aboutsummaryrefslogtreecommitdiff
path: root/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp
blob: df9e4d6f919975d89e1f93ec59efbd1fcc047779 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"

using namespace clang;
using namespace ento;

namespace {
class SimpleSValBuilder : public SValBuilder {
protected:
  SVal dispatchCast(SVal val, QualType castTy) override;
  SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override;
  SVal evalCastFromLoc(Loc val, QualType castTy) override;

public:
  SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
                    ProgramStateManager &stateMgr)
                    : SValBuilder(alloc, context, stateMgr) {}
  virtual ~SimpleSValBuilder() {}

  SVal evalMinus(NonLoc val) override;
  SVal evalComplement(NonLoc val) override;
  SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
                   NonLoc lhs, NonLoc rhs, QualType resultTy) override;
  SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
                   Loc lhs, Loc rhs, QualType resultTy) override;
  SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
                   Loc lhs, NonLoc rhs, QualType resultTy) override;

  /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
  ///  (integer) value, that value is returned. Otherwise, returns NULL.
  const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;

  SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
                     const llvm::APSInt &RHS, QualType resultTy);
};
} // end anonymous namespace

SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
                                           ASTContext &context,
                                           ProgramStateManager &stateMgr) {
  return new SimpleSValBuilder(alloc, context, stateMgr);
}

//===----------------------------------------------------------------------===//
// Transfer function for Casts.
//===----------------------------------------------------------------------===//

SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
  assert(Val.getAs<Loc>() || Val.getAs<NonLoc>());
  return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy)
                           : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy);
}

SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {

  bool isLocType = Loc::isLocType(castTy);

  if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) {
    if (isLocType)
      return LI->getLoc();

    // FIXME: Correctly support promotions/truncations.
    unsigned castSize = Context.getTypeSize(castTy);
    if (castSize == LI->getNumBits())
      return val;
    return makeLocAsInteger(LI->getLoc(), castSize);
  }

  if (const SymExpr *se = val.getAsSymbolicExpression()) {
    QualType T = Context.getCanonicalType(se->getType());
    // If types are the same or both are integers, ignore the cast.
    // FIXME: Remove this hack when we support symbolic truncation/extension.
    // HACK: If both castTy and T are integers, ignore the cast.  This is
    // not a permanent solution.  Eventually we want to precisely handle
    // extension/truncation of symbolic integers.  This prevents us from losing
    // precision when we assign 'x = y' and 'y' is symbolic and x and y are
    // different integer types.
   if (haveSameType(T, castTy))
      return val;

    if (!isLocType)
      return makeNonLoc(se, T, castTy);
    return UnknownVal();
  }

  // If value is a non-integer constant, produce unknown.
  if (!val.getAs<nonloc::ConcreteInt>())
    return UnknownVal();

  // Handle casts to a boolean type.
  if (castTy->isBooleanType()) {
    bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue();
    return makeTruthVal(b, castTy);
  }

  // Only handle casts from integers to integers - if val is an integer constant
  // being cast to a non-integer type, produce unknown.
  if (!isLocType && !castTy->isIntegralOrEnumerationType())
    return UnknownVal();

  llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue();
  BasicVals.getAPSIntType(castTy).apply(i);

  if (isLocType)
    return makeIntLocVal(i);
  else
    return makeIntVal(i);
}

SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {

  // Casts from pointers -> pointers, just return the lval.
  //
  // Casts from pointers -> references, just return the lval.  These
  //   can be introduced by the frontend for corner cases, e.g
  //   casting from va_list* to __builtin_va_list&.
  //
  if (Loc::isLocType(castTy) || castTy->isReferenceType())
    return val;

  // FIXME: Handle transparent unions where a value can be "transparently"
  //  lifted into a union type.
  if (castTy->isUnionType())
    return UnknownVal();

  // Casting a Loc to a bool will almost always be true,
  // unless this is a weak function or a symbolic region.
  if (castTy->isBooleanType()) {
    switch (val.getSubKind()) {
      case loc::MemRegionKind: {
        const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion();
        if (const FunctionTextRegion *FTR = dyn_cast<FunctionTextRegion>(R))
          if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
            if (FD->isWeak())
              // FIXME: Currently we are using an extent symbol here,
              // because there are no generic region address metadata
              // symbols to use, only content metadata.
              return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR));

        if (const SymbolicRegion *SymR = R->getSymbolicBase())
          return nonloc::SymbolVal(SymR->getSymbol());

        // FALL-THROUGH
      }

      case loc::GotoLabelKind:
        // Labels and non-symbolic memory regions are always true.
        return makeTruthVal(true, castTy);
    }
  }

  if (castTy->isIntegralOrEnumerationType()) {
    unsigned BitWidth = Context.getTypeSize(castTy);

    if (!val.getAs<loc::ConcreteInt>())
      return makeLocAsInteger(val, BitWidth);

    llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue();
    BasicVals.getAPSIntType(castTy).apply(i);
    return makeIntVal(i);
  }

  // All other cases: return 'UnknownVal'.  This includes casting pointers
  // to floats, which is probably badness it itself, but this is a good
  // intermediate solution until we do something better.
  return UnknownVal();
}

//===----------------------------------------------------------------------===//
// Transfer function for unary operators.
//===----------------------------------------------------------------------===//

SVal SimpleSValBuilder::evalMinus(NonLoc val) {
  switch (val.getSubKind()) {
  case nonloc::ConcreteIntKind:
    return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
  default:
    return UnknownVal();
  }
}

SVal SimpleSValBuilder::evalComplement(NonLoc X) {
  switch (X.getSubKind()) {
  case nonloc::ConcreteIntKind:
    return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
  default:
    return UnknownVal();
  }
}

//===----------------------------------------------------------------------===//
// Transfer function for binary operators.
//===----------------------------------------------------------------------===//

SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
                                    BinaryOperator::Opcode op,
                                    const llvm::APSInt &RHS,
                                    QualType resultTy) {
  bool isIdempotent = false;

  // Check for a few special cases with known reductions first.
  switch (op) {
  default:
    // We can't reduce this case; just treat it normally.
    break;
  case BO_Mul:
    // a*0 and a*1
    if (RHS == 0)
      return makeIntVal(0, resultTy);
    else if (RHS == 1)
      isIdempotent = true;
    break;
  case BO_Div:
    // a/0 and a/1
    if (RHS == 0)
      // This is also handled elsewhere.
      return UndefinedVal();
    else if (RHS == 1)
      isIdempotent = true;
    break;
  case BO_Rem:
    // a%0 and a%1
    if (RHS == 0)
      // This is also handled elsewhere.
      return UndefinedVal();
    else if (RHS == 1)
      return makeIntVal(0, resultTy);
    break;
  case BO_Add:
  case BO_Sub:
  case BO_Shl:
  case BO_Shr:
  case BO_Xor:
    // a+0, a-0, a<<0, a>>0, a^0
    if (RHS == 0)
      isIdempotent = true;
    break;
  case BO_And:
    // a&0 and a&(~0)
    if (RHS == 0)
      return makeIntVal(0, resultTy);
    else if (RHS.isAllOnesValue())
      isIdempotent = true;
    break;
  case BO_Or:
    // a|0 and a|(~0)
    if (RHS == 0)
      isIdempotent = true;
    else if (RHS.isAllOnesValue()) {
      const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
      return nonloc::ConcreteInt(Result);
    }
    break;
  }

  // Idempotent ops (like a*1) can still change the type of an expression.
  // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
  // dirty work.
  if (isIdempotent)
      return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);

  // If we reach this point, the expression cannot be simplified.
  // Make a SymbolVal for the entire expression, after converting the RHS.
  const llvm::APSInt *ConvertedRHS = &RHS;
  if (BinaryOperator::isComparisonOp(op)) {
    // We're looking for a type big enough to compare the symbolic value
    // with the given constant.
    // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
    ASTContext &Ctx = getContext();
    QualType SymbolType = LHS->getType();
    uint64_t ValWidth = RHS.getBitWidth();
    uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);

    if (ValWidth < TypeWidth) {
      // If the value is too small, extend it.
      ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
    } else if (ValWidth == TypeWidth) {
      // If the value is signed but the symbol is unsigned, do the comparison
      // in unsigned space. [C99 6.3.1.8]
      // (For the opposite case, the value is already unsigned.)
      if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
        ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
    }
  } else
    ConvertedRHS = &BasicVals.Convert(resultTy, RHS);

  return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
}

SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
                                  BinaryOperator::Opcode op,
                                  NonLoc lhs, NonLoc rhs,
                                  QualType resultTy)  {
  NonLoc InputLHS = lhs;
  NonLoc InputRHS = rhs;

  // Handle trivial case where left-side and right-side are the same.
  if (lhs == rhs)
    switch (op) {
      default:
        break;
      case BO_EQ:
      case BO_LE:
      case BO_GE:
        return makeTruthVal(true, resultTy);
      case BO_LT:
      case BO_GT:
      case BO_NE:
        return makeTruthVal(false, resultTy);
      case BO_Xor:
      case BO_Sub:
        if (resultTy->isIntegralOrEnumerationType())
          return makeIntVal(0, resultTy);
        return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy);
      case BO_Or:
      case BO_And:
        return evalCastFromNonLoc(lhs, resultTy);
    }

  while (1) {
    switch (lhs.getSubKind()) {
    default:
      return makeSymExprValNN(state, op, lhs, rhs, resultTy);
    case nonloc::LocAsIntegerKind: {
      Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
      switch (rhs.getSubKind()) {
        case nonloc::LocAsIntegerKind:
          return evalBinOpLL(state, op, lhsL,
                             rhs.castAs<nonloc::LocAsInteger>().getLoc(),
                             resultTy);
        case nonloc::ConcreteIntKind: {
          // Transform the integer into a location and compare.
          llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
          BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
          return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
        }
        default:
          switch (op) {
            case BO_EQ:
              return makeTruthVal(false, resultTy);
            case BO_NE:
              return makeTruthVal(true, resultTy);
            default:
              // This case also handles pointer arithmetic.
              return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
          }
      }
    }
    case nonloc::ConcreteIntKind: {
      llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();

      // If we're dealing with two known constants, just perform the operation.
      if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
        llvm::APSInt RHSValue = *KnownRHSValue;
        if (BinaryOperator::isComparisonOp(op)) {
          // We're looking for a type big enough to compare the two values.
          // FIXME: This is not correct. char + short will result in a promotion
          // to int. Unfortunately we have lost types by this point.
          APSIntType CompareType = std::max(APSIntType(LHSValue),
                                            APSIntType(RHSValue));
          CompareType.apply(LHSValue);
          CompareType.apply(RHSValue);
        } else if (!BinaryOperator::isShiftOp(op)) {
          APSIntType IntType = BasicVals.getAPSIntType(resultTy);
          IntType.apply(LHSValue);
          IntType.apply(RHSValue);
        }

        const llvm::APSInt *Result =
          BasicVals.evalAPSInt(op, LHSValue, RHSValue);
        if (!Result)
          return UndefinedVal();

        return nonloc::ConcreteInt(*Result);
      }

      // Swap the left and right sides and flip the operator if doing so
      // allows us to better reason about the expression (this is a form
      // of expression canonicalization).
      // While we're at it, catch some special cases for non-commutative ops.
      switch (op) {
      case BO_LT:
      case BO_GT:
      case BO_LE:
      case BO_GE:
        op = BinaryOperator::reverseComparisonOp(op);
        // FALL-THROUGH
      case BO_EQ:
      case BO_NE:
      case BO_Add:
      case BO_Mul:
      case BO_And:
      case BO_Xor:
      case BO_Or:
        std::swap(lhs, rhs);
        continue;
      case BO_Shr:
        // (~0)>>a
        if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
          return evalCastFromNonLoc(lhs, resultTy);
        // FALL-THROUGH
      case BO_Shl:
        // 0<<a and 0>>a
        if (LHSValue == 0)
          return evalCastFromNonLoc(lhs, resultTy);
        return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
      default:
        return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
      }
    }
    case nonloc::SymbolValKind: {
      // We only handle LHS as simple symbols or SymIntExprs.
      SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();

      // LHS is a symbolic expression.
      if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {

        // Is this a logical not? (!x is represented as x == 0.)
        if (op == BO_EQ && rhs.isZeroConstant()) {
          // We know how to negate certain expressions. Simplify them here.

          BinaryOperator::Opcode opc = symIntExpr->getOpcode();
          switch (opc) {
          default:
            // We don't know how to negate this operation.
            // Just handle it as if it were a normal comparison to 0.
            break;
          case BO_LAnd:
          case BO_LOr:
            llvm_unreachable("Logical operators handled by branching logic.");
          case BO_Assign:
          case BO_MulAssign:
          case BO_DivAssign:
          case BO_RemAssign:
          case BO_AddAssign:
          case BO_SubAssign:
          case BO_ShlAssign:
          case BO_ShrAssign:
          case BO_AndAssign:
          case BO_XorAssign:
          case BO_OrAssign:
          case BO_Comma:
            llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
          case BO_PtrMemD:
          case BO_PtrMemI:
            llvm_unreachable("Pointer arithmetic not handled here.");
          case BO_LT:
          case BO_GT:
          case BO_LE:
          case BO_GE:
          case BO_EQ:
          case BO_NE:
            assert(resultTy->isBooleanType() ||
                   resultTy == getConditionType());
            assert(symIntExpr->getType()->isBooleanType() ||
                   getContext().hasSameUnqualifiedType(symIntExpr->getType(),
                                                       getConditionType()));
            // Negate the comparison and make a value.
            opc = BinaryOperator::negateComparisonOp(opc);
            return makeNonLoc(symIntExpr->getLHS(), opc,
                symIntExpr->getRHS(), resultTy);
          }
        }

        // For now, only handle expressions whose RHS is a constant.
        if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
          // If both the LHS and the current expression are additive,
          // fold their constants and try again.
          if (BinaryOperator::isAdditiveOp(op)) {
            BinaryOperator::Opcode lop = symIntExpr->getOpcode();
            if (BinaryOperator::isAdditiveOp(lop)) {
              // Convert the two constants to a common type, then combine them.

              // resultTy may not be the best type to convert to, but it's
              // probably the best choice in expressions with mixed type
              // (such as x+1U+2LL). The rules for implicit conversions should
              // choose a reasonable type to preserve the expression, and will
              // at least match how the value is going to be used.
              APSIntType IntType = BasicVals.getAPSIntType(resultTy);
              const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
              const llvm::APSInt &second = IntType.convert(*RHSValue);

              const llvm::APSInt *newRHS;
              if (lop == op)
                newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
              else
                newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);

              assert(newRHS && "Invalid operation despite common type!");
              rhs = nonloc::ConcreteInt(*newRHS);
              lhs = nonloc::SymbolVal(symIntExpr->getLHS());
              op = lop;
              continue;
            }
          }

          // Otherwise, make a SymIntExpr out of the expression.
          return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
        }
      }

      // Does the symbolic expression simplify to a constant?
      // If so, "fold" the constant by setting 'lhs' to a ConcreteInt
      // and try again.
      ConstraintManager &CMgr = state->getConstraintManager();
      if (const llvm::APSInt *Constant = CMgr.getSymVal(state, Sym)) {
        lhs = nonloc::ConcreteInt(*Constant);
        continue;
      }

      // Is the RHS a constant?
      if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
        return MakeSymIntVal(Sym, op, *RHSValue, resultTy);

      // Give up -- this is not a symbolic expression we can handle.
      return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
    }
    }
  }
}

static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
                                            const FieldRegion *RightFR,
                                            BinaryOperator::Opcode op,
                                            QualType resultTy,
                                            SimpleSValBuilder &SVB) {
  // Only comparisons are meaningful here!
  if (!BinaryOperator::isComparisonOp(op))
    return UnknownVal();

  // Next, see if the two FRs have the same super-region.
  // FIXME: This doesn't handle casts yet, and simply stripping the casts
  // doesn't help.
  if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
    return UnknownVal();

  const FieldDecl *LeftFD = LeftFR->getDecl();
  const FieldDecl *RightFD = RightFR->getDecl();
  const RecordDecl *RD = LeftFD->getParent();

  // Make sure the two FRs are from the same kind of record. Just in case!
  // FIXME: This is probably where inheritance would be a problem.
  if (RD != RightFD->getParent())
    return UnknownVal();

  // We know for sure that the two fields are not the same, since that
  // would have given us the same SVal.
  if (op == BO_EQ)
    return SVB.makeTruthVal(false, resultTy);
  if (op == BO_NE)
    return SVB.makeTruthVal(true, resultTy);

  // Iterate through the fields and see which one comes first.
  // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
  // members and the units in which bit-fields reside have addresses that
  // increase in the order in which they are declared."
  bool leftFirst = (op == BO_LT || op == BO_LE);
  for (const auto *I : RD->fields()) {
    if (I == LeftFD)
      return SVB.makeTruthVal(leftFirst, resultTy);
    if (I == RightFD)
      return SVB.makeTruthVal(!leftFirst, resultTy);
  }

  llvm_unreachable("Fields not found in parent record's definition");
}

// FIXME: all this logic will change if/when we have MemRegion::getLocation().
SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
                                  BinaryOperator::Opcode op,
                                  Loc lhs, Loc rhs,
                                  QualType resultTy) {
  // Only comparisons and subtractions are valid operations on two pointers.
  // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
  // However, if a pointer is casted to an integer, evalBinOpNN may end up
  // calling this function with another operation (PR7527). We don't attempt to
  // model this for now, but it could be useful, particularly when the
  // "location" is actually an integer value that's been passed through a void*.
  if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
    return UnknownVal();

  // Special cases for when both sides are identical.
  if (lhs == rhs) {
    switch (op) {
    default:
      llvm_unreachable("Unimplemented operation for two identical values");
    case BO_Sub:
      return makeZeroVal(resultTy);
    case BO_EQ:
    case BO_LE:
    case BO_GE:
      return makeTruthVal(true, resultTy);
    case BO_NE:
    case BO_LT:
    case BO_GT:
      return makeTruthVal(false, resultTy);
    }
  }

  switch (lhs.getSubKind()) {
  default:
    llvm_unreachable("Ordering not implemented for this Loc.");

  case loc::GotoLabelKind:
    // The only thing we know about labels is that they're non-null.
    if (rhs.isZeroConstant()) {
      switch (op) {
      default:
        break;
      case BO_Sub:
        return evalCastFromLoc(lhs, resultTy);
      case BO_EQ:
      case BO_LE:
      case BO_LT:
        return makeTruthVal(false, resultTy);
      case BO_NE:
      case BO_GT:
      case BO_GE:
        return makeTruthVal(true, resultTy);
      }
    }
    // There may be two labels for the same location, and a function region may
    // have the same address as a label at the start of the function (depending
    // on the ABI).
    // FIXME: we can probably do a comparison against other MemRegions, though.
    // FIXME: is there a way to tell if two labels refer to the same location?
    return UnknownVal(); 

  case loc::ConcreteIntKind: {
    // If one of the operands is a symbol and the other is a constant,
    // build an expression for use by the constraint manager.
    if (SymbolRef rSym = rhs.getAsLocSymbol()) {
      // We can only build expressions with symbols on the left,
      // so we need a reversible operator.
      if (!BinaryOperator::isComparisonOp(op))
        return UnknownVal();

      const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
      op = BinaryOperator::reverseComparisonOp(op);
      return makeNonLoc(rSym, op, lVal, resultTy);
    }

    // If both operands are constants, just perform the operation.
    if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
      SVal ResultVal =
          lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
      if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>())
        return evalCastFromNonLoc(*Result, resultTy);

      assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs");
      return UnknownVal();
    }

    // Special case comparisons against NULL.
    // This must come after the test if the RHS is a symbol, which is used to
    // build constraints. The address of any non-symbolic region is guaranteed
    // to be non-NULL, as is any label.
    assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
    if (lhs.isZeroConstant()) {
      switch (op) {
      default:
        break;
      case BO_EQ:
      case BO_GT:
      case BO_GE:
        return makeTruthVal(false, resultTy);
      case BO_NE:
      case BO_LT:
      case BO_LE:
        return makeTruthVal(true, resultTy);
      }
    }

    // Comparing an arbitrary integer to a region or label address is
    // completely unknowable.
    return UnknownVal();
  }
  case loc::MemRegionKind: {
    if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
      // If one of the operands is a symbol and the other is a constant,
      // build an expression for use by the constraint manager.
      if (SymbolRef lSym = lhs.getAsLocSymbol(true))
        return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);

      // Special case comparisons to NULL.
      // This must come after the test if the LHS is a symbol, which is used to
      // build constraints. The address of any non-symbolic region is guaranteed
      // to be non-NULL.
      if (rInt->isZeroConstant()) {
        if (op == BO_Sub)
          return evalCastFromLoc(lhs, resultTy);

        if (BinaryOperator::isComparisonOp(op)) {
          QualType boolType = getContext().BoolTy;
          NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>();
          NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
          return evalBinOpNN(state, op, l, r, resultTy);
        }
      }

      // Comparing a region to an arbitrary integer is completely unknowable.
      return UnknownVal();
    }

    // Get both values as regions, if possible.
    const MemRegion *LeftMR = lhs.getAsRegion();
    assert(LeftMR && "MemRegionKind SVal doesn't have a region!");

    const MemRegion *RightMR = rhs.getAsRegion();
    if (!RightMR)
      // The RHS is probably a label, which in theory could address a region.
      // FIXME: we can probably make a more useful statement about non-code
      // regions, though.
      return UnknownVal();

    const MemRegion *LeftBase = LeftMR->getBaseRegion();
    const MemRegion *RightBase = RightMR->getBaseRegion();
    const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
    const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
    const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();

    // If the two regions are from different known memory spaces they cannot be
    // equal. Also, assume that no symbolic region (whose memory space is
    // unknown) is on the stack.
    if (LeftMS != RightMS &&
        ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
         (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
      switch (op) {
      default:
        return UnknownVal();
      case BO_EQ:
        return makeTruthVal(false, resultTy);
      case BO_NE:
        return makeTruthVal(true, resultTy);
      }
    }

    // If both values wrap regions, see if they're from different base regions.
    // Note, heap base symbolic regions are assumed to not alias with
    // each other; for example, we assume that malloc returns different address
    // on each invocation.
    if (LeftBase != RightBase &&
        ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
         (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
      switch (op) {
      default:
        return UnknownVal();
      case BO_EQ:
        return makeTruthVal(false, resultTy);
      case BO_NE:
        return makeTruthVal(true, resultTy);
      }
    }

    // Handle special cases for when both regions are element regions.
    const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
    const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
    if (RightER && LeftER) {
      // Next, see if the two ERs have the same super-region and matching types.
      // FIXME: This should do something useful even if the types don't match,
      // though if both indexes are constant the RegionRawOffset path will
      // give the correct answer.
      if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
          LeftER->getElementType() == RightER->getElementType()) {
        // Get the left index and cast it to the correct type.
        // If the index is unknown or undefined, bail out here.
        SVal LeftIndexVal = LeftER->getIndex();
        Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
        if (!LeftIndex)
          return UnknownVal();
        LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy);
        LeftIndex = LeftIndexVal.getAs<NonLoc>();
        if (!LeftIndex)
          return UnknownVal();

        // Do the same for the right index.
        SVal RightIndexVal = RightER->getIndex();
        Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
        if (!RightIndex)
          return UnknownVal();
        RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy);
        RightIndex = RightIndexVal.getAs<NonLoc>();
        if (!RightIndex)
          return UnknownVal();

        // Actually perform the operation.
        // evalBinOpNN expects the two indexes to already be the right type.
        return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
      }
    }

    // Special handling of the FieldRegions, even with symbolic offsets.
    const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
    const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
    if (RightFR && LeftFR) {
      SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
                                               *this);
      if (!R.isUnknown())
        return R;
    }

    // Compare the regions using the raw offsets.
    RegionOffset LeftOffset = LeftMR->getAsOffset();
    RegionOffset RightOffset = RightMR->getAsOffset();

    if (LeftOffset.getRegion() != nullptr &&
        LeftOffset.getRegion() == RightOffset.getRegion() &&
        !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
      int64_t left = LeftOffset.getOffset();
      int64_t right = RightOffset.getOffset();

      switch (op) {
        default:
          return UnknownVal();
        case BO_LT:
          return makeTruthVal(left < right, resultTy);
        case BO_GT:
          return makeTruthVal(left > right, resultTy);
        case BO_LE:
          return makeTruthVal(left <= right, resultTy);
        case BO_GE:
          return makeTruthVal(left >= right, resultTy);
        case BO_EQ:
          return makeTruthVal(left == right, resultTy);
        case BO_NE:
          return makeTruthVal(left != right, resultTy);
      }
    }

    // At this point we're not going to get a good answer, but we can try
    // conjuring an expression instead.
    SymbolRef LHSSym = lhs.getAsLocSymbol();
    SymbolRef RHSSym = rhs.getAsLocSymbol();
    if (LHSSym && RHSSym)
      return makeNonLoc(LHSSym, op, RHSSym, resultTy);

    // If we get here, we have no way of comparing the regions.
    return UnknownVal();
  }
  }
}

SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
                                  BinaryOperator::Opcode op,
                                  Loc lhs, NonLoc rhs, QualType resultTy) {
  assert(!BinaryOperator::isComparisonOp(op) &&
         "arguments to comparison ops must be of the same type");

  // Special case: rhs is a zero constant.
  if (rhs.isZeroConstant())
    return lhs;
  
  // We are dealing with pointer arithmetic.

  // Handle pointer arithmetic on constant values.
  if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
    if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
      const llvm::APSInt &leftI = lhsInt->getValue();
      assert(leftI.isUnsigned());
      llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);

      // Convert the bitwidth of rightI.  This should deal with overflow
      // since we are dealing with concrete values.
      rightI = rightI.extOrTrunc(leftI.getBitWidth());

      // Offset the increment by the pointer size.
      llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
      rightI *= Multiplicand;
      
      // Compute the adjusted pointer.
      switch (op) {
        case BO_Add:
          rightI = leftI + rightI;
          break;
        case BO_Sub:
          rightI = leftI - rightI;
          break;
        default:
          llvm_unreachable("Invalid pointer arithmetic operation");
      }
      return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
    }
  }

  // Handle cases where 'lhs' is a region.
  if (const MemRegion *region = lhs.getAsRegion()) {
    rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
    SVal index = UnknownVal();
    const MemRegion *superR = nullptr;
    QualType elementType;

    if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
      assert(op == BO_Add || op == BO_Sub);
      index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
                          getArrayIndexType());
      superR = elemReg->getSuperRegion();
      elementType = elemReg->getElementType();
    }
    else if (isa<SubRegion>(region)) {
      superR = region;
      index = rhs;
      if (resultTy->isAnyPointerType())
        elementType = resultTy->getPointeeType();
    }

    if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
      return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
                                                       superR, getContext()));
    }
  }
  return UnknownVal();  
}

const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
                                                   SVal V) {
  if (V.isUnknownOrUndef())
    return nullptr;

  if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
    return &X->getValue();

  if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
    return &X->getValue();

  if (SymbolRef Sym = V.getAsSymbol())
    return state->getConstraintManager().getSymVal(state, Sym);

  // FIXME: Add support for SymExprs.
  return nullptr;
}