1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
|
//===- AArch64ExpandPseudoInsts.cpp - Expand pseudo instructions ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that expands pseudo instructions into target
// instructions to allow proper scheduling and other late optimizations. This
// pass should be run after register allocation but before the post-regalloc
// scheduling pass.
//
//===----------------------------------------------------------------------===//
#include "AArch64InstrInfo.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <utility>
using namespace llvm;
#define AARCH64_EXPAND_PSEUDO_NAME "AArch64 pseudo instruction expansion pass"
namespace {
class AArch64ExpandPseudo : public MachineFunctionPass {
public:
const AArch64InstrInfo *TII;
static char ID;
AArch64ExpandPseudo() : MachineFunctionPass(ID) {
initializeAArch64ExpandPseudoPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &Fn) override;
StringRef getPassName() const override { return AARCH64_EXPAND_PSEUDO_NAME; }
private:
bool expandMBB(MachineBasicBlock &MBB);
bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI);
bool expandMOVImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
unsigned BitSize);
bool expandCMP_SWAP(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
unsigned LdarOp, unsigned StlrOp, unsigned CmpOp,
unsigned ExtendImm, unsigned ZeroReg,
MachineBasicBlock::iterator &NextMBBI);
bool expandCMP_SWAP_128(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI);
};
} // end anonymous namespace
char AArch64ExpandPseudo::ID = 0;
INITIALIZE_PASS(AArch64ExpandPseudo, "aarch64-expand-pseudo",
AARCH64_EXPAND_PSEUDO_NAME, false, false)
/// \brief Transfer implicit operands on the pseudo instruction to the
/// instructions created from the expansion.
static void transferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI,
MachineInstrBuilder &DefMI) {
const MCInstrDesc &Desc = OldMI.getDesc();
for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands(); i != e;
++i) {
const MachineOperand &MO = OldMI.getOperand(i);
assert(MO.isReg() && MO.getReg());
if (MO.isUse())
UseMI.add(MO);
else
DefMI.add(MO);
}
}
/// \brief Helper function which extracts the specified 16-bit chunk from a
/// 64-bit value.
static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
assert(ChunkIdx < 4 && "Out of range chunk index specified!");
return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
}
/// \brief Helper function which replicates a 16-bit chunk within a 64-bit
/// value. Indices correspond to element numbers in a v4i16.
static uint64_t replicateChunk(uint64_t Imm, unsigned FromIdx, unsigned ToIdx) {
assert((FromIdx < 4) && (ToIdx < 4) && "Out of range chunk index specified!");
const unsigned ShiftAmt = ToIdx * 16;
// Replicate the source chunk to the destination position.
const uint64_t Chunk = getChunk(Imm, FromIdx) << ShiftAmt;
// Clear the destination chunk.
Imm &= ~(0xFFFFLL << ShiftAmt);
// Insert the replicated chunk.
return Imm | Chunk;
}
/// \brief Helper function which tries to materialize a 64-bit value with an
/// ORR + MOVK instruction sequence.
static bool tryOrrMovk(uint64_t UImm, uint64_t OrrImm, MachineInstr &MI,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
const AArch64InstrInfo *TII, unsigned ChunkIdx) {
assert(ChunkIdx < 4 && "Out of range chunk index specified!");
const unsigned ShiftAmt = ChunkIdx * 16;
uint64_t Encoding;
if (AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding)) {
// Create the ORR-immediate instruction.
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
.add(MI.getOperand(0))
.addReg(AArch64::XZR)
.addImm(Encoding);
// Create the MOVK instruction.
const unsigned Imm16 = getChunk(UImm, ChunkIdx);
const unsigned DstReg = MI.getOperand(0).getReg();
const bool DstIsDead = MI.getOperand(0).isDead();
MachineInstrBuilder MIB1 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
.addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
.addReg(DstReg)
.addImm(Imm16)
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
transferImpOps(MI, MIB, MIB1);
MI.eraseFromParent();
return true;
}
return false;
}
/// \brief Check whether the given 16-bit chunk replicated to full 64-bit width
/// can be materialized with an ORR instruction.
static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
}
/// \brief Check for identical 16-bit chunks within the constant and if so
/// materialize them with a single ORR instruction. The remaining one or two
/// 16-bit chunks will be materialized with MOVK instructions.
///
/// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
/// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
/// an ORR instruction.
static bool tryToreplicateChunks(uint64_t UImm, MachineInstr &MI,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
const AArch64InstrInfo *TII) {
using CountMap = DenseMap<uint64_t, unsigned>;
CountMap Counts;
// Scan the constant and count how often every chunk occurs.
for (unsigned Idx = 0; Idx < 4; ++Idx)
++Counts[getChunk(UImm, Idx)];
// Traverse the chunks to find one which occurs more than once.
for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
Chunk != End; ++Chunk) {
const uint64_t ChunkVal = Chunk->first;
const unsigned Count = Chunk->second;
uint64_t Encoding = 0;
// We are looking for chunks which have two or three instances and can be
// materialized with an ORR instruction.
if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
continue;
const bool CountThree = Count == 3;
// Create the ORR-immediate instruction.
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
.add(MI.getOperand(0))
.addReg(AArch64::XZR)
.addImm(Encoding);
const unsigned DstReg = MI.getOperand(0).getReg();
const bool DstIsDead = MI.getOperand(0).isDead();
unsigned ShiftAmt = 0;
uint64_t Imm16 = 0;
// Find the first chunk not materialized with the ORR instruction.
for (; ShiftAmt < 64; ShiftAmt += 16) {
Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
if (Imm16 != ChunkVal)
break;
}
// Create the first MOVK instruction.
MachineInstrBuilder MIB1 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
.addReg(DstReg,
RegState::Define | getDeadRegState(DstIsDead && CountThree))
.addReg(DstReg)
.addImm(Imm16)
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
// In case we have three instances the whole constant is now materialized
// and we can exit.
if (CountThree) {
transferImpOps(MI, MIB, MIB1);
MI.eraseFromParent();
return true;
}
// Find the remaining chunk which needs to be materialized.
for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
if (Imm16 != ChunkVal)
break;
}
// Create the second MOVK instruction.
MachineInstrBuilder MIB2 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
.addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
.addReg(DstReg)
.addImm(Imm16)
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
transferImpOps(MI, MIB, MIB2);
MI.eraseFromParent();
return true;
}
return false;
}
/// \brief Check whether this chunk matches the pattern '1...0...'. This pattern
/// starts a contiguous sequence of ones if we look at the bits from the LSB
/// towards the MSB.
static bool isStartChunk(uint64_t Chunk) {
if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
return false;
return isMask_64(~Chunk);
}
/// \brief Check whether this chunk matches the pattern '0...1...' This pattern
/// ends a contiguous sequence of ones if we look at the bits from the LSB
/// towards the MSB.
static bool isEndChunk(uint64_t Chunk) {
if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
return false;
return isMask_64(Chunk);
}
/// \brief Clear or set all bits in the chunk at the given index.
static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
const uint64_t Mask = 0xFFFF;
if (Clear)
// Clear chunk in the immediate.
Imm &= ~(Mask << (Idx * 16));
else
// Set all bits in the immediate for the particular chunk.
Imm |= Mask << (Idx * 16);
return Imm;
}
/// \brief Check whether the constant contains a sequence of contiguous ones,
/// which might be interrupted by one or two chunks. If so, materialize the
/// sequence of contiguous ones with an ORR instruction.
/// Materialize the chunks which are either interrupting the sequence or outside
/// of the sequence with a MOVK instruction.
///
/// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
/// which ends the sequence (0...1...). Then we are looking for constants which
/// contain at least one S and E chunk.
/// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
///
/// We are also looking for constants like |S|A|B|E| where the contiguous
/// sequence of ones wraps around the MSB into the LSB.
static bool trySequenceOfOnes(uint64_t UImm, MachineInstr &MI,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
const AArch64InstrInfo *TII) {
const int NotSet = -1;
const uint64_t Mask = 0xFFFF;
int StartIdx = NotSet;
int EndIdx = NotSet;
// Try to find the chunks which start/end a contiguous sequence of ones.
for (int Idx = 0; Idx < 4; ++Idx) {
int64_t Chunk = getChunk(UImm, Idx);
// Sign extend the 16-bit chunk to 64-bit.
Chunk = (Chunk << 48) >> 48;
if (isStartChunk(Chunk))
StartIdx = Idx;
else if (isEndChunk(Chunk))
EndIdx = Idx;
}
// Early exit in case we can't find a start/end chunk.
if (StartIdx == NotSet || EndIdx == NotSet)
return false;
// Outside of the contiguous sequence of ones everything needs to be zero.
uint64_t Outside = 0;
// Chunks between the start and end chunk need to have all their bits set.
uint64_t Inside = Mask;
// If our contiguous sequence of ones wraps around from the MSB into the LSB,
// just swap indices and pretend we are materializing a contiguous sequence
// of zeros surrounded by a contiguous sequence of ones.
if (StartIdx > EndIdx) {
std::swap(StartIdx, EndIdx);
std::swap(Outside, Inside);
}
uint64_t OrrImm = UImm;
int FirstMovkIdx = NotSet;
int SecondMovkIdx = NotSet;
// Find out which chunks we need to patch up to obtain a contiguous sequence
// of ones.
for (int Idx = 0; Idx < 4; ++Idx) {
const uint64_t Chunk = getChunk(UImm, Idx);
// Check whether we are looking at a chunk which is not part of the
// contiguous sequence of ones.
if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
OrrImm = updateImm(OrrImm, Idx, Outside == 0);
// Remember the index we need to patch.
if (FirstMovkIdx == NotSet)
FirstMovkIdx = Idx;
else
SecondMovkIdx = Idx;
// Check whether we are looking a chunk which is part of the contiguous
// sequence of ones.
} else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
// Remember the index we need to patch.
if (FirstMovkIdx == NotSet)
FirstMovkIdx = Idx;
else
SecondMovkIdx = Idx;
}
}
assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
// Create the ORR-immediate instruction.
uint64_t Encoding = 0;
AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
.add(MI.getOperand(0))
.addReg(AArch64::XZR)
.addImm(Encoding);
const unsigned DstReg = MI.getOperand(0).getReg();
const bool DstIsDead = MI.getOperand(0).isDead();
const bool SingleMovk = SecondMovkIdx == NotSet;
// Create the first MOVK instruction.
MachineInstrBuilder MIB1 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
.addReg(DstReg,
RegState::Define | getDeadRegState(DstIsDead && SingleMovk))
.addReg(DstReg)
.addImm(getChunk(UImm, FirstMovkIdx))
.addImm(
AArch64_AM::getShifterImm(AArch64_AM::LSL, FirstMovkIdx * 16));
// Early exit in case we only need to emit a single MOVK instruction.
if (SingleMovk) {
transferImpOps(MI, MIB, MIB1);
MI.eraseFromParent();
return true;
}
// Create the second MOVK instruction.
MachineInstrBuilder MIB2 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
.addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
.addReg(DstReg)
.addImm(getChunk(UImm, SecondMovkIdx))
.addImm(
AArch64_AM::getShifterImm(AArch64_AM::LSL, SecondMovkIdx * 16));
transferImpOps(MI, MIB, MIB2);
MI.eraseFromParent();
return true;
}
/// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
/// real move-immediate instructions to synthesize the immediate.
bool AArch64ExpandPseudo::expandMOVImm(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned BitSize) {
MachineInstr &MI = *MBBI;
unsigned DstReg = MI.getOperand(0).getReg();
uint64_t Imm = MI.getOperand(1).getImm();
const unsigned Mask = 0xFFFF;
if (DstReg == AArch64::XZR || DstReg == AArch64::WZR) {
// Useless def, and we don't want to risk creating an invalid ORR (which
// would really write to sp).
MI.eraseFromParent();
return true;
}
// Try a MOVI instruction (aka ORR-immediate with the zero register).
uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
uint64_t Encoding;
if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
.add(MI.getOperand(0))
.addReg(BitSize == 32 ? AArch64::WZR : AArch64::XZR)
.addImm(Encoding);
transferImpOps(MI, MIB, MIB);
MI.eraseFromParent();
return true;
}
// Scan the immediate and count the number of 16-bit chunks which are either
// all ones or all zeros.
unsigned OneChunks = 0;
unsigned ZeroChunks = 0;
for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
const unsigned Chunk = (Imm >> Shift) & Mask;
if (Chunk == Mask)
OneChunks++;
else if (Chunk == 0)
ZeroChunks++;
}
// Since we can't materialize the constant with a single ORR instruction,
// let's see whether we can materialize 3/4 of the constant with an ORR
// instruction and use an additional MOVK instruction to materialize the
// remaining 1/4.
//
// We are looking for constants with a pattern like: |A|X|B|X| or |X|A|X|B|.
//
// E.g. assuming |A|X|A|X| is a pattern which can be materialized with ORR,
// we would create the following instruction sequence:
//
// ORR x0, xzr, |A|X|A|X|
// MOVK x0, |B|, LSL #16
//
// Only look at 64-bit constants which can't be materialized with a single
// instruction e.g. which have less than either three all zero or all one
// chunks.
//
// Ignore 32-bit constants here, they always can be materialized with a
// MOVZ/MOVN + MOVK pair. Since the 32-bit constant can't be materialized
// with a single ORR, the best sequence we can achieve is a ORR + MOVK pair.
// Thus we fall back to the default code below which in the best case creates
// a single MOVZ/MOVN instruction (in case one chunk is all zero or all one).
//
if (BitSize == 64 && OneChunks < 3 && ZeroChunks < 3) {
// If we interpret the 64-bit constant as a v4i16, are elements 0 and 2
// identical?
if (getChunk(UImm, 0) == getChunk(UImm, 2)) {
// See if we can come up with a constant which can be materialized with
// ORR-immediate by replicating element 3 into element 1.
uint64_t OrrImm = replicateChunk(UImm, 3, 1);
if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 1))
return true;
// See if we can come up with a constant which can be materialized with
// ORR-immediate by replicating element 1 into element 3.
OrrImm = replicateChunk(UImm, 1, 3);
if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 3))
return true;
// If we interpret the 64-bit constant as a v4i16, are elements 1 and 3
// identical?
} else if (getChunk(UImm, 1) == getChunk(UImm, 3)) {
// See if we can come up with a constant which can be materialized with
// ORR-immediate by replicating element 2 into element 0.
uint64_t OrrImm = replicateChunk(UImm, 2, 0);
if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 0))
return true;
// See if we can come up with a constant which can be materialized with
// ORR-immediate by replicating element 1 into element 3.
OrrImm = replicateChunk(UImm, 0, 2);
if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 2))
return true;
}
}
// Check for identical 16-bit chunks within the constant and if so materialize
// them with a single ORR instruction. The remaining one or two 16-bit chunks
// will be materialized with MOVK instructions.
if (BitSize == 64 && tryToreplicateChunks(UImm, MI, MBB, MBBI, TII))
return true;
// Check whether the constant contains a sequence of contiguous ones, which
// might be interrupted by one or two chunks. If so, materialize the sequence
// of contiguous ones with an ORR instruction. Materialize the chunks which
// are either interrupting the sequence or outside of the sequence with a
// MOVK instruction.
if (BitSize == 64 && trySequenceOfOnes(UImm, MI, MBB, MBBI, TII))
return true;
// Use a MOVZ or MOVN instruction to set the high bits, followed by one or
// more MOVK instructions to insert additional 16-bit portions into the
// lower bits.
bool isNeg = false;
// Use MOVN to materialize the high bits if we have more all one chunks
// than all zero chunks.
if (OneChunks > ZeroChunks) {
isNeg = true;
Imm = ~Imm;
}
unsigned FirstOpc;
if (BitSize == 32) {
Imm &= (1LL << 32) - 1;
FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
} else {
FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
}
unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN
unsigned LastShift = 0; // LSL amount for last MOVK
if (Imm != 0) {
unsigned LZ = countLeadingZeros(Imm);
unsigned TZ = countTrailingZeros(Imm);
Shift = (TZ / 16) * 16;
LastShift = ((63 - LZ) / 16) * 16;
}
unsigned Imm16 = (Imm >> Shift) & Mask;
bool DstIsDead = MI.getOperand(0).isDead();
MachineInstrBuilder MIB1 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(FirstOpc))
.addReg(DstReg, RegState::Define |
getDeadRegState(DstIsDead && Shift == LastShift))
.addImm(Imm16)
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
// If a MOVN was used for the high bits of a negative value, flip the rest
// of the bits back for use with MOVK.
if (isNeg)
Imm = ~Imm;
if (Shift == LastShift) {
transferImpOps(MI, MIB1, MIB1);
MI.eraseFromParent();
return true;
}
MachineInstrBuilder MIB2;
unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
while (Shift < LastShift) {
Shift += 16;
Imm16 = (Imm >> Shift) & Mask;
if (Imm16 == (isNeg ? Mask : 0))
continue; // This 16-bit portion is already set correctly.
MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
.addReg(DstReg,
RegState::Define |
getDeadRegState(DstIsDead && Shift == LastShift))
.addReg(DstReg)
.addImm(Imm16)
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
}
transferImpOps(MI, MIB1, MIB2);
MI.eraseFromParent();
return true;
}
bool AArch64ExpandPseudo::expandCMP_SWAP(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned LdarOp,
unsigned StlrOp, unsigned CmpOp, unsigned ExtendImm, unsigned ZeroReg,
MachineBasicBlock::iterator &NextMBBI) {
MachineInstr &MI = *MBBI;
DebugLoc DL = MI.getDebugLoc();
const MachineOperand &Dest = MI.getOperand(0);
unsigned StatusReg = MI.getOperand(1).getReg();
bool StatusDead = MI.getOperand(1).isDead();
// Duplicating undef operands into 2 instructions does not guarantee the same
// value on both; However undef should be replaced by xzr anyway.
assert(!MI.getOperand(2).isUndef() && "cannot handle undef");
unsigned AddrReg = MI.getOperand(2).getReg();
unsigned DesiredReg = MI.getOperand(3).getReg();
unsigned NewReg = MI.getOperand(4).getReg();
MachineFunction *MF = MBB.getParent();
auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
MF->insert(++MBB.getIterator(), LoadCmpBB);
MF->insert(++LoadCmpBB->getIterator(), StoreBB);
MF->insert(++StoreBB->getIterator(), DoneBB);
// .Lloadcmp:
// mov wStatus, 0
// ldaxr xDest, [xAddr]
// cmp xDest, xDesired
// b.ne .Ldone
if (!StatusDead)
BuildMI(LoadCmpBB, DL, TII->get(AArch64::MOVZWi), StatusReg)
.addImm(0).addImm(0);
BuildMI(LoadCmpBB, DL, TII->get(LdarOp), Dest.getReg())
.addReg(AddrReg);
BuildMI(LoadCmpBB, DL, TII->get(CmpOp), ZeroReg)
.addReg(Dest.getReg(), getKillRegState(Dest.isDead()))
.addReg(DesiredReg)
.addImm(ExtendImm);
BuildMI(LoadCmpBB, DL, TII->get(AArch64::Bcc))
.addImm(AArch64CC::NE)
.addMBB(DoneBB)
.addReg(AArch64::NZCV, RegState::Implicit | RegState::Kill);
LoadCmpBB->addSuccessor(DoneBB);
LoadCmpBB->addSuccessor(StoreBB);
// .Lstore:
// stlxr wStatus, xNew, [xAddr]
// cbnz wStatus, .Lloadcmp
BuildMI(StoreBB, DL, TII->get(StlrOp), StatusReg)
.addReg(NewReg)
.addReg(AddrReg);
BuildMI(StoreBB, DL, TII->get(AArch64::CBNZW))
.addReg(StatusReg, getKillRegState(StatusDead))
.addMBB(LoadCmpBB);
StoreBB->addSuccessor(LoadCmpBB);
StoreBB->addSuccessor(DoneBB);
DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end());
DoneBB->transferSuccessors(&MBB);
MBB.addSuccessor(LoadCmpBB);
NextMBBI = MBB.end();
MI.eraseFromParent();
// Recompute livein lists.
LivePhysRegs LiveRegs;
computeAndAddLiveIns(LiveRegs, *DoneBB);
computeAndAddLiveIns(LiveRegs, *StoreBB);
computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
// Do an extra pass around the loop to get loop carried registers right.
StoreBB->clearLiveIns();
computeAndAddLiveIns(LiveRegs, *StoreBB);
LoadCmpBB->clearLiveIns();
computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
return true;
}
bool AArch64ExpandPseudo::expandCMP_SWAP_128(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI) {
MachineInstr &MI = *MBBI;
DebugLoc DL = MI.getDebugLoc();
MachineOperand &DestLo = MI.getOperand(0);
MachineOperand &DestHi = MI.getOperand(1);
unsigned StatusReg = MI.getOperand(2).getReg();
bool StatusDead = MI.getOperand(2).isDead();
// Duplicating undef operands into 2 instructions does not guarantee the same
// value on both; However undef should be replaced by xzr anyway.
assert(!MI.getOperand(3).isUndef() && "cannot handle undef");
unsigned AddrReg = MI.getOperand(3).getReg();
unsigned DesiredLoReg = MI.getOperand(4).getReg();
unsigned DesiredHiReg = MI.getOperand(5).getReg();
unsigned NewLoReg = MI.getOperand(6).getReg();
unsigned NewHiReg = MI.getOperand(7).getReg();
MachineFunction *MF = MBB.getParent();
auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
MF->insert(++MBB.getIterator(), LoadCmpBB);
MF->insert(++LoadCmpBB->getIterator(), StoreBB);
MF->insert(++StoreBB->getIterator(), DoneBB);
// .Lloadcmp:
// ldaxp xDestLo, xDestHi, [xAddr]
// cmp xDestLo, xDesiredLo
// sbcs xDestHi, xDesiredHi
// b.ne .Ldone
BuildMI(LoadCmpBB, DL, TII->get(AArch64::LDAXPX))
.addReg(DestLo.getReg(), RegState::Define)
.addReg(DestHi.getReg(), RegState::Define)
.addReg(AddrReg);
BuildMI(LoadCmpBB, DL, TII->get(AArch64::SUBSXrs), AArch64::XZR)
.addReg(DestLo.getReg(), getKillRegState(DestLo.isDead()))
.addReg(DesiredLoReg)
.addImm(0);
BuildMI(LoadCmpBB, DL, TII->get(AArch64::CSINCWr), StatusReg)
.addUse(AArch64::WZR)
.addUse(AArch64::WZR)
.addImm(AArch64CC::EQ);
BuildMI(LoadCmpBB, DL, TII->get(AArch64::SUBSXrs), AArch64::XZR)
.addReg(DestHi.getReg(), getKillRegState(DestHi.isDead()))
.addReg(DesiredHiReg)
.addImm(0);
BuildMI(LoadCmpBB, DL, TII->get(AArch64::CSINCWr), StatusReg)
.addUse(StatusReg, RegState::Kill)
.addUse(StatusReg, RegState::Kill)
.addImm(AArch64CC::EQ);
BuildMI(LoadCmpBB, DL, TII->get(AArch64::CBNZW))
.addUse(StatusReg, getKillRegState(StatusDead))
.addMBB(DoneBB);
LoadCmpBB->addSuccessor(DoneBB);
LoadCmpBB->addSuccessor(StoreBB);
// .Lstore:
// stlxp wStatus, xNewLo, xNewHi, [xAddr]
// cbnz wStatus, .Lloadcmp
BuildMI(StoreBB, DL, TII->get(AArch64::STLXPX), StatusReg)
.addReg(NewLoReg)
.addReg(NewHiReg)
.addReg(AddrReg);
BuildMI(StoreBB, DL, TII->get(AArch64::CBNZW))
.addReg(StatusReg, getKillRegState(StatusDead))
.addMBB(LoadCmpBB);
StoreBB->addSuccessor(LoadCmpBB);
StoreBB->addSuccessor(DoneBB);
DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end());
DoneBB->transferSuccessors(&MBB);
MBB.addSuccessor(LoadCmpBB);
NextMBBI = MBB.end();
MI.eraseFromParent();
// Recompute liveness bottom up.
LivePhysRegs LiveRegs;
computeAndAddLiveIns(LiveRegs, *DoneBB);
computeAndAddLiveIns(LiveRegs, *StoreBB);
computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
// Do an extra pass in the loop to get the loop carried dependencies right.
StoreBB->clearLiveIns();
computeAndAddLiveIns(LiveRegs, *StoreBB);
LoadCmpBB->clearLiveIns();
computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
return true;
}
/// \brief If MBBI references a pseudo instruction that should be expanded here,
/// do the expansion and return true. Otherwise return false.
bool AArch64ExpandPseudo::expandMI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
switch (Opcode) {
default:
break;
case AArch64::ADDWrr:
case AArch64::SUBWrr:
case AArch64::ADDXrr:
case AArch64::SUBXrr:
case AArch64::ADDSWrr:
case AArch64::SUBSWrr:
case AArch64::ADDSXrr:
case AArch64::SUBSXrr:
case AArch64::ANDWrr:
case AArch64::ANDXrr:
case AArch64::BICWrr:
case AArch64::BICXrr:
case AArch64::ANDSWrr:
case AArch64::ANDSXrr:
case AArch64::BICSWrr:
case AArch64::BICSXrr:
case AArch64::EONWrr:
case AArch64::EONXrr:
case AArch64::EORWrr:
case AArch64::EORXrr:
case AArch64::ORNWrr:
case AArch64::ORNXrr:
case AArch64::ORRWrr:
case AArch64::ORRXrr: {
unsigned Opcode;
switch (MI.getOpcode()) {
default:
return false;
case AArch64::ADDWrr: Opcode = AArch64::ADDWrs; break;
case AArch64::SUBWrr: Opcode = AArch64::SUBWrs; break;
case AArch64::ADDXrr: Opcode = AArch64::ADDXrs; break;
case AArch64::SUBXrr: Opcode = AArch64::SUBXrs; break;
case AArch64::ADDSWrr: Opcode = AArch64::ADDSWrs; break;
case AArch64::SUBSWrr: Opcode = AArch64::SUBSWrs; break;
case AArch64::ADDSXrr: Opcode = AArch64::ADDSXrs; break;
case AArch64::SUBSXrr: Opcode = AArch64::SUBSXrs; break;
case AArch64::ANDWrr: Opcode = AArch64::ANDWrs; break;
case AArch64::ANDXrr: Opcode = AArch64::ANDXrs; break;
case AArch64::BICWrr: Opcode = AArch64::BICWrs; break;
case AArch64::BICXrr: Opcode = AArch64::BICXrs; break;
case AArch64::ANDSWrr: Opcode = AArch64::ANDSWrs; break;
case AArch64::ANDSXrr: Opcode = AArch64::ANDSXrs; break;
case AArch64::BICSWrr: Opcode = AArch64::BICSWrs; break;
case AArch64::BICSXrr: Opcode = AArch64::BICSXrs; break;
case AArch64::EONWrr: Opcode = AArch64::EONWrs; break;
case AArch64::EONXrr: Opcode = AArch64::EONXrs; break;
case AArch64::EORWrr: Opcode = AArch64::EORWrs; break;
case AArch64::EORXrr: Opcode = AArch64::EORXrs; break;
case AArch64::ORNWrr: Opcode = AArch64::ORNWrs; break;
case AArch64::ORNXrr: Opcode = AArch64::ORNXrs; break;
case AArch64::ORRWrr: Opcode = AArch64::ORRWrs; break;
case AArch64::ORRXrr: Opcode = AArch64::ORRXrs; break;
}
MachineInstrBuilder MIB1 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opcode),
MI.getOperand(0).getReg())
.add(MI.getOperand(1))
.add(MI.getOperand(2))
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
transferImpOps(MI, MIB1, MIB1);
MI.eraseFromParent();
return true;
}
case AArch64::LOADgot: {
// Expand into ADRP + LDR.
unsigned DstReg = MI.getOperand(0).getReg();
const MachineOperand &MO1 = MI.getOperand(1);
unsigned Flags = MO1.getTargetFlags();
MachineInstrBuilder MIB1 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg);
MachineInstrBuilder MIB2 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::LDRXui))
.add(MI.getOperand(0))
.addReg(DstReg);
if (MO1.isGlobal()) {
MIB1.addGlobalAddress(MO1.getGlobal(), 0, Flags | AArch64II::MO_PAGE);
MIB2.addGlobalAddress(MO1.getGlobal(), 0,
Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
} else if (MO1.isSymbol()) {
MIB1.addExternalSymbol(MO1.getSymbolName(), Flags | AArch64II::MO_PAGE);
MIB2.addExternalSymbol(MO1.getSymbolName(),
Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
} else {
assert(MO1.isCPI() &&
"Only expect globals, externalsymbols, or constant pools");
MIB1.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
Flags | AArch64II::MO_PAGE);
MIB2.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
Flags | AArch64II::MO_PAGEOFF |
AArch64II::MO_NC);
}
transferImpOps(MI, MIB1, MIB2);
MI.eraseFromParent();
return true;
}
case AArch64::MOVaddr:
case AArch64::MOVaddrJT:
case AArch64::MOVaddrCP:
case AArch64::MOVaddrBA:
case AArch64::MOVaddrTLS:
case AArch64::MOVaddrEXT: {
// Expand into ADRP + ADD.
unsigned DstReg = MI.getOperand(0).getReg();
MachineInstrBuilder MIB1 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg)
.add(MI.getOperand(1));
MachineInstrBuilder MIB2 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri))
.add(MI.getOperand(0))
.addReg(DstReg)
.add(MI.getOperand(2))
.addImm(0);
transferImpOps(MI, MIB1, MIB2);
MI.eraseFromParent();
return true;
}
case AArch64::MOVbaseTLS: {
unsigned DstReg = MI.getOperand(0).getReg();
auto SysReg = AArch64SysReg::TPIDR_EL0;
MachineFunction *MF = MBB.getParent();
if (MF->getTarget().getTargetTriple().isOSFuchsia() &&
MF->getTarget().getCodeModel() == CodeModel::Kernel)
SysReg = AArch64SysReg::TPIDR_EL1;
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MRS), DstReg)
.addImm(SysReg);
MI.eraseFromParent();
return true;
}
case AArch64::MOVi32imm:
return expandMOVImm(MBB, MBBI, 32);
case AArch64::MOVi64imm:
return expandMOVImm(MBB, MBBI, 64);
case AArch64::RET_ReallyLR: {
// Hiding the LR use with RET_ReallyLR may lead to extra kills in the
// function and missing live-ins. We are fine in practice because callee
// saved register handling ensures the register value is restored before
// RET, but we need the undef flag here to appease the MachineVerifier
// liveness checks.
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::RET))
.addReg(AArch64::LR, RegState::Undef);
transferImpOps(MI, MIB, MIB);
MI.eraseFromParent();
return true;
}
case AArch64::CMP_SWAP_8:
return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRB, AArch64::STLXRB,
AArch64::SUBSWrx,
AArch64_AM::getArithExtendImm(AArch64_AM::UXTB, 0),
AArch64::WZR, NextMBBI);
case AArch64::CMP_SWAP_16:
return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRH, AArch64::STLXRH,
AArch64::SUBSWrx,
AArch64_AM::getArithExtendImm(AArch64_AM::UXTH, 0),
AArch64::WZR, NextMBBI);
case AArch64::CMP_SWAP_32:
return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRW, AArch64::STLXRW,
AArch64::SUBSWrs,
AArch64_AM::getShifterImm(AArch64_AM::LSL, 0),
AArch64::WZR, NextMBBI);
case AArch64::CMP_SWAP_64:
return expandCMP_SWAP(MBB, MBBI,
AArch64::LDAXRX, AArch64::STLXRX, AArch64::SUBSXrs,
AArch64_AM::getShifterImm(AArch64_AM::LSL, 0),
AArch64::XZR, NextMBBI);
case AArch64::CMP_SWAP_128:
return expandCMP_SWAP_128(MBB, MBBI, NextMBBI);
case AArch64::AESMCrrTied:
case AArch64::AESIMCrrTied: {
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(),
TII->get(Opcode == AArch64::AESMCrrTied ? AArch64::AESMCrr :
AArch64::AESIMCrr))
.add(MI.getOperand(0))
.add(MI.getOperand(1));
transferImpOps(MI, MIB, MIB);
MI.eraseFromParent();
return true;
}
}
return false;
}
/// \brief Iterate over the instructions in basic block MBB and expand any
/// pseudo instructions. Return true if anything was modified.
bool AArch64ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
bool Modified = false;
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
while (MBBI != E) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
Modified |= expandMI(MBB, MBBI, NMBBI);
MBBI = NMBBI;
}
return Modified;
}
bool AArch64ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
bool Modified = false;
for (auto &MBB : MF)
Modified |= expandMBB(MBB);
return Modified;
}
/// \brief Returns an instance of the pseudo instruction expansion pass.
FunctionPass *llvm::createAArch64ExpandPseudoPass() {
return new AArch64ExpandPseudo();
}
|