aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/AArch64/AArch64CallLowering.cpp
blob: 59757769c89a74fa6dbdeccb58a3f8125895e11b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
//===--- AArch64CallLowering.cpp - Call lowering --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the lowering of LLVM calls to machine code calls for
/// GlobalISel.
///
//===----------------------------------------------------------------------===//

#include "AArch64CallLowering.h"
#include "AArch64ISelLowering.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64Subtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/MachineValueType.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>

#define DEBUG_TYPE "aarch64-call-lowering"

using namespace llvm;

AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI)
  : CallLowering(&TLI) {}

namespace {
struct IncomingArgHandler : public CallLowering::ValueHandler {
  IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                     CCAssignFn *AssignFn)
      : ValueHandler(MIRBuilder, MRI, AssignFn), StackUsed(0) {}

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO) override {
    auto &MFI = MIRBuilder.getMF().getFrameInfo();
    int FI = MFI.CreateFixedObject(Size, Offset, true);
    MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
    Register AddrReg = MRI.createGenericVirtualRegister(LLT::pointer(0, 64));
    MIRBuilder.buildFrameIndex(AddrReg, FI);
    StackUsed = std::max(StackUsed, Size + Offset);
    return AddrReg;
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign &VA) override {
    markPhysRegUsed(PhysReg);
    switch (VA.getLocInfo()) {
    default:
      MIRBuilder.buildCopy(ValVReg, PhysReg);
      break;
    case CCValAssign::LocInfo::SExt:
    case CCValAssign::LocInfo::ZExt:
    case CCValAssign::LocInfo::AExt: {
      auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
      MIRBuilder.buildTrunc(ValVReg, Copy);
      break;
    }
    }
  }

  void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    // FIXME: Get alignment
    auto MMO = MIRBuilder.getMF().getMachineMemOperand(
        MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size,
        1);
    MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
  }

  /// How the physical register gets marked varies between formal
  /// parameters (it's a basic-block live-in), and a call instruction
  /// (it's an implicit-def of the BL).
  virtual void markPhysRegUsed(unsigned PhysReg) = 0;

  bool isArgumentHandler() const override { return true; }

  uint64_t StackUsed;
};

struct FormalArgHandler : public IncomingArgHandler {
  FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                   CCAssignFn *AssignFn)
    : IncomingArgHandler(MIRBuilder, MRI, AssignFn) {}

  void markPhysRegUsed(unsigned PhysReg) override {
    MIRBuilder.getMBB().addLiveIn(PhysReg);
  }
};

struct CallReturnHandler : public IncomingArgHandler {
  CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                    MachineInstrBuilder MIB, CCAssignFn *AssignFn)
    : IncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}

  void markPhysRegUsed(unsigned PhysReg) override {
    MIB.addDef(PhysReg, RegState::Implicit);
  }

  MachineInstrBuilder MIB;
};

struct OutgoingArgHandler : public CallLowering::ValueHandler {
  OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                     MachineInstrBuilder MIB, CCAssignFn *AssignFn,
                     CCAssignFn *AssignFnVarArg)
      : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB),
        AssignFnVarArg(AssignFnVarArg), StackSize(0) {}

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO) override {
    LLT p0 = LLT::pointer(0, 64);
    LLT s64 = LLT::scalar(64);
    Register SPReg = MRI.createGenericVirtualRegister(p0);
    MIRBuilder.buildCopy(SPReg, Register(AArch64::SP));

    Register OffsetReg = MRI.createGenericVirtualRegister(s64);
    MIRBuilder.buildConstant(OffsetReg, Offset);

    Register AddrReg = MRI.createGenericVirtualRegister(p0);
    MIRBuilder.buildGEP(AddrReg, SPReg, OffsetReg);

    MPO = MachinePointerInfo::getStack(MIRBuilder.getMF(), Offset);
    return AddrReg;
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign &VA) override {
    MIB.addUse(PhysReg, RegState::Implicit);
    Register ExtReg = extendRegister(ValVReg, VA);
    MIRBuilder.buildCopy(PhysReg, ExtReg);
  }

  void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    if (VA.getLocInfo() == CCValAssign::LocInfo::AExt) {
      Size = VA.getLocVT().getSizeInBits() / 8;
      ValVReg = MIRBuilder.buildAnyExt(LLT::scalar(Size * 8), ValVReg)
                    ->getOperand(0)
                    .getReg();
    }
    auto MMO = MIRBuilder.getMF().getMachineMemOperand(
        MPO, MachineMemOperand::MOStore, Size, 1);
    MIRBuilder.buildStore(ValVReg, Addr, *MMO);
  }

  bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
                 CCValAssign::LocInfo LocInfo,
                 const CallLowering::ArgInfo &Info,
                 CCState &State) override {
    bool Res;
    if (Info.IsFixed)
      Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Info.Flags, State);
    else
      Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Info.Flags, State);

    StackSize = State.getNextStackOffset();
    return Res;
  }

  MachineInstrBuilder MIB;
  CCAssignFn *AssignFnVarArg;
  uint64_t StackSize;
};
} // namespace

void AArch64CallLowering::splitToValueTypes(
    const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
    const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv) const {
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
  LLVMContext &Ctx = OrigArg.Ty->getContext();

  if (OrigArg.Ty->isVoidTy())
    return;

  SmallVector<EVT, 4> SplitVTs;
  SmallVector<uint64_t, 4> Offsets;
  ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);

  if (SplitVTs.size() == 1) {
    // No splitting to do, but we want to replace the original type (e.g. [1 x
    // double] -> double).
    SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
                           OrigArg.Flags, OrigArg.IsFixed);
    return;
  }

  // Create one ArgInfo for each virtual register in the original ArgInfo.
  assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");

  bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
      OrigArg.Ty, CallConv, false);
  for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
    Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
    SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags,
                           OrigArg.IsFixed);
    if (NeedsRegBlock)
      SplitArgs.back().Flags.setInConsecutiveRegs();
  }

  SplitArgs.back().Flags.setInConsecutiveRegsLast();
}

bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
                                      const Value *Val,
                                      ArrayRef<Register> VRegs,
                                      Register SwiftErrorVReg) const {
  auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR);
  assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
         "Return value without a vreg");

  bool Success = true;
  if (!VRegs.empty()) {
    MachineFunction &MF = MIRBuilder.getMF();
    const Function &F = MF.getFunction();

    MachineRegisterInfo &MRI = MF.getRegInfo();
    const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
    CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
    auto &DL = F.getParent()->getDataLayout();
    LLVMContext &Ctx = Val->getType()->getContext();

    SmallVector<EVT, 4> SplitEVTs;
    ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
    assert(VRegs.size() == SplitEVTs.size() &&
           "For each split Type there should be exactly one VReg.");

    SmallVector<ArgInfo, 8> SplitArgs;
    CallingConv::ID CC = F.getCallingConv();

    for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
      if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) > 1) {
        LLVM_DEBUG(dbgs() << "Can't handle extended arg types which need split");
        return false;
      }

      Register CurVReg = VRegs[i];
      ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx)};
      setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);

      // i1 is a special case because SDAG i1 true is naturally zero extended
      // when widened using ANYEXT. We need to do it explicitly here.
      if (MRI.getType(CurVReg).getSizeInBits() == 1) {
        CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0);
      } else {
        // Some types will need extending as specified by the CC.
        MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]);
        if (EVT(NewVT) != SplitEVTs[i]) {
          unsigned ExtendOp = TargetOpcode::G_ANYEXT;
          if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
                                             Attribute::SExt))
            ExtendOp = TargetOpcode::G_SEXT;
          else if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
                                                  Attribute::ZExt))
            ExtendOp = TargetOpcode::G_ZEXT;

          LLT NewLLT(NewVT);
          LLT OldLLT(MVT::getVT(CurArgInfo.Ty));
          CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx);
          // Instead of an extend, we might have a vector type which needs
          // padding with more elements, e.g. <2 x half> -> <4 x half>.
          if (NewVT.isVector()) {
            if (OldLLT.isVector()) {
              if (NewLLT.getNumElements() > OldLLT.getNumElements()) {
                // We don't handle VA types which are not exactly twice the
                // size, but can easily be done in future.
                if (NewLLT.getNumElements() != OldLLT.getNumElements() * 2) {
                  LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts");
                  return false;
                }
                auto Undef = MIRBuilder.buildUndef({OldLLT});
                CurVReg =
                    MIRBuilder.buildMerge({NewLLT}, {CurVReg, Undef.getReg(0)})
                        .getReg(0);
              } else {
                // Just do a vector extend.
                CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
                              .getReg(0);
              }
            } else if (NewLLT.getNumElements() == 2) {
              // We need to pad a <1 x S> type to <2 x S>. Since we don't have
              // <1 x S> vector types in GISel we use a build_vector instead
              // of a vector merge/concat.
              auto Undef = MIRBuilder.buildUndef({OldLLT});
              CurVReg =
                  MIRBuilder
                      .buildBuildVector({NewLLT}, {CurVReg, Undef.getReg(0)})
                      .getReg(0);
            } else {
              LLVM_DEBUG(dbgs() << "Could not handle ret ty");
              return false;
            }
          } else {
            // A scalar extend.
            CurVReg =
                MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}).getReg(0);
          }
        }
      }
      if (CurVReg != CurArgInfo.Regs[0]) {
        CurArgInfo.Regs[0] = CurVReg;
        // Reset the arg flags after modifying CurVReg.
        setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
      }
     splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI, CC);
    }

    OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFn, AssignFn);
    Success = handleAssignments(MIRBuilder, SplitArgs, Handler);
  }

  if (SwiftErrorVReg) {
    MIB.addUse(AArch64::X21, RegState::Implicit);
    MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg);
  }

  MIRBuilder.insertInstr(MIB);
  return Success;
}

bool AArch64CallLowering::lowerFormalArguments(
    MachineIRBuilder &MIRBuilder, const Function &F,
    ArrayRef<ArrayRef<Register>> VRegs) const {
  MachineFunction &MF = MIRBuilder.getMF();
  MachineBasicBlock &MBB = MIRBuilder.getMBB();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  auto &DL = F.getParent()->getDataLayout();

  SmallVector<ArgInfo, 8> SplitArgs;
  unsigned i = 0;
  for (auto &Arg : F.args()) {
    if (DL.getTypeStoreSize(Arg.getType()) == 0)
      continue;

    ArgInfo OrigArg{VRegs[i], Arg.getType()};
    setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F);

    splitToValueTypes(OrigArg, SplitArgs, DL, MRI, F.getCallingConv());
    ++i;
  }

  if (!MBB.empty())
    MIRBuilder.setInstr(*MBB.begin());

  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
  CCAssignFn *AssignFn =
      TLI.CCAssignFnForCall(F.getCallingConv(), /*IsVarArg=*/false);

  FormalArgHandler Handler(MIRBuilder, MRI, AssignFn);
  if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
    return false;

  if (F.isVarArg()) {
    if (!MF.getSubtarget<AArch64Subtarget>().isTargetDarwin()) {
      // FIXME: we need to reimplement saveVarArgsRegisters from
      // AArch64ISelLowering.
      return false;
    }

    // We currently pass all varargs at 8-byte alignment.
    uint64_t StackOffset = alignTo(Handler.StackUsed, 8);

    auto &MFI = MIRBuilder.getMF().getFrameInfo();
    AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
    FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
  }

  auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
  if (Subtarget.hasCustomCallingConv())
    Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);

  // Move back to the end of the basic block.
  MIRBuilder.setMBB(MBB);

  return true;
}

bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
                                    CallingConv::ID CallConv,
                                    const MachineOperand &Callee,
                                    const ArgInfo &OrigRet,
                                    ArrayRef<ArgInfo> OrigArgs,
                                    Register SwiftErrorVReg) const {
  MachineFunction &MF = MIRBuilder.getMF();
  const Function &F = MF.getFunction();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  auto &DL = F.getParent()->getDataLayout();

  SmallVector<ArgInfo, 8> SplitArgs;
  for (auto &OrigArg : OrigArgs) {
    splitToValueTypes(OrigArg, SplitArgs, DL, MRI, CallConv);
    // AAPCS requires that we zero-extend i1 to 8 bits by the caller.
    if (OrigArg.Ty->isIntegerTy(1))
      SplitArgs.back().Flags.setZExt();
  }

  // Find out which ABI gets to decide where things go.
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
  CCAssignFn *AssignFnFixed =
      TLI.CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
  CCAssignFn *AssignFnVarArg =
      TLI.CCAssignFnForCall(CallConv, /*IsVarArg=*/true);

  auto CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);

  // Create a temporarily-floating call instruction so we can add the implicit
  // uses of arg registers.
  auto MIB = MIRBuilder.buildInstrNoInsert(Callee.isReg() ? AArch64::BLR
                                                          : AArch64::BL);
  MIB.add(Callee);

  // Tell the call which registers are clobbered.
  auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
  const uint32_t *Mask = TRI->getCallPreservedMask(MF, F.getCallingConv());
  if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
    TRI->UpdateCustomCallPreservedMask(MF, &Mask);
  MIB.addRegMask(Mask);

  if (TRI->isAnyArgRegReserved(MF))
    TRI->emitReservedArgRegCallError(MF);

  // Do the actual argument marshalling.
  SmallVector<unsigned, 8> PhysRegs;
  OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
                             AssignFnVarArg);
  if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
    return false;

  // Now we can add the actual call instruction to the correct basic block.
  MIRBuilder.insertInstr(MIB);

  // If Callee is a reg, since it is used by a target specific
  // instruction, it must have a register class matching the
  // constraint of that instruction.
  if (Callee.isReg())
    MIB->getOperand(0).setReg(constrainOperandRegClass(
        MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
        *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Callee, 0));

  // Finally we can copy the returned value back into its virtual-register. In
  // symmetry with the arugments, the physical register must be an
  // implicit-define of the call instruction.
  CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
  if (!OrigRet.Ty->isVoidTy()) {
    SplitArgs.clear();

    splitToValueTypes(OrigRet, SplitArgs, DL, MRI, F.getCallingConv());

    CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
    if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
      return false;
  }

  if (SwiftErrorVReg) {
    MIB.addDef(AArch64::X21, RegState::Implicit);
    MIRBuilder.buildCopy(SwiftErrorVReg, Register(AArch64::X21));
  }

  CallSeqStart.addImm(Handler.StackSize).addImm(0);
  MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP)
      .addImm(Handler.StackSize)
      .addImm(0);

  return true;
}