aboutsummaryrefslogtreecommitdiff
path: root/lib/StaticAnalyzer/Core/CallEvent.cpp
blob: 420e2a6b5c8c2fa597ac170b2890dda2a270216a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
//===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file This file defines CallEvent and its subclasses, which represent path-
/// sensitive instances of different kinds of function and method calls
/// (C, C++, and Objective-C).
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/AST/ParentMap.h"
#include "clang/Analysis/ProgramPoint.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/raw_ostream.h"

using namespace clang;
using namespace ento;

QualType CallEvent::getResultType() const {
  const Expr *E = getOriginExpr();
  assert(E && "Calls without origin expressions do not have results");
  QualType ResultTy = E->getType();

  ASTContext &Ctx = getState()->getStateManager().getContext();

  // A function that returns a reference to 'int' will have a result type
  // of simply 'int'. Check the origin expr's value kind to recover the
  // proper type.
  switch (E->getValueKind()) {
  case VK_LValue:
    ResultTy = Ctx.getLValueReferenceType(ResultTy);
    break;
  case VK_XValue:
    ResultTy = Ctx.getRValueReferenceType(ResultTy);
    break;
  case VK_RValue:
    // No adjustment is necessary.
    break;
  }

  return ResultTy;
}

static bool isCallback(QualType T) {
  // If a parameter is a block or a callback, assume it can modify pointer.
  if (T->isBlockPointerType() ||
      T->isFunctionPointerType() ||
      T->isObjCSelType())
    return true;

  // Check if a callback is passed inside a struct (for both, struct passed by
  // reference and by value). Dig just one level into the struct for now.

  if (T->isAnyPointerType() || T->isReferenceType())
    T = T->getPointeeType();

  if (const RecordType *RT = T->getAsStructureType()) {
    const RecordDecl *RD = RT->getDecl();
    for (const auto *I : RD->fields()) {
      QualType FieldT = I->getType();
      if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
        return true;
    }
  }
  return false;
}

static bool isVoidPointerToNonConst(QualType T) {
  if (const PointerType *PT = T->getAs<PointerType>()) {
    QualType PointeeTy = PT->getPointeeType();
    if (PointeeTy.isConstQualified())
      return false;
    return PointeeTy->isVoidType();
  } else
    return false;
}

bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
  unsigned NumOfArgs = getNumArgs();

  // If calling using a function pointer, assume the function does not
  // satisfy the callback.
  // TODO: We could check the types of the arguments here.
  if (!getDecl())
    return false;

  unsigned Idx = 0;
  for (CallEvent::param_type_iterator I = param_type_begin(),
                                      E = param_type_end();
       I != E && Idx < NumOfArgs; ++I, ++Idx) {
    if (NumOfArgs <= Idx)
      break;

    // If the parameter is 0, it's harmless.
    if (getArgSVal(Idx).isZeroConstant())
      continue;

    if (Condition(*I))
      return true;
  }
  return false;
}

bool CallEvent::hasNonZeroCallbackArg() const {
  return hasNonNullArgumentsWithType(isCallback);
}

bool CallEvent::hasVoidPointerToNonConstArg() const {
  return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
}

bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
  if (!FD)
    return false;

  return CheckerContext::isCLibraryFunction(FD, FunctionName);
}

/// \brief Returns true if a type is a pointer-to-const or reference-to-const
/// with no further indirection.
static bool isPointerToConst(QualType Ty) {
  QualType PointeeTy = Ty->getPointeeType();
  if (PointeeTy == QualType())
    return false;
  if (!PointeeTy.isConstQualified())
    return false;
  if (PointeeTy->isAnyPointerType())
    return false;
  return true;
}

// Try to retrieve the function declaration and find the function parameter
// types which are pointers/references to a non-pointer const.
// We will not invalidate the corresponding argument regions.
static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
                                 const CallEvent &Call) {
  unsigned Idx = 0;
  for (CallEvent::param_type_iterator I = Call.param_type_begin(),
                                      E = Call.param_type_end();
       I != E; ++I, ++Idx) {
    if (isPointerToConst(*I))
      PreserveArgs.insert(Idx);
  }
}

ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
                                             ProgramStateRef Orig) const {
  ProgramStateRef Result = (Orig ? Orig : getState());

  // Don't invalidate anything if the callee is marked pure/const.
  if (const Decl *callee = getDecl())
    if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
      return Result;

  SmallVector<SVal, 8> ValuesToInvalidate;
  RegionAndSymbolInvalidationTraits ETraits;

  getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);

  // Indexes of arguments whose values will be preserved by the call.
  llvm::SmallSet<unsigned, 4> PreserveArgs;
  if (!argumentsMayEscape())
    findPtrToConstParams(PreserveArgs, *this);

  for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
    // Mark this region for invalidation.  We batch invalidate regions
    // below for efficiency.
    if (PreserveArgs.count(Idx))
      if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
        ETraits.setTrait(MR->getBaseRegion(),
                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
        // TODO: Factor this out + handle the lower level const pointers.

    ValuesToInvalidate.push_back(getArgSVal(Idx));
  }

  // Invalidate designated regions using the batch invalidation API.
  // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
  //  global variables.
  return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
                                   BlockCount, getLocationContext(),
                                   /*CausedByPointerEscape*/ true,
                                   /*Symbols=*/nullptr, this, &ETraits);
}

ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
                                        const ProgramPointTag *Tag) const {
  if (const Expr *E = getOriginExpr()) {
    if (IsPreVisit)
      return PreStmt(E, getLocationContext(), Tag);
    return PostStmt(E, getLocationContext(), Tag);
  }

  const Decl *D = getDecl();
  assert(D && "Cannot get a program point without a statement or decl");

  SourceLocation Loc = getSourceRange().getBegin();
  if (IsPreVisit)
    return PreImplicitCall(D, Loc, getLocationContext(), Tag);
  return PostImplicitCall(D, Loc, getLocationContext(), Tag);
}

bool CallEvent::isCalled(const CallDescription &CD) const {
  assert(getKind() != CE_ObjCMessage && "Obj-C methods are not supported");
  if (!CD.II)
    CD.II = &getState()->getStateManager().getContext().Idents.get(CD.FuncName);
  if (getCalleeIdentifier() != CD.II)
    return false;
  return (CD.RequiredArgs == CallDescription::NoArgRequirement ||
          CD.RequiredArgs == getNumArgs());
}

SVal CallEvent::getArgSVal(unsigned Index) const {
  const Expr *ArgE = getArgExpr(Index);
  if (!ArgE)
    return UnknownVal();
  return getSVal(ArgE);
}

SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
  const Expr *ArgE = getArgExpr(Index);
  if (!ArgE)
    return SourceRange();
  return ArgE->getSourceRange();
}

SVal CallEvent::getReturnValue() const {
  const Expr *E = getOriginExpr();
  if (!E)
    return UndefinedVal();
  return getSVal(E);
}

LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }

void CallEvent::dump(raw_ostream &Out) const {
  ASTContext &Ctx = getState()->getStateManager().getContext();
  if (const Expr *E = getOriginExpr()) {
    E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
    Out << "\n";
    return;
  }

  if (const Decl *D = getDecl()) {
    Out << "Call to ";
    D->print(Out, Ctx.getPrintingPolicy());
    return;
  }

  // FIXME: a string representation of the kind would be nice.
  Out << "Unknown call (type " << getKind() << ")";
}


bool CallEvent::isCallStmt(const Stmt *S) {
  return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
                          || isa<CXXConstructExpr>(S)
                          || isa<CXXNewExpr>(S);
}

QualType CallEvent::getDeclaredResultType(const Decl *D) {
  assert(D);
  if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D))
    return FD->getReturnType();
  if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D))
    return MD->getReturnType();
  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
    // Blocks are difficult because the return type may not be stored in the
    // BlockDecl itself. The AST should probably be enhanced, but for now we
    // just do what we can.
    // If the block is declared without an explicit argument list, the
    // signature-as-written just includes the return type, not the entire
    // function type.
    // FIXME: All blocks should have signatures-as-written, even if the return
    // type is inferred. (That's signified with a dependent result type.)
    if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
      QualType Ty = TSI->getType();
      if (const FunctionType *FT = Ty->getAs<FunctionType>())
        Ty = FT->getReturnType();
      if (!Ty->isDependentType())
        return Ty;
    }

    return QualType();
  }

  llvm_unreachable("unknown callable kind");
}

bool CallEvent::isVariadic(const Decl *D) {
  assert(D);

  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
    return FD->isVariadic();
  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
    return MD->isVariadic();
  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
    return BD->isVariadic();

  llvm_unreachable("unknown callable kind");
}

static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
                                         CallEvent::BindingsTy &Bindings,
                                         SValBuilder &SVB,
                                         const CallEvent &Call,
                                         ArrayRef<ParmVarDecl*> parameters) {
  MemRegionManager &MRMgr = SVB.getRegionManager();

  // If the function has fewer parameters than the call has arguments, we simply
  // do not bind any values to them.
  unsigned NumArgs = Call.getNumArgs();
  unsigned Idx = 0;
  ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
  for (; I != E && Idx < NumArgs; ++I, ++Idx) {
    const ParmVarDecl *ParamDecl = *I;
    assert(ParamDecl && "Formal parameter has no decl?");

    SVal ArgVal = Call.getArgSVal(Idx);
    if (!ArgVal.isUnknown()) {
      Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
      Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
    }
  }

  // FIXME: Variadic arguments are not handled at all right now.
}

ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
  const FunctionDecl *D = getDecl();
  if (!D)
    return None;
  return D->parameters();
}

void AnyFunctionCall::getInitialStackFrameContents(
                                        const StackFrameContext *CalleeCtx,
                                        BindingsTy &Bindings) const {
  const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl());
  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
                               D->parameters());
}

bool AnyFunctionCall::argumentsMayEscape() const {
  if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
    return true;

  const FunctionDecl *D = getDecl();
  if (!D)
    return true;

  const IdentifierInfo *II = D->getIdentifier();
  if (!II)
    return false;

  // This set of "escaping" APIs is

  // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
  //   value into thread local storage. The value can later be retrieved with
  //   'void *ptheread_getspecific(pthread_key)'. So even thought the
  //   parameter is 'const void *', the region escapes through the call.
  if (II->isStr("pthread_setspecific"))
    return true;

  // - xpc_connection_set_context stores a value which can be retrieved later
  //   with xpc_connection_get_context.
  if (II->isStr("xpc_connection_set_context"))
    return true;

  // - funopen - sets a buffer for future IO calls.
  if (II->isStr("funopen"))
    return true;

  // - __cxa_demangle - can reallocate memory and can return the pointer to
  // the input buffer.
  if (II->isStr("__cxa_demangle"))
    return true;

  StringRef FName = II->getName();

  // - CoreFoundation functions that end with "NoCopy" can free a passed-in
  //   buffer even if it is const.
  if (FName.endswith("NoCopy"))
    return true;

  // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
  //   be deallocated by NSMapRemove.
  if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
    return true;

  // - Many CF containers allow objects to escape through custom
  //   allocators/deallocators upon container construction. (PR12101)
  if (FName.startswith("CF") || FName.startswith("CG")) {
    return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
           StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
           StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
           StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
           StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
           StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
  }

  return false;
}


const FunctionDecl *SimpleFunctionCall::getDecl() const {
  const FunctionDecl *D = getOriginExpr()->getDirectCallee();
  if (D)
    return D;

  return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
}


const FunctionDecl *CXXInstanceCall::getDecl() const {
  const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr());
  if (!CE)
    return AnyFunctionCall::getDecl();

  const FunctionDecl *D = CE->getDirectCallee();
  if (D)
    return D;

  return getSVal(CE->getCallee()).getAsFunctionDecl();
}

void CXXInstanceCall::getExtraInvalidatedValues(
    ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
  SVal ThisVal = getCXXThisVal();
  Values.push_back(ThisVal);

  // Don't invalidate if the method is const and there are no mutable fields.
  if (const CXXMethodDecl *D = cast_or_null<CXXMethodDecl>(getDecl())) {
    if (!D->isConst())
      return;
    // Get the record decl for the class of 'This'. D->getParent() may return a
    // base class decl, rather than the class of the instance which needs to be
    // checked for mutable fields.
    const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
    const CXXRecordDecl *ParentRecord = Ex->getType()->getAsCXXRecordDecl();
    if (!ParentRecord || ParentRecord->hasMutableFields())
      return;
    // Preserve CXXThis.
    const MemRegion *ThisRegion = ThisVal.getAsRegion();
    if (!ThisRegion)
      return;

    ETraits->setTrait(ThisRegion->getBaseRegion(),
                      RegionAndSymbolInvalidationTraits::TK_PreserveContents);
  }
}

SVal CXXInstanceCall::getCXXThisVal() const {
  const Expr *Base = getCXXThisExpr();
  // FIXME: This doesn't handle an overloaded ->* operator.
  if (!Base)
    return UnknownVal();

  SVal ThisVal = getSVal(Base);
  assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
  return ThisVal;
}


RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
  // Do we have a decl at all?
  const Decl *D = getDecl();
  if (!D)
    return RuntimeDefinition();

  // If the method is non-virtual, we know we can inline it.
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
  if (!MD->isVirtual())
    return AnyFunctionCall::getRuntimeDefinition();

  // Do we know the implicit 'this' object being called?
  const MemRegion *R = getCXXThisVal().getAsRegion();
  if (!R)
    return RuntimeDefinition();

  // Do we know anything about the type of 'this'?
  DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
  if (!DynType.isValid())
    return RuntimeDefinition();

  // Is the type a C++ class? (This is mostly a defensive check.)
  QualType RegionType = DynType.getType()->getPointeeType();
  assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");

  const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
  if (!RD || !RD->hasDefinition())
    return RuntimeDefinition();

  // Find the decl for this method in that class.
  const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
  if (!Result) {
    // We might not even get the original statically-resolved method due to
    // some particularly nasty casting (e.g. casts to sister classes).
    // However, we should at least be able to search up and down our own class
    // hierarchy, and some real bugs have been caught by checking this.
    assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");

    // FIXME: This is checking that our DynamicTypeInfo is at least as good as
    // the static type. However, because we currently don't update
    // DynamicTypeInfo when an object is cast, we can't actually be sure the
    // DynamicTypeInfo is up to date. This assert should be re-enabled once
    // this is fixed. <rdar://problem/12287087>
    //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");

    return RuntimeDefinition();
  }

  // Does the decl that we found have an implementation?
  const FunctionDecl *Definition;
  if (!Result->hasBody(Definition))
    return RuntimeDefinition();

  // We found a definition. If we're not sure that this devirtualization is
  // actually what will happen at runtime, make sure to provide the region so
  // that ExprEngine can decide what to do with it.
  if (DynType.canBeASubClass())
    return RuntimeDefinition(Definition, R->StripCasts());
  return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
}

void CXXInstanceCall::getInitialStackFrameContents(
                                            const StackFrameContext *CalleeCtx,
                                            BindingsTy &Bindings) const {
  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);

  // Handle the binding of 'this' in the new stack frame.
  SVal ThisVal = getCXXThisVal();
  if (!ThisVal.isUnknown()) {
    ProgramStateManager &StateMgr = getState()->getStateManager();
    SValBuilder &SVB = StateMgr.getSValBuilder();

    const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);

    // If we devirtualized to a different member function, we need to make sure
    // we have the proper layering of CXXBaseObjectRegions.
    if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
      ASTContext &Ctx = SVB.getContext();
      const CXXRecordDecl *Class = MD->getParent();
      QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));

      // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
      bool Failed;
      ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
      assert(!Failed && "Calling an incorrectly devirtualized method");
    }

    if (!ThisVal.isUnknown())
      Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
  }
}



const Expr *CXXMemberCall::getCXXThisExpr() const {
  return getOriginExpr()->getImplicitObjectArgument();
}

RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
  // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
  // id-expression in the class member access expression is a qualified-id,
  // that function is called. Otherwise, its final overrider in the dynamic type
  // of the object expression is called.
  if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
    if (ME->hasQualifier())
      return AnyFunctionCall::getRuntimeDefinition();

  return CXXInstanceCall::getRuntimeDefinition();
}


const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
  return getOriginExpr()->getArg(0);
}


const BlockDataRegion *BlockCall::getBlockRegion() const {
  const Expr *Callee = getOriginExpr()->getCallee();
  const MemRegion *DataReg = getSVal(Callee).getAsRegion();

  return dyn_cast_or_null<BlockDataRegion>(DataReg);
}

ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
  const BlockDecl *D = getDecl();
  if (!D)
    return nullptr;
  return D->parameters();
}

void BlockCall::getExtraInvalidatedValues(ValueList &Values,
                  RegionAndSymbolInvalidationTraits *ETraits) const {
  // FIXME: This also needs to invalidate captured globals.
  if (const MemRegion *R = getBlockRegion())
    Values.push_back(loc::MemRegionVal(R));
}

void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
                                             BindingsTy &Bindings) const {
  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
  ArrayRef<ParmVarDecl*> Params;
  if (isConversionFromLambda()) {
    auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
    Params = LambdaOperatorDecl->parameters();

    // For blocks converted from a C++ lambda, the callee declaration is the
    // operator() method on the lambda so we bind "this" to
    // the lambda captured by the block.
    const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
    SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
    Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
    Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
  } else {
    Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
  }

  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
                               Params);
}


SVal CXXConstructorCall::getCXXThisVal() const {
  if (Data)
    return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
  return UnknownVal();
}

void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
                           RegionAndSymbolInvalidationTraits *ETraits) const {
  if (Data)
    Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data)));
}

void CXXConstructorCall::getInitialStackFrameContents(
                                             const StackFrameContext *CalleeCtx,
                                             BindingsTy &Bindings) const {
  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);

  SVal ThisVal = getCXXThisVal();
  if (!ThisVal.isUnknown()) {
    SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
    const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
    Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
  }
}

SVal CXXDestructorCall::getCXXThisVal() const {
  if (Data)
    return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
  return UnknownVal();
}

RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
  // Base destructors are always called non-virtually.
  // Skip CXXInstanceCall's devirtualization logic in this case.
  if (isBaseDestructor())
    return AnyFunctionCall::getRuntimeDefinition();

  return CXXInstanceCall::getRuntimeDefinition();
}

ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
  const ObjCMethodDecl *D = getDecl();
  if (!D)
    return None;
  return D->parameters();
}

void ObjCMethodCall::getExtraInvalidatedValues(
    ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {

  // If the method call is a setter for property known to be backed by
  // an instance variable, don't invalidate the entire receiver, just
  // the storage for that instance variable.
  if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
    if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
      SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
      const MemRegion *IvarRegion = IvarLVal.getAsRegion();
      ETraits->setTrait(
          IvarRegion,
          RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
      ETraits->setTrait(IvarRegion,
                        RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
      Values.push_back(IvarLVal);
      return;
    }
  }

  Values.push_back(getReceiverSVal());
}

SVal ObjCMethodCall::getSelfSVal() const {
  const LocationContext *LCtx = getLocationContext();
  const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
  if (!SelfDecl)
    return SVal();
  return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
}

SVal ObjCMethodCall::getReceiverSVal() const {
  // FIXME: Is this the best way to handle class receivers?
  if (!isInstanceMessage())
    return UnknownVal();

  if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
    return getSVal(RecE);

  // An instance message with no expression means we are sending to super.
  // In this case the object reference is the same as 'self'.
  assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
  SVal SelfVal = getSelfSVal();
  assert(SelfVal.isValid() && "Calling super but not in ObjC method");
  return SelfVal;
}

bool ObjCMethodCall::isReceiverSelfOrSuper() const {
  if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
      getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
      return true;

  if (!isInstanceMessage())
    return false;

  SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());

  return (RecVal == getSelfSVal());
}

SourceRange ObjCMethodCall::getSourceRange() const {
  switch (getMessageKind()) {
  case OCM_Message:
    return getOriginExpr()->getSourceRange();
  case OCM_PropertyAccess:
  case OCM_Subscript:
    return getContainingPseudoObjectExpr()->getSourceRange();
  }
  llvm_unreachable("unknown message kind");
}

typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;

const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
  assert(Data && "Lazy lookup not yet performed.");
  assert(getMessageKind() != OCM_Message && "Explicit message send.");
  return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
}

static const Expr *
getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
  const Expr *Syntactic = POE->getSyntacticForm();

  // This handles the funny case of assigning to the result of a getter.
  // This can happen if the getter returns a non-const reference.
  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
    Syntactic = BO->getLHS();

  return Syntactic;
}

ObjCMessageKind ObjCMethodCall::getMessageKind() const {
  if (!Data) {

    // Find the parent, ignoring implicit casts.
    ParentMap &PM = getLocationContext()->getParentMap();
    const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());

    // Check if parent is a PseudoObjectExpr.
    if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
      const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);

      ObjCMessageKind K;
      switch (Syntactic->getStmtClass()) {
      case Stmt::ObjCPropertyRefExprClass:
        K = OCM_PropertyAccess;
        break;
      case Stmt::ObjCSubscriptRefExprClass:
        K = OCM_Subscript;
        break;
      default:
        // FIXME: Can this ever happen?
        K = OCM_Message;
        break;
      }

      if (K != OCM_Message) {
        const_cast<ObjCMethodCall *>(this)->Data
          = ObjCMessageDataTy(POE, K).getOpaqueValue();
        assert(getMessageKind() == K);
        return K;
      }
    }

    const_cast<ObjCMethodCall *>(this)->Data
      = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
    assert(getMessageKind() == OCM_Message);
    return OCM_Message;
  }

  ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
  if (!Info.getPointer())
    return OCM_Message;
  return static_cast<ObjCMessageKind>(Info.getInt());
}

const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
  // Look for properties accessed with property syntax (foo.bar = ...)
  if ( getMessageKind() == OCM_PropertyAccess) {
    const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
    assert(POE && "Property access without PseudoObjectExpr?");

    const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
    auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);

    if (RefExpr->isExplicitProperty())
      return RefExpr->getExplicitProperty();
  }

  // Look for properties accessed with method syntax ([foo setBar:...]).
  const ObjCMethodDecl *MD = getDecl();
  if (!MD || !MD->isPropertyAccessor())
    return nullptr;

  // Note: This is potentially quite slow.
  return MD->findPropertyDecl();
}

bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
                                             Selector Sel) const {
  assert(IDecl);
  const SourceManager &SM =
    getState()->getStateManager().getContext().getSourceManager();

  // If the class interface is declared inside the main file, assume it is not
  // subcassed.
  // TODO: It could actually be subclassed if the subclass is private as well.
  // This is probably very rare.
  SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
  if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc))
    return false;

  // Assume that property accessors are not overridden.
  if (getMessageKind() == OCM_PropertyAccess)
    return false;

  // We assume that if the method is public (declared outside of main file) or
  // has a parent which publicly declares the method, the method could be
  // overridden in a subclass.

  // Find the first declaration in the class hierarchy that declares
  // the selector.
  ObjCMethodDecl *D = nullptr;
  while (true) {
    D = IDecl->lookupMethod(Sel, true);

    // Cannot find a public definition.
    if (!D)
      return false;

    // If outside the main file,
    if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation()))
      return true;

    if (D->isOverriding()) {
      // Search in the superclass on the next iteration.
      IDecl = D->getClassInterface();
      if (!IDecl)
        return false;

      IDecl = IDecl->getSuperClass();
      if (!IDecl)
        return false;

      continue;
    }

    return false;
  };

  llvm_unreachable("The while loop should always terminate.");
}

RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
  const ObjCMessageExpr *E = getOriginExpr();
  assert(E);
  Selector Sel = E->getSelector();

  if (E->isInstanceMessage()) {

    // Find the receiver type.
    const ObjCObjectPointerType *ReceiverT = nullptr;
    bool CanBeSubClassed = false;
    QualType SupersType = E->getSuperType();
    const MemRegion *Receiver = nullptr;

    if (!SupersType.isNull()) {
      // Super always means the type of immediate predecessor to the method
      // where the call occurs.
      ReceiverT = cast<ObjCObjectPointerType>(SupersType);
    } else {
      Receiver = getReceiverSVal().getAsRegion();
      if (!Receiver)
        return RuntimeDefinition();

      DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
      QualType DynType = DTI.getType();
      CanBeSubClassed = DTI.canBeASubClass();
      ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType);

      if (ReceiverT && CanBeSubClassed)
        if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
          if (!canBeOverridenInSubclass(IDecl, Sel))
            CanBeSubClassed = false;
    }

    // Lookup the method implementation.
    if (ReceiverT)
      if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
        // Repeatedly calling lookupPrivateMethod() is expensive, especially
        // when in many cases it returns null.  We cache the results so
        // that repeated queries on the same ObjCIntefaceDecl and Selector
        // don't incur the same cost.  On some test cases, we can see the
        // same query being issued thousands of times.
        //
        // NOTE: This cache is essentially a "global" variable, but it
        // only gets lazily created when we get here.  The value of the
        // cache probably comes from it being global across ExprEngines,
        // where the same queries may get issued.  If we are worried about
        // concurrency, or possibly loading/unloading ASTs, etc., we may
        // need to revisit this someday.  In terms of memory, this table
        // stays around until clang quits, which also may be bad if we
        // need to release memory.
        typedef std::pair<const ObjCInterfaceDecl*, Selector>
                PrivateMethodKey;
        typedef llvm::DenseMap<PrivateMethodKey,
                               Optional<const ObjCMethodDecl *> >
                PrivateMethodCache;

        static PrivateMethodCache PMC;
        Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];

        // Query lookupPrivateMethod() if the cache does not hit.
        if (!Val.hasValue()) {
          Val = IDecl->lookupPrivateMethod(Sel);

          // If the method is a property accessor, we should try to "inline" it
          // even if we don't actually have an implementation.
          if (!*Val)
            if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
              if (CompileTimeMD->isPropertyAccessor()) {
                if (!CompileTimeMD->getSelfDecl() &&
                    isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
                  // If the method is an accessor in a category, and it doesn't
                  // have a self declaration, first
                  // try to find the method in a class extension. This
                  // works around a bug in Sema where multiple accessors
                  // are synthesized for properties in class
                  // extensions that are redeclared in a category and the
                  // the implicit parameters are not filled in for
                  // the method on the category.
                  // This ensures we find the accessor in the extension, which
                  // has the implicit parameters filled in.
                  auto *ID = CompileTimeMD->getClassInterface();
                  for (auto *CatDecl : ID->visible_extensions()) {
                    Val = CatDecl->getMethod(Sel,
                                             CompileTimeMD->isInstanceMethod());
                    if (*Val)
                      break;
                  }
                }
                if (!*Val)
                  Val = IDecl->lookupInstanceMethod(Sel);
              }
        }

        const ObjCMethodDecl *MD = Val.getValue();
        if (CanBeSubClassed)
          return RuntimeDefinition(MD, Receiver);
        else
          return RuntimeDefinition(MD, nullptr);
      }

  } else {
    // This is a class method.
    // If we have type info for the receiver class, we are calling via
    // class name.
    if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
      // Find/Return the method implementation.
      return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
    }
  }

  return RuntimeDefinition();
}

bool ObjCMethodCall::argumentsMayEscape() const {
  if (isInSystemHeader() && !isInstanceMessage()) {
    Selector Sel = getSelector();
    if (Sel.getNumArgs() == 1 &&
        Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
      return true;
  }

  return CallEvent::argumentsMayEscape();
}

void ObjCMethodCall::getInitialStackFrameContents(
                                             const StackFrameContext *CalleeCtx,
                                             BindingsTy &Bindings) const {
  const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
                               D->parameters());

  SVal SelfVal = getReceiverSVal();
  if (!SelfVal.isUnknown()) {
    const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
    MemRegionManager &MRMgr = SVB.getRegionManager();
    Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
    Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
  }
}

CallEventRef<>
CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
                                const LocationContext *LCtx) {
  if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE))
    return create<CXXMemberCall>(MCE, State, LCtx);

  if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
    const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
      if (MD->isInstance())
        return create<CXXMemberOperatorCall>(OpCE, State, LCtx);

  } else if (CE->getCallee()->getType()->isBlockPointerType()) {
    return create<BlockCall>(CE, State, LCtx);
  }

  // Otherwise, it's a normal function call, static member function call, or
  // something we can't reason about.
  return create<SimpleFunctionCall>(CE, State, LCtx);
}


CallEventRef<>
CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
                            ProgramStateRef State) {
  const LocationContext *ParentCtx = CalleeCtx->getParent();
  const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
  assert(CallerCtx && "This should not be used for top-level stack frames");

  const Stmt *CallSite = CalleeCtx->getCallSite();

  if (CallSite) {
    if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
      return getSimpleCall(CE, State, CallerCtx);

    switch (CallSite->getStmtClass()) {
    case Stmt::CXXConstructExprClass:
    case Stmt::CXXTemporaryObjectExprClass: {
      SValBuilder &SVB = State->getStateManager().getSValBuilder();
      const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
      Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
      SVal ThisVal = State->getSVal(ThisPtr);

      return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
                                   ThisVal.getAsRegion(), State, CallerCtx);
    }
    case Stmt::CXXNewExprClass:
      return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
    case Stmt::ObjCMessageExprClass:
      return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
                               State, CallerCtx);
    default:
      llvm_unreachable("This is not an inlineable statement.");
    }
  }

  // Fall back to the CFG. The only thing we haven't handled yet is
  // destructors, though this could change in the future.
  const CFGBlock *B = CalleeCtx->getCallSiteBlock();
  CFGElement E = (*B)[CalleeCtx->getIndex()];
  assert(E.getAs<CFGImplicitDtor>() &&
         "All other CFG elements should have exprs");
  assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet");

  SValBuilder &SVB = State->getStateManager().getSValBuilder();
  const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
  Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
  SVal ThisVal = State->getSVal(ThisPtr);

  const Stmt *Trigger;
  if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
    Trigger = AutoDtor->getTriggerStmt();
  else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
    Trigger = cast<Stmt>(DeleteDtor->getDeleteExpr());
  else
    Trigger = Dtor->getBody();

  return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
                              E.getAs<CFGBaseDtor>().hasValue(), State,
                              CallerCtx);
}