aboutsummaryrefslogtreecommitdiff
path: root/lib/StaticAnalyzer/Core/CallEvent.cpp
blob: 5345bd517045384a678faa51e6e182ea0616e013 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
//===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file This file defines CallEvent and its subclasses, which represent path-
/// sensitive instances of different kinds of function and method calls
/// (C, C++, and Objective-C).
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/Analysis/ProgramPoint.h"
#include "clang/AST/ParentMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"

using namespace clang;
using namespace ento;

QualType CallEvent::getResultType() const {
  QualType ResultTy = getDeclaredResultType();

  if (ResultTy.isNull())
    ResultTy = getOriginExpr()->getType();

  return ResultTy;
}

static bool isCallbackArg(SVal V, QualType T) {
  // If the parameter is 0, it's harmless.
  if (V.isZeroConstant())
    return false;

  // If a parameter is a block or a callback, assume it can modify pointer.
  if (T->isBlockPointerType() ||
      T->isFunctionPointerType() ||
      T->isObjCSelType())
    return true;

  // Check if a callback is passed inside a struct (for both, struct passed by
  // reference and by value). Dig just one level into the struct for now.

  if (isa<PointerType>(T) || isa<ReferenceType>(T))
    T = T->getPointeeType();

  if (const RecordType *RT = T->getAsStructureType()) {
    const RecordDecl *RD = RT->getDecl();
    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
         I != E; ++I) {
      QualType FieldT = I->getType();
      if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
        return true;
    }
  }

  return false;
}

bool CallEvent::hasNonZeroCallbackArg() const {
  unsigned NumOfArgs = getNumArgs();

  // If calling using a function pointer, assume the function does not
  // have a callback. TODO: We could check the types of the arguments here.
  if (!getDecl())
    return false;

  unsigned Idx = 0;
  for (CallEvent::param_type_iterator I = param_type_begin(),
                                       E = param_type_end();
       I != E && Idx < NumOfArgs; ++I, ++Idx) {
    if (NumOfArgs <= Idx)
      break;

    if (isCallbackArg(getArgSVal(Idx), *I))
      return true;
  }
  
  return false;
}

/// \brief Returns true if a type is a pointer-to-const or reference-to-const
/// with no further indirection.
static bool isPointerToConst(QualType Ty) {
  QualType PointeeTy = Ty->getPointeeType();
  if (PointeeTy == QualType())
    return false;
  if (!PointeeTy.isConstQualified())
    return false;
  if (PointeeTy->isAnyPointerType())
    return false;
  return true;
}

// Try to retrieve the function declaration and find the function parameter
// types which are pointers/references to a non-pointer const.
// We will not invalidate the corresponding argument regions.
static void findPtrToConstParams(llvm::SmallSet<unsigned, 1> &PreserveArgs,
                                 const CallEvent &Call) {
  unsigned Idx = 0;
  for (CallEvent::param_type_iterator I = Call.param_type_begin(),
                                      E = Call.param_type_end();
       I != E; ++I, ++Idx) {
    if (isPointerToConst(*I))
      PreserveArgs.insert(Idx);
  }
}

ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
                                              ProgramStateRef Orig) const {
  ProgramStateRef Result = (Orig ? Orig : getState());

  SmallVector<const MemRegion *, 8> RegionsToInvalidate;
  getExtraInvalidatedRegions(RegionsToInvalidate);

  // Indexes of arguments whose values will be preserved by the call.
  llvm::SmallSet<unsigned, 1> PreserveArgs;
  if (!argumentsMayEscape())
    findPtrToConstParams(PreserveArgs, *this);

  for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
    if (PreserveArgs.count(Idx))
      continue;

    SVal V = getArgSVal(Idx);

    // If we are passing a location wrapped as an integer, unwrap it and
    // invalidate the values referred by the location.
    if (nonloc::LocAsInteger *Wrapped = dyn_cast<nonloc::LocAsInteger>(&V))
      V = Wrapped->getLoc();
    else if (!isa<Loc>(V))
      continue;

    if (const MemRegion *R = V.getAsRegion()) {
      // Invalidate the value of the variable passed by reference.

      // Are we dealing with an ElementRegion?  If the element type is
      // a basic integer type (e.g., char, int) and the underlying region
      // is a variable region then strip off the ElementRegion.
      // FIXME: We really need to think about this for the general case
      //   as sometimes we are reasoning about arrays and other times
      //   about (char*), etc., is just a form of passing raw bytes.
      //   e.g., void *p = alloca(); foo((char*)p);
      if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
        // Checking for 'integral type' is probably too promiscuous, but
        // we'll leave it in for now until we have a systematic way of
        // handling all of these cases.  Eventually we need to come up
        // with an interface to StoreManager so that this logic can be
        // appropriately delegated to the respective StoreManagers while
        // still allowing us to do checker-specific logic (e.g.,
        // invalidating reference counts), probably via callbacks.
        if (ER->getElementType()->isIntegralOrEnumerationType()) {
          const MemRegion *superReg = ER->getSuperRegion();
          if (isa<VarRegion>(superReg) || isa<FieldRegion>(superReg) ||
              isa<ObjCIvarRegion>(superReg))
            R = cast<TypedRegion>(superReg);
        }
        // FIXME: What about layers of ElementRegions?
      }

      // Mark this region for invalidation.  We batch invalidate regions
      // below for efficiency.
      RegionsToInvalidate.push_back(R);
    }
  }

  // Invalidate designated regions using the batch invalidation API.
  // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
  //  global variables.
  return Result->invalidateRegions(RegionsToInvalidate, getOriginExpr(),
                                   BlockCount, getLocationContext(),
                                   /*Symbols=*/0, this);
}

ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
                                        const ProgramPointTag *Tag) const {
  if (const Expr *E = getOriginExpr()) {
    if (IsPreVisit)
      return PreStmt(E, getLocationContext(), Tag);
    return PostStmt(E, getLocationContext(), Tag);
  }

  const Decl *D = getDecl();
  assert(D && "Cannot get a program point without a statement or decl");  

  SourceLocation Loc = getSourceRange().getBegin();
  if (IsPreVisit)
    return PreImplicitCall(D, Loc, getLocationContext(), Tag);
  return PostImplicitCall(D, Loc, getLocationContext(), Tag);
}

SVal CallEvent::getArgSVal(unsigned Index) const {
  const Expr *ArgE = getArgExpr(Index);
  if (!ArgE)
    return UnknownVal();
  return getSVal(ArgE);
}

SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
  const Expr *ArgE = getArgExpr(Index);
  if (!ArgE)
    return SourceRange();
  return ArgE->getSourceRange();
}

void CallEvent::dump() const {
  dump(llvm::errs());
}

void CallEvent::dump(raw_ostream &Out) const {
  ASTContext &Ctx = getState()->getStateManager().getContext();
  if (const Expr *E = getOriginExpr()) {
    E->printPretty(Out, 0, Ctx.getPrintingPolicy());
    Out << "\n";
    return;
  }

  if (const Decl *D = getDecl()) {
    Out << "Call to ";
    D->print(Out, Ctx.getPrintingPolicy());
    return;
  }

  // FIXME: a string representation of the kind would be nice.
  Out << "Unknown call (type " << getKind() << ")";
}


bool CallEvent::mayBeInlined(const Stmt *S) {
  // FIXME: Kill this.
  return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
                          || isa<CXXConstructExpr>(S);
}

static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
                                         CallEvent::BindingsTy &Bindings,
                                         SValBuilder &SVB,
                                         const CallEvent &Call,
                                         CallEvent::param_iterator I,
                                         CallEvent::param_iterator E) {
  MemRegionManager &MRMgr = SVB.getRegionManager();

  unsigned Idx = 0;
  for (; I != E; ++I, ++Idx) {
    const ParmVarDecl *ParamDecl = *I;
    assert(ParamDecl && "Formal parameter has no decl?");

    SVal ArgVal = Call.getArgSVal(Idx);
    if (!ArgVal.isUnknown()) {
      Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
      Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
    }
  }

  // FIXME: Variadic arguments are not handled at all right now.
}


CallEvent::param_iterator AnyFunctionCall::param_begin() const {
  const FunctionDecl *D = getDecl();
  if (!D)
    return 0;

  return D->param_begin();
}

CallEvent::param_iterator AnyFunctionCall::param_end() const {
  const FunctionDecl *D = getDecl();
  if (!D)
    return 0;

  return D->param_end();
}

void AnyFunctionCall::getInitialStackFrameContents(
                                        const StackFrameContext *CalleeCtx,
                                        BindingsTy &Bindings) const {
  const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl());
  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
                               D->param_begin(), D->param_end());
}

QualType AnyFunctionCall::getDeclaredResultType() const {
  const FunctionDecl *D = getDecl();
  if (!D)
    return QualType();

  return D->getResultType();
}

bool AnyFunctionCall::argumentsMayEscape() const {
  if (hasNonZeroCallbackArg())
    return true;

  const FunctionDecl *D = getDecl();
  if (!D)
    return true;

  const IdentifierInfo *II = D->getIdentifier();
  if (!II)
    return true;

  // This set of "escaping" APIs is 

  // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
  //   value into thread local storage. The value can later be retrieved with
  //   'void *ptheread_getspecific(pthread_key)'. So even thought the
  //   parameter is 'const void *', the region escapes through the call.
  if (II->isStr("pthread_setspecific"))
    return true;

  // - xpc_connection_set_context stores a value which can be retrieved later
  //   with xpc_connection_get_context.
  if (II->isStr("xpc_connection_set_context"))
    return true;

  // - funopen - sets a buffer for future IO calls.
  if (II->isStr("funopen"))
    return true;

  StringRef FName = II->getName();

  // - CoreFoundation functions that end with "NoCopy" can free a passed-in
  //   buffer even if it is const.
  if (FName.endswith("NoCopy"))
    return true;

  // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
  //   be deallocated by NSMapRemove.
  if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
    return true;

  // - Many CF containers allow objects to escape through custom
  //   allocators/deallocators upon container construction. (PR12101)
  if (FName.startswith("CF") || FName.startswith("CG")) {
    return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
           StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
           StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
           StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
           StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
           StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
  }

  return false;
}


const FunctionDecl *SimpleCall::getDecl() const {
  const FunctionDecl *D = getOriginExpr()->getDirectCallee();
  if (D)
    return D;

  return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
}


const FunctionDecl *CXXInstanceCall::getDecl() const {
  const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr());
  if (!CE)
    return AnyFunctionCall::getDecl();

  const FunctionDecl *D = CE->getDirectCallee();
  if (D)
    return D;

  return getSVal(CE->getCallee()).getAsFunctionDecl();
}

void CXXInstanceCall::getExtraInvalidatedRegions(RegionList &Regions) const {
  if (const MemRegion *R = getCXXThisVal().getAsRegion())
    Regions.push_back(R);
}


RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
  // Do we have a decl at all?
  const Decl *D = getDecl();
  if (!D)
    return RuntimeDefinition();

  // If the method is non-virtual, we know we can inline it.
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
  if (!MD->isVirtual())
    return AnyFunctionCall::getRuntimeDefinition();

  // Do we know the implicit 'this' object being called?
  const MemRegion *R = getCXXThisVal().getAsRegion();
  if (!R)
    return RuntimeDefinition();

  // Do we know anything about the type of 'this'?
  DynamicTypeInfo DynType = getState()->getDynamicTypeInfo(R);
  if (!DynType.isValid())
    return RuntimeDefinition();

  // Is the type a C++ class? (This is mostly a defensive check.)
  QualType RegionType = DynType.getType()->getPointeeType();
  const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
  if (!RD || !RD->hasDefinition())
    return RuntimeDefinition();

  // Find the decl for this method in that class.
  const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
  assert(Result && "At the very least the static decl should show up.");

  // Does the decl that we found have an implementation?
  const FunctionDecl *Definition;
  if (!Result->hasBody(Definition))
    return RuntimeDefinition();

  // We found a definition. If we're not sure that this devirtualization is
  // actually what will happen at runtime, make sure to provide the region so
  // that ExprEngine can decide what to do with it.
  if (DynType.canBeASubClass())
    return RuntimeDefinition(Definition, R->StripCasts());
  return RuntimeDefinition(Definition, /*DispatchRegion=*/0);
}

void CXXInstanceCall::getInitialStackFrameContents(
                                            const StackFrameContext *CalleeCtx,
                                            BindingsTy &Bindings) const {
  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);

  // Handle the binding of 'this' in the new stack frame.
  SVal ThisVal = getCXXThisVal();
  if (!ThisVal.isUnknown()) {
    ProgramStateManager &StateMgr = getState()->getStateManager();
    SValBuilder &SVB = StateMgr.getSValBuilder();

    const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);

    // If we devirtualized to a different member function, we need to make sure
    // we have the proper layering of CXXBaseObjectRegions.
    if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
      ASTContext &Ctx = SVB.getContext();
      const CXXRecordDecl *Class = MD->getParent();
      QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));

      // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
      bool Failed;
      ThisVal = StateMgr.getStoreManager().evalDynamicCast(ThisVal, Ty, Failed);
      assert(!Failed && "Calling an incorrectly devirtualized method");
    }

    if (!ThisVal.isUnknown())
      Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
  }
}



const Expr *CXXMemberCall::getCXXThisExpr() const {
  return getOriginExpr()->getImplicitObjectArgument();
}


const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
  return getOriginExpr()->getArg(0);
}


const BlockDataRegion *BlockCall::getBlockRegion() const {
  const Expr *Callee = getOriginExpr()->getCallee();
  const MemRegion *DataReg = getSVal(Callee).getAsRegion();

  return dyn_cast_or_null<BlockDataRegion>(DataReg);
}

CallEvent::param_iterator BlockCall::param_begin() const {
  const BlockDecl *D = getBlockDecl();
  if (!D)
    return 0;
  return D->param_begin();
}

CallEvent::param_iterator BlockCall::param_end() const {
  const BlockDecl *D = getBlockDecl();
  if (!D)
    return 0;
  return D->param_end();
}

void BlockCall::getExtraInvalidatedRegions(RegionList &Regions) const {
  // FIXME: This also needs to invalidate captured globals.
  if (const MemRegion *R = getBlockRegion())
    Regions.push_back(R);
}

void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
                                             BindingsTy &Bindings) const {
  const BlockDecl *D = cast<BlockDecl>(CalleeCtx->getDecl());
  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
                               D->param_begin(), D->param_end());
}


QualType BlockCall::getDeclaredResultType() const {
  const BlockDataRegion *BR = getBlockRegion();
  if (!BR)
    return QualType();
  QualType BlockTy = BR->getCodeRegion()->getLocationType();
  return cast<FunctionType>(BlockTy->getPointeeType())->getResultType();
}


SVal CXXConstructorCall::getCXXThisVal() const {
  if (Data)
    return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
  return UnknownVal();
}

void CXXConstructorCall::getExtraInvalidatedRegions(RegionList &Regions) const {
  if (Data)
    Regions.push_back(static_cast<const MemRegion *>(Data));
}

void CXXConstructorCall::getInitialStackFrameContents(
                                             const StackFrameContext *CalleeCtx,
                                             BindingsTy &Bindings) const {
  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);

  SVal ThisVal = getCXXThisVal();
  if (!ThisVal.isUnknown()) {
    SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
    const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
    Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
  }
}



SVal CXXDestructorCall::getCXXThisVal() const {
  if (Data)
    return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
  return UnknownVal();
}


CallEvent::param_iterator ObjCMethodCall::param_begin() const {
  const ObjCMethodDecl *D = getDecl();
  if (!D)
    return 0;

  return D->param_begin();
}

CallEvent::param_iterator ObjCMethodCall::param_end() const {
  const ObjCMethodDecl *D = getDecl();
  if (!D)
    return 0;

  return D->param_end();
}

void
ObjCMethodCall::getExtraInvalidatedRegions(RegionList &Regions) const {
  if (const MemRegion *R = getReceiverSVal().getAsRegion())
    Regions.push_back(R);
}

QualType ObjCMethodCall::getDeclaredResultType() const {
  const ObjCMethodDecl *D = getDecl();
  if (!D)
    return QualType();

  return D->getResultType();
}

SVal ObjCMethodCall::getReceiverSVal() const {
  // FIXME: Is this the best way to handle class receivers?
  if (!isInstanceMessage())
    return UnknownVal();
    
  if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
    return getSVal(RecE);

  // An instance message with no expression means we are sending to super.
  // In this case the object reference is the same as 'self'.
  const LocationContext *LCtx = getLocationContext();
  const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
  assert(SelfDecl && "No message receiver Expr, but not in an ObjC method");
  return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
}

SourceRange ObjCMethodCall::getSourceRange() const {
  switch (getMessageKind()) {
  case OCM_Message:
    return getOriginExpr()->getSourceRange();
  case OCM_PropertyAccess:
  case OCM_Subscript:
    return getContainingPseudoObjectExpr()->getSourceRange();
  }
  llvm_unreachable("unknown message kind");
}

typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;

const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
  assert(Data != 0 && "Lazy lookup not yet performed.");
  assert(getMessageKind() != OCM_Message && "Explicit message send.");
  return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
}

ObjCMessageKind ObjCMethodCall::getMessageKind() const {
  if (Data == 0) {
    ParentMap &PM = getLocationContext()->getParentMap();
    const Stmt *S = PM.getParent(getOriginExpr());
    if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
      const Expr *Syntactic = POE->getSyntacticForm();

      // This handles the funny case of assigning to the result of a getter.
      // This can happen if the getter returns a non-const reference.
      if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
        Syntactic = BO->getLHS();

      ObjCMessageKind K;
      switch (Syntactic->getStmtClass()) {
      case Stmt::ObjCPropertyRefExprClass:
        K = OCM_PropertyAccess;
        break;
      case Stmt::ObjCSubscriptRefExprClass:
        K = OCM_Subscript;
        break;
      default:
        // FIXME: Can this ever happen?
        K = OCM_Message;
        break;
      }

      if (K != OCM_Message) {
        const_cast<ObjCMethodCall *>(this)->Data
          = ObjCMessageDataTy(POE, K).getOpaqueValue();
        assert(getMessageKind() == K);
        return K;
      }
    }
    
    const_cast<ObjCMethodCall *>(this)->Data
      = ObjCMessageDataTy(0, 1).getOpaqueValue();
    assert(getMessageKind() == OCM_Message);
    return OCM_Message;
  }

  ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
  if (!Info.getPointer())
    return OCM_Message;
  return static_cast<ObjCMessageKind>(Info.getInt());
}


bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
                                             Selector Sel) const {
  assert(IDecl);
  const SourceManager &SM =
    getState()->getStateManager().getContext().getSourceManager();

  // If the class interface is declared inside the main file, assume it is not
  // subcassed. 
  // TODO: It could actually be subclassed if the subclass is private as well.
  // This is probably very rare.
  SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
  if (InterfLoc.isValid() && SM.isFromMainFile(InterfLoc))
    return false;

  // Assume that property accessors are not overridden.
  if (getMessageKind() == OCM_PropertyAccess)
    return false;

  // We assume that if the method is public (declared outside of main file) or
  // has a parent which publicly declares the method, the method could be
  // overridden in a subclass.

  // Find the first declaration in the class hierarchy that declares
  // the selector.
  ObjCMethodDecl *D = 0;
  while (true) {
    D = IDecl->lookupMethod(Sel, true);

    // Cannot find a public definition.
    if (!D)
      return false;

    // If outside the main file,
    if (D->getLocation().isValid() && !SM.isFromMainFile(D->getLocation()))
      return true;

    if (D->isOverriding()) {
      // Search in the superclass on the next iteration.
      IDecl = D->getClassInterface();
      if (!IDecl)
        return false;

      IDecl = IDecl->getSuperClass();
      if (!IDecl)
        return false;

      continue;
    }

    return false;
  };

  llvm_unreachable("The while loop should always terminate.");
}

RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
  const ObjCMessageExpr *E = getOriginExpr();
  assert(E);
  Selector Sel = E->getSelector();

  if (E->isInstanceMessage()) {

    // Find the the receiver type.
    const ObjCObjectPointerType *ReceiverT = 0;
    bool CanBeSubClassed = false;
    QualType SupersType = E->getSuperType();
    const MemRegion *Receiver = 0;

    if (!SupersType.isNull()) {
      // Super always means the type of immediate predecessor to the method
      // where the call occurs.
      ReceiverT = cast<ObjCObjectPointerType>(SupersType);
    } else {
      Receiver = getReceiverSVal().getAsRegion();
      if (!Receiver)
        return RuntimeDefinition();

      DynamicTypeInfo DTI = getState()->getDynamicTypeInfo(Receiver);
      QualType DynType = DTI.getType();
      CanBeSubClassed = DTI.canBeASubClass();
      ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType);

      if (ReceiverT && CanBeSubClassed)
        if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
          if (!canBeOverridenInSubclass(IDecl, Sel))
            CanBeSubClassed = false;
    }

    // Lookup the method implementation.
    if (ReceiverT)
      if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
        const ObjCMethodDecl *MD = IDecl->lookupPrivateMethod(Sel);
        if (CanBeSubClassed)
          return RuntimeDefinition(MD, Receiver);
        else
          return RuntimeDefinition(MD, 0);
      }

  } else {
    // This is a class method.
    // If we have type info for the receiver class, we are calling via
    // class name.
    if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
      // Find/Return the method implementation.
      return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
    }
  }

  return RuntimeDefinition();
}

void ObjCMethodCall::getInitialStackFrameContents(
                                             const StackFrameContext *CalleeCtx,
                                             BindingsTy &Bindings) const {
  const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
                               D->param_begin(), D->param_end());

  SVal SelfVal = getReceiverSVal();
  if (!SelfVal.isUnknown()) {
    const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
    MemRegionManager &MRMgr = SVB.getRegionManager();
    Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
    Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
  }
}

CallEventRef<>
CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
                                const LocationContext *LCtx) {
  if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE))
    return create<CXXMemberCall>(MCE, State, LCtx);

  if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
    const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
      if (MD->isInstance())
        return create<CXXMemberOperatorCall>(OpCE, State, LCtx);

  } else if (CE->getCallee()->getType()->isBlockPointerType()) {
    return create<BlockCall>(CE, State, LCtx);
  }

  // Otherwise, it's a normal function call, static member function call, or
  // something we can't reason about.
  return create<FunctionCall>(CE, State, LCtx);
}


CallEventRef<>
CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
                            ProgramStateRef State) {
  const LocationContext *ParentCtx = CalleeCtx->getParent();
  const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
  assert(CallerCtx && "This should not be used for top-level stack frames");

  const Stmt *CallSite = CalleeCtx->getCallSite();

  if (CallSite) {
    if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
      return getSimpleCall(CE, State, CallerCtx);

    switch (CallSite->getStmtClass()) {
    case Stmt::CXXConstructExprClass: {
      SValBuilder &SVB = State->getStateManager().getSValBuilder();
      const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
      Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
      SVal ThisVal = State->getSVal(ThisPtr);

      return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
                                   ThisVal.getAsRegion(), State, CallerCtx);
    }
    case Stmt::CXXNewExprClass:
      return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
    case Stmt::ObjCMessageExprClass:
      return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
                               State, CallerCtx);
    default:
      llvm_unreachable("This is not an inlineable statement.");
    }
  }

  // Fall back to the CFG. The only thing we haven't handled yet is
  // destructors, though this could change in the future.
  const CFGBlock *B = CalleeCtx->getCallSiteBlock();
  CFGElement E = (*B)[CalleeCtx->getIndex()];
  assert(isa<CFGImplicitDtor>(E) && "All other CFG elements should have exprs");
  assert(!isa<CFGTemporaryDtor>(E) && "We don't handle temporaries yet");

  SValBuilder &SVB = State->getStateManager().getSValBuilder();
  const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
  Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
  SVal ThisVal = State->getSVal(ThisPtr);

  const Stmt *Trigger;
  if (const CFGAutomaticObjDtor *AutoDtor = dyn_cast<CFGAutomaticObjDtor>(&E))
    Trigger = AutoDtor->getTriggerStmt();
  else
    Trigger = Dtor->getBody();

  return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
                              State, CallerCtx);
}