOpc == BinaryOperator::NE) &&
      unsignedRange.Width < unsignedWidth)
    return;

  Diag(OpLoc, BinOpc ? diag::warn_mixed_sign_comparison
                     : diag::warn_mixed_sign_conditional)
    << lt << rt << lex->getSourceRange() << rex->getSourceRange();
}

/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
}

/// Implements -Wconversion.
void Sema::CheckImplicitConversion(Expr *E, QualType T) {
  // Don't diagnose in unevaluated contexts.
  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
    return;

  // Don't diagnose for value-dependent expressions.
  if (E->isValueDependent())
    return;

  const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr();
  const Type *Target = Context.getCanonicalType(T).getTypePtr();

  // Never diagnose implicit casts to bool.
  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
    return;

  // Strip vector types.
  if (isa<VectorType>(Source)) {
    if (!isa<VectorType>(Target))
      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_vector_scalar);

    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
  }

  // Strip complex types.
  if (isa<ComplexType>(Source)) {
    if (!isa<ComplexType>(Target))
      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_complex_scalar);

    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
  }

  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);

  // If the source is floating point...
  if (SourceBT && SourceBT->isFloatingPoint()) {
    // ...and the target is floating point...
    if (TargetBT && TargetBT->isFloatingPoint()) {
      // ...then warn if we're dropping FP rank.

      // Builtin FP kinds are ordered by increasing FP rank.
      if (SourceBT->getKind() > TargetBT->getKind()) {
        // Don't warn about float constants that are precisely
        // representable in the target type.
        Expr::EvalResult result;
        if (E->Evaluate(result, Context)) {
          // Value might be a float, a float vector, or a float complex.
          if (IsSameFloatAfterCast(result.Val,
                     Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
                     Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
            return;
        }

        DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_precision);
      }
      return;
    }

    // If the target is integral, always warn.
    if ((TargetBT && TargetBT->isInteger()))
      // TODO: don't warn for integer values?
      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_integer);

    return;
  }

  if (!Source->isIntegerType() || !Target->isIntegerType())
    return;

  IntRange SourceRange = GetExprRange(Context, E, Context.getIntWidth(E->getType()));
  IntRange TargetRange = IntRange::forCanonicalType(Context, Target);

  // FIXME: also signed<->unsigned?

  if (SourceRange.Width > TargetRange.Width) {
    // People want to build with -Wshorten-64-to-32 and not -Wconversion
    // and by god we'll let them.
    if (SourceRange.Width == 64 && TargetRange.Width == 32)
      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_64_32);
    return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_precision);
  }

  return;
}



namespace {
class UnreachableCodeHandler : public reachable_code::Callback {
  Sema &S;
public:
  UnreachableCodeHandler(Sema *s) : S(*s) {}
  
  void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
    S.Diag(L, diag::warn_unreachable) << R1 << R2;
  }
};  
}

/// CheckUnreachable - Check for unreachable code.
void Sema::CheckUnreachable(AnalysisContext &AC) {
  // We avoid checking when there are errors, as the CFG won't faithfully match
  // the user's code.
  if (getDiagnostics().hasErrorOccurred() ||
      Diags.getDiagnosticLevel(diag::warn_unreachable) == Diagnostic::Ignored)
    return;

  UnreachableCodeHandler UC(this);
  reachable_code::FindUnreachableCode(AC, UC);
}

/// CheckFallThrough - Check that we don't fall off the end of a
/// Statement that should return a value.
///
/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
/// MaybeFallThrough iff we might or might not fall off the end,
/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
/// return.  We assume NeverFallThrough iff we never fall off the end of the
/// statement but we may return.  We assume that functions not marked noreturn
/// will return.
Sema::ControlFlowKind Sema::CheckFallThrough(AnalysisContext &AC) {
  CFG *cfg = AC.getCFG();
  if (cfg == 0)
    // FIXME: This should be NeverFallThrough
    return NeverFallThroughOrReturn;

  // The CFG leaves in dead things, and we don't want the dead code paths to
  // confuse us, so we mark all live things first.
  std::queue<CFGBlock*> workq;
  llvm::BitVector live(cfg->getNumBlockIDs());
  unsigned count = reachable_code::ScanReachableFromBlock(cfg->getEntry(),
                                                          live);

  bool AddEHEdges = AC.getAddEHEdges();
  if (!AddEHEdges && count != cfg->getNumBlockIDs())
    // When there are things remaining dead, and we didn't add EH edges
    // from CallExprs to the catch clauses, we have to go back and
    // mark them as live.
    for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
      CFGBlock &b = **I;
      if (!live[b.getBlockID()]) {
        if (b.pred_begin() == b.pred_end()) {
          if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
            // When not adding EH edges from calls, catch clauses
            // can otherwise seem dead.  Avoid noting them as dead.
            count += reachable_code::ScanReachableFromBlock(b, live);
          continue;
        }
      }
    }

  // Now we know what is live, we check the live precessors of the exit block
  // and look for fall through paths, being careful to ignore normal returns,
  // and exceptional paths.
  bool HasLiveReturn = false;
  bool HasFakeEdge = false;
  bool HasPlainEdge = false;
  bool HasAbnormalEdge = false;
  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
         E = cfg->getExit().pred_end();
       I != E;
       ++I) {
    CFGBlock& B = **I;
    if (!live[B.getBlockID()])
      continue;
    if (B.size() == 0) {
      if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
        HasAbnormalEdge = true;
        continue;
      }

      // A labeled empty statement, or the entry block...
      HasPlainEdge = true;
      continue;
    }
    Stmt *S = B[B.size()-1];
    if (isa<ReturnStmt>(S)) {
      HasLiveReturn = true;
      continue;
    }
    if (isa<ObjCAtThrowStmt>(S)) {
      HasFakeEdge = true;
      continue;
    }
    if (isa<CXXThrowExpr>(S)) {
      HasFakeEdge = true;
      continue;
    }
    if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
      if (AS->isMSAsm()) {
        HasFakeEdge = true;
        HasLiveReturn = true;
        continue;
      }
    }
    if (isa<CXXTryStmt>(S)) {
      HasAbnormalEdge = true;
      continue;
    }

    bool NoReturnEdge = false;
    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
      if (B.succ_begin()[0] != &cfg->getExit()) {
        HasAbnormalEdge = true;
        continue;
      }
      Expr *CEE = C->getCallee()->IgnoreParenCasts();
      if (CEE->getType().getNoReturnAttr()) {
        NoReturnEdge = true;
        HasFakeEdge = true;
      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
        ValueDecl *VD = DRE->getDecl();
        if (VD->hasAttr<NoReturnAttr>()) {
          NoReturnEdge = true;
          HasFakeEdge = true;
        }
      }
    }
    // FIXME: Add noreturn message sends.
    if (NoReturnEdge == false)
      HasPlainEdge = true;
  }
  if (!HasPlainEdge) {
    if (HasLiveReturn)
      return NeverFallThrough;
    return NeverFallThroughOrReturn;
  }
  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
    return MaybeFallThrough;
  // This says AlwaysFallThrough for calls to functions that are not marked
  // noreturn, that don't return.  If people would like this warning to be more
  // accurate, such functions should be marked as noreturn.
  return AlwaysFallThrough;
}

/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
/// function that should return a value.  Check that we don't fall off the end
/// of a noreturn function.  We assume that functions and blocks not marked
/// noreturn will return.
void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body,
                                          AnalysisContext &AC) {
  // FIXME: Would be nice if we had a better way to control cascading errors,
  // but for now, avoid them.  The problem is that when Parse sees:
  //   int foo() { return a; }
  // The return is eaten and the Sema code sees just:
  //   int foo() { }
  // which this code would then warn about.
  if (getDiagnostics().hasErrorOccurred())
    return;

  bool ReturnsVoid = false;
  bool HasNoReturn = false;

  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    // For function templates, class templates and member function templates
    // we'll do the analysis at instantiation time.
    if (FD->isDependentContext())
      return;

    ReturnsVoid = FD->getResultType()->isVoidType();
    HasNoReturn = FD->hasAttr<NoReturnAttr>() ||
                  FD->getType()->getAs<FunctionType>()->getNoReturnAttr();

  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    ReturnsVoid = MD->getResultType()->isVoidType();
    HasNoReturn = MD->hasAttr<NoReturnAttr>();
  }

  // Short circuit for compilation speed.
  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
       == Diagnostic::Ignored || ReturnsVoid)
      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
          == Diagnostic::Ignored || !HasNoReturn)
      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
          == Diagnostic::Ignored || !ReturnsVoid))
    return;
  // FIXME: Function try block
  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
    switch (CheckFallThrough(AC)) {
    case MaybeFallThrough:
      if (HasNoReturn)
        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
      else if (!ReturnsVoid)
        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
      break;
    case AlwaysFallThrough:
      if (HasNoReturn)
        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
      else if (!ReturnsVoid)
        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
      break;
    case NeverFallThroughOrReturn:
      if (ReturnsVoid && !HasNoReturn)
        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
      break;
    case NeverFallThrough:
      break;
    }
  }
}

/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
/// that should return a value.  Check that we don't fall off the end of a
/// noreturn block.  We assume that functions and blocks not marked noreturn
/// will return.
void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body,
                                    AnalysisContext &AC) {
  // FIXME: Would be nice if we had a better way to control cascading errors,
  // but for now, avoid them.  The problem is that when Parse sees:
  //   int foo() { return a; }
  // The return is eaten and the Sema code sees just:
  //   int foo() { }
  // which this code would then warn about.
  if (getDiagnostics().hasErrorOccurred())
    return;
  bool ReturnsVoid = false;
  bool HasNoReturn = false;
  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
    if (FT->getResultType()->isVoidType())
      ReturnsVoid = true;
    if (FT->getNoReturnAttr())
      HasNoReturn = true;
  }

  // Short circuit for compilation speed.
  if (ReturnsVoid
      && !HasNoReturn
      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
          == Diagnostic::Ignored || !ReturnsVoid))
    return;
  // FIXME: Funtion try block
  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
    switch (CheckFallThrough(AC)) {
    case MaybeFallThrough:
      if (HasNoReturn)
        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
      else if (!ReturnsVoid)
        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
      break;
    case AlwaysFallThrough:
      if (HasNoReturn)
        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
      else if (!ReturnsVoid)
        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
      break;
    case NeverFallThroughOrReturn:
      if (ReturnsVoid)
        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
      break;
    case NeverFallThrough:
      break;
    }
  }
}

/// CheckParmsForFunctionDef - Check that the parameters of the given
/// function are appropriate for the definition of a function. This
/// takes care of any checks that cannot be performed on the
/// declaration itself, e.g., that the types of each of the function
/// parameters are complete.
bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
  bool HasInvalidParm = false;
  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
    ParmVarDecl *Param = FD->getParamDecl(p);

    // C99 6.7.5.3p4: the parameters in a parameter type list in a
    // function declarator that is part of a function definition of
    // that function shall not have incomplete type.
    //
    // This is also C++ [dcl.fct]p6.
    if (!Param->isInvalidDecl() &&
        RequireCompleteType(Param->getLocation(), Param->getType(),
                               diag::err_typecheck_decl_incomplete_type)) {
      Param->setInvalidDecl();
      HasInvalidParm = true;
    }

    // C99 6.9.1p5: If the declarator includes a parameter type list, the
    // declaration of each parameter shall include an identifier.
    if (Param->getIdentifier() == 0 &&
        !Param->isImplicit() &&
        !getLangOptions().CPlusPlus)
      Diag(Param->getLocation(), diag::err_parameter_name_omitted);

    // C99 6.7.5.3p12:
    //   If the function declarator is not part of a definition of that
    //   function, parameters may have incomplete type and may use the [*]
    //   notation in their sequences of declarator specifiers to specify
    //   variable length array types.
    QualType PType = Param->getOriginalType();
    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
      if (AT->getSizeModifier() == ArrayType::Star) {
        // FIXME: This diagnosic should point the the '[*]' if source-location
        // information is added for it.
        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
      }
    }

    if (getLangOptions().CPlusPlus)
      if (const RecordType *RT = Param->getType()->getAs<RecordType>())
        FinalizeVarWithDestructor(Param, RT);
  }

  return HasInvalidParm;
}