aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
blob: a4b78f2a7d6b0ad3a499ceb95240c1d4feee2f95 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "AArch64ExpandImm.h"
#include "AArch64TargetTransformInfo.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
using namespace llvm;

#define DEBUG_TYPE "aarch64tti"

static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
                                               cl::init(true), cl::Hidden);

bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
                                         const Function *Callee) const {
  const TargetMachine &TM = getTLI()->getTargetMachine();

  const FeatureBitset &CallerBits =
      TM.getSubtargetImpl(*Caller)->getFeatureBits();
  const FeatureBitset &CalleeBits =
      TM.getSubtargetImpl(*Callee)->getFeatureBits();

  // Inline a callee if its target-features are a subset of the callers
  // target-features.
  return (CallerBits & CalleeBits) == CalleeBits;
}

/// Calculate the cost of materializing a 64-bit value. This helper
/// method might only calculate a fraction of a larger immediate. Therefore it
/// is valid to return a cost of ZERO.
int AArch64TTIImpl::getIntImmCost(int64_t Val) {
  // Check if the immediate can be encoded within an instruction.
  if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
    return 0;

  if (Val < 0)
    Val = ~Val;

  // Calculate how many moves we will need to materialize this constant.
  SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
  AArch64_IMM::expandMOVImm(Val, 64, Insn);
  return Insn.size();
}

/// Calculate the cost of materializing the given constant.
int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  // Sign-extend all constants to a multiple of 64-bit.
  APInt ImmVal = Imm;
  if (BitSize & 0x3f)
    ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);

  // Split the constant into 64-bit chunks and calculate the cost for each
  // chunk.
  int Cost = 0;
  for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
    APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
    int64_t Val = Tmp.getSExtValue();
    Cost += getIntImmCost(Val);
  }
  // We need at least one instruction to materialze the constant.
  return std::max(1, Cost);
}

int AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
                                  const APInt &Imm, Type *Ty) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;

  unsigned ImmIdx = ~0U;
  switch (Opcode) {
  default:
    return TTI::TCC_Free;
  case Instruction::GetElementPtr:
    // Always hoist the base address of a GetElementPtr.
    if (Idx == 0)
      return 2 * TTI::TCC_Basic;
    return TTI::TCC_Free;
  case Instruction::Store:
    ImmIdx = 0;
    break;
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::ICmp:
    ImmIdx = 1;
    break;
  // Always return TCC_Free for the shift value of a shift instruction.
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    if (Idx == 1)
      return TTI::TCC_Free;
    break;
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::IntToPtr:
  case Instruction::PtrToInt:
  case Instruction::BitCast:
  case Instruction::PHI:
  case Instruction::Call:
  case Instruction::Select:
  case Instruction::Ret:
  case Instruction::Load:
    break;
  }

  if (Idx == ImmIdx) {
    int NumConstants = (BitSize + 63) / 64;
    int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
    return (Cost <= NumConstants * TTI::TCC_Basic)
               ? static_cast<int>(TTI::TCC_Free)
               : Cost;
  }
  return AArch64TTIImpl::getIntImmCost(Imm, Ty);
}

int AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
                                  const APInt &Imm, Type *Ty) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;

  switch (IID) {
  default:
    return TTI::TCC_Free;
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
  case Intrinsic::smul_with_overflow:
  case Intrinsic::umul_with_overflow:
    if (Idx == 1) {
      int NumConstants = (BitSize + 63) / 64;
      int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
      return (Cost <= NumConstants * TTI::TCC_Basic)
                 ? static_cast<int>(TTI::TCC_Free)
                 : Cost;
    }
    break;
  case Intrinsic::experimental_stackmap:
    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_patchpoint_void:
  case Intrinsic::experimental_patchpoint_i64:
    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  }
  return AArch64TTIImpl::getIntImmCost(Imm, Ty);
}

TargetTransformInfo::PopcntSupportKind
AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
  if (TyWidth == 32 || TyWidth == 64)
    return TTI::PSK_FastHardware;
  // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
  return TTI::PSK_Software;
}

bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
                                           ArrayRef<const Value *> Args) {

  // A helper that returns a vector type from the given type. The number of
  // elements in type Ty determine the vector width.
  auto toVectorTy = [&](Type *ArgTy) {
    return VectorType::get(ArgTy->getScalarType(),
                           DstTy->getVectorNumElements());
  };

  // Exit early if DstTy is not a vector type whose elements are at least
  // 16-bits wide.
  if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
    return false;

  // Determine if the operation has a widening variant. We consider both the
  // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
  // instructions.
  //
  // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
  //       verify that their extending operands are eliminated during code
  //       generation.
  switch (Opcode) {
  case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
  case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
    break;
  default:
    return false;
  }

  // To be a widening instruction (either the "wide" or "long" versions), the
  // second operand must be a sign- or zero extend having a single user. We
  // only consider extends having a single user because they may otherwise not
  // be eliminated.
  if (Args.size() != 2 ||
      (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
      !Args[1]->hasOneUse())
    return false;
  auto *Extend = cast<CastInst>(Args[1]);

  // Legalize the destination type and ensure it can be used in a widening
  // operation.
  auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
  unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
  if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
    return false;

  // Legalize the source type and ensure it can be used in a widening
  // operation.
  Type *SrcTy = toVectorTy(Extend->getSrcTy());
  auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
  unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
  if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
    return false;

  // Get the total number of vector elements in the legalized types.
  unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements();
  unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements();

  // Return true if the legalized types have the same number of vector elements
  // and the destination element type size is twice that of the source type.
  return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
}

int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                                     const Instruction *I) {
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  // If the cast is observable, and it is used by a widening instruction (e.g.,
  // uaddl, saddw, etc.), it may be free.
  if (I && I->hasOneUse()) {
    auto *SingleUser = cast<Instruction>(*I->user_begin());
    SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
    if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
      // If the cast is the second operand, it is free. We will generate either
      // a "wide" or "long" version of the widening instruction.
      if (I == SingleUser->getOperand(1))
        return 0;
      // If the cast is not the second operand, it will be free if it looks the
      // same as the second operand. In this case, we will generate a "long"
      // version of the widening instruction.
      if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
        if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
            cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
          return 0;
    }
  }

  EVT SrcTy = TLI->getValueType(DL, Src);
  EVT DstTy = TLI->getValueType(DL, Dst);

  if (!SrcTy.isSimple() || !DstTy.isSimple())
    return BaseT::getCastInstrCost(Opcode, Dst, Src);

  static const TypeConversionCostTblEntry
  ConversionTbl[] = {
    { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32,  1 },
    { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64,  0 },
    { ISD::TRUNCATE, MVT::v8i8,  MVT::v8i32,  3 },
    { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },

    // The number of shll instructions for the extension.
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
    { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
    { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
    { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
    { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
    { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
    { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
    { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
    { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },

    // LowerVectorINT_TO_FP:
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },

    // Complex: to v2f32
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },

    // Complex: to v4f32
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },

    // Complex: to v8f32
    { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
    { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
    { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
    { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },

    // Complex: to v16f32
    { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
    { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },

    // Complex: to v2f64
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },


    // LowerVectorFP_TO_INT
    { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
    { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
    { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
    { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
    { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
    { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },

    // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
    { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
    { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
    { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
    { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
    { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
    { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },

    // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
    { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
    { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
    { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
    { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },

    // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
    { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
    { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
    { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
    { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
    { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
    { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
  };

  if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
                                                 DstTy.getSimpleVT(),
                                                 SrcTy.getSimpleVT()))
    return Entry->Cost;

  return BaseT::getCastInstrCost(Opcode, Dst, Src);
}

int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
                                             VectorType *VecTy,
                                             unsigned Index) {

  // Make sure we were given a valid extend opcode.
  assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
         "Invalid opcode");

  // We are extending an element we extract from a vector, so the source type
  // of the extend is the element type of the vector.
  auto *Src = VecTy->getElementType();

  // Sign- and zero-extends are for integer types only.
  assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");

  // Get the cost for the extract. We compute the cost (if any) for the extend
  // below.
  auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);

  // Legalize the types.
  auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
  auto DstVT = TLI->getValueType(DL, Dst);
  auto SrcVT = TLI->getValueType(DL, Src);

  // If the resulting type is still a vector and the destination type is legal,
  // we may get the extension for free. If not, get the default cost for the
  // extend.
  if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
    return Cost + getCastInstrCost(Opcode, Dst, Src);

  // The destination type should be larger than the element type. If not, get
  // the default cost for the extend.
  if (DstVT.getSizeInBits() < SrcVT.getSizeInBits())
    return Cost + getCastInstrCost(Opcode, Dst, Src);

  switch (Opcode) {
  default:
    llvm_unreachable("Opcode should be either SExt or ZExt");

  // For sign-extends, we only need a smov, which performs the extension
  // automatically.
  case Instruction::SExt:
    return Cost;

  // For zero-extends, the extend is performed automatically by a umov unless
  // the destination type is i64 and the element type is i8 or i16.
  case Instruction::ZExt:
    if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
      return Cost;
  }

  // If we are unable to perform the extend for free, get the default cost.
  return Cost + getCastInstrCost(Opcode, Dst, Src);
}

int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
                                       unsigned Index) {
  assert(Val->isVectorTy() && "This must be a vector type");

  if (Index != -1U) {
    // Legalize the type.
    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);

    // This type is legalized to a scalar type.
    if (!LT.second.isVector())
      return 0;

    // The type may be split. Normalize the index to the new type.
    unsigned Width = LT.second.getVectorNumElements();
    Index = Index % Width;

    // The element at index zero is already inside the vector.
    if (Index == 0)
      return 0;
  }

  // All other insert/extracts cost this much.
  return ST->getVectorInsertExtractBaseCost();
}

int AArch64TTIImpl::getArithmeticInstrCost(
    unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
    TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
    TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) {
  // Legalize the type.
  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);

  // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
  // add in the widening overhead specified by the sub-target. Since the
  // extends feeding widening instructions are performed automatically, they
  // aren't present in the generated code and have a zero cost. By adding a
  // widening overhead here, we attach the total cost of the combined operation
  // to the widening instruction.
  int Cost = 0;
  if (isWideningInstruction(Ty, Opcode, Args))
    Cost += ST->getWideningBaseCost();

  int ISD = TLI->InstructionOpcodeToISD(Opcode);

  switch (ISD) {
  default:
    return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
                                                Opd1PropInfo, Opd2PropInfo);
  case ISD::SDIV:
    if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
        Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
      // On AArch64, scalar signed division by constants power-of-two are
      // normally expanded to the sequence ADD + CMP + SELECT + SRA.
      // The OperandValue properties many not be same as that of previous
      // operation; conservatively assume OP_None.
      Cost += getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
                                     TargetTransformInfo::OP_None,
                                     TargetTransformInfo::OP_None);
      Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
                                     TargetTransformInfo::OP_None,
                                     TargetTransformInfo::OP_None);
      Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
                                     TargetTransformInfo::OP_None,
                                     TargetTransformInfo::OP_None);
      Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
                                     TargetTransformInfo::OP_None,
                                     TargetTransformInfo::OP_None);
      return Cost;
    }
    LLVM_FALLTHROUGH;
  case ISD::UDIV:
    if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
      auto VT = TLI->getValueType(DL, Ty);
      if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
        // Vector signed division by constant are expanded to the
        // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
        // to MULHS + SUB + SRL + ADD + SRL.
        int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, Opd1Info,
                                             Opd2Info,
                                             TargetTransformInfo::OP_None,
                                             TargetTransformInfo::OP_None);
        int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info,
                                             Opd2Info,
                                             TargetTransformInfo::OP_None,
                                             TargetTransformInfo::OP_None);
        int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info,
                                             Opd2Info,
                                             TargetTransformInfo::OP_None,
                                             TargetTransformInfo::OP_None);
        return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
      }
    }

    Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
                                          Opd1PropInfo, Opd2PropInfo);
    if (Ty->isVectorTy()) {
      // On AArch64, vector divisions are not supported natively and are
      // expanded into scalar divisions of each pair of elements.
      Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, Opd1Info,
                                     Opd2Info, Opd1PropInfo, Opd2PropInfo);
      Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, Opd1Info,
                                     Opd2Info, Opd1PropInfo, Opd2PropInfo);
      // TODO: if one of the arguments is scalar, then it's not necessary to
      // double the cost of handling the vector elements.
      Cost += Cost;
    }
    return Cost;

  case ISD::ADD:
  case ISD::MUL:
  case ISD::XOR:
  case ISD::OR:
  case ISD::AND:
    // These nodes are marked as 'custom' for combining purposes only.
    // We know that they are legal. See LowerAdd in ISelLowering.
    return (Cost + 1) * LT.first;
  }
}

int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
                                              const SCEV *Ptr) {
  // Address computations in vectorized code with non-consecutive addresses will
  // likely result in more instructions compared to scalar code where the
  // computation can more often be merged into the index mode. The resulting
  // extra micro-ops can significantly decrease throughput.
  unsigned NumVectorInstToHideOverhead = 10;
  int MaxMergeDistance = 64;

  if (Ty->isVectorTy() && SE &&
      !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
    return NumVectorInstToHideOverhead;

  // In many cases the address computation is not merged into the instruction
  // addressing mode.
  return 1;
}

int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                       Type *CondTy, const Instruction *I) {

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  // We don't lower some vector selects well that are wider than the register
  // width.
  if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
    // We would need this many instructions to hide the scalarization happening.
    const int AmortizationCost = 20;
    static const TypeConversionCostTblEntry
    VectorSelectTbl[] = {
      { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
      { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
      { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
      { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
      { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
      { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
    };

    EVT SelCondTy = TLI->getValueType(DL, CondTy);
    EVT SelValTy = TLI->getValueType(DL, ValTy);
    if (SelCondTy.isSimple() && SelValTy.isSimple()) {
      if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
                                                     SelCondTy.getSimpleVT(),
                                                     SelValTy.getSimpleVT()))
        return Entry->Cost;
    }
  }
  return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
}

int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
                                    unsigned Alignment, unsigned AddressSpace,
                                    const Instruction *I) {
  auto LT = TLI->getTypeLegalizationCost(DL, Ty);

  if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
      LT.second.is128BitVector() && Alignment < 16) {
    // Unaligned stores are extremely inefficient. We don't split all
    // unaligned 128-bit stores because the negative impact that has shown in
    // practice on inlined block copy code.
    // We make such stores expensive so that we will only vectorize if there
    // are 6 other instructions getting vectorized.
    const int AmortizationCost = 6;

    return LT.first * 2 * AmortizationCost;
  }

  if (Ty->isVectorTy() && Ty->getVectorElementType()->isIntegerTy(8)) {
    unsigned ProfitableNumElements;
    if (Opcode == Instruction::Store)
      // We use a custom trunc store lowering so v.4b should be profitable.
      ProfitableNumElements = 4;
    else
      // We scalarize the loads because there is not v.4b register and we
      // have to promote the elements to v.2.
      ProfitableNumElements = 8;

    if (Ty->getVectorNumElements() < ProfitableNumElements) {
      unsigned NumVecElts = Ty->getVectorNumElements();
      unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
      // We generate 2 instructions per vector element.
      return NumVectorizableInstsToAmortize * NumVecElts * 2;
    }
  }

  return LT.first;
}

int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
                                               unsigned Factor,
                                               ArrayRef<unsigned> Indices,
                                               unsigned Alignment,
                                               unsigned AddressSpace,
                                               bool UseMaskForCond,
                                               bool UseMaskForGaps) {
  assert(Factor >= 2 && "Invalid interleave factor");
  assert(isa<VectorType>(VecTy) && "Expect a vector type");

  if (!UseMaskForCond && !UseMaskForGaps &&
      Factor <= TLI->getMaxSupportedInterleaveFactor()) {
    unsigned NumElts = VecTy->getVectorNumElements();
    auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);

    // ldN/stN only support legal vector types of size 64 or 128 in bits.
    // Accesses having vector types that are a multiple of 128 bits can be
    // matched to more than one ldN/stN instruction.
    if (NumElts % Factor == 0 &&
        TLI->isLegalInterleavedAccessType(SubVecTy, DL))
      return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
  }

  return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
                                           Alignment, AddressSpace,
                                           UseMaskForCond, UseMaskForGaps);
}

int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
  int Cost = 0;
  for (auto *I : Tys) {
    if (!I->isVectorTy())
      continue;
    if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
      Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
        getMemoryOpCost(Instruction::Load, I, 128, 0);
  }
  return Cost;
}

unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
  return ST->getMaxInterleaveFactor();
}

// For Falkor, we want to avoid having too many strided loads in a loop since
// that can exhaust the HW prefetcher resources.  We adjust the unroller
// MaxCount preference below to attempt to ensure unrolling doesn't create too
// many strided loads.
static void
getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                              TargetTransformInfo::UnrollingPreferences &UP) {
  enum { MaxStridedLoads = 7 };
  auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
    int StridedLoads = 0;
    // FIXME? We could make this more precise by looking at the CFG and
    // e.g. not counting loads in each side of an if-then-else diamond.
    for (const auto BB : L->blocks()) {
      for (auto &I : *BB) {
        LoadInst *LMemI = dyn_cast<LoadInst>(&I);
        if (!LMemI)
          continue;

        Value *PtrValue = LMemI->getPointerOperand();
        if (L->isLoopInvariant(PtrValue))
          continue;

        const SCEV *LSCEV = SE.getSCEV(PtrValue);
        const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
        if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
          continue;

        // FIXME? We could take pairing of unrolled load copies into account
        // by looking at the AddRec, but we would probably have to limit this
        // to loops with no stores or other memory optimization barriers.
        ++StridedLoads;
        // We've seen enough strided loads that seeing more won't make a
        // difference.
        if (StridedLoads > MaxStridedLoads / 2)
          return StridedLoads;
      }
    }
    return StridedLoads;
  };

  int StridedLoads = countStridedLoads(L, SE);
  LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
                    << " strided loads\n");
  // Pick the largest power of 2 unroll count that won't result in too many
  // strided loads.
  if (StridedLoads) {
    UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
    LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
                      << UP.MaxCount << '\n');
  }
}

void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                                             TTI::UnrollingPreferences &UP) {
  // Enable partial unrolling and runtime unrolling.
  BaseT::getUnrollingPreferences(L, SE, UP);

  // For inner loop, it is more likely to be a hot one, and the runtime check
  // can be promoted out from LICM pass, so the overhead is less, let's try
  // a larger threshold to unroll more loops.
  if (L->getLoopDepth() > 1)
    UP.PartialThreshold *= 2;

  // Disable partial & runtime unrolling on -Os.
  UP.PartialOptSizeThreshold = 0;

  if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
      EnableFalkorHWPFUnrollFix)
    getFalkorUnrollingPreferences(L, SE, UP);
}

Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
                                                         Type *ExpectedType) {
  switch (Inst->getIntrinsicID()) {
  default:
    return nullptr;
  case Intrinsic::aarch64_neon_st2:
  case Intrinsic::aarch64_neon_st3:
  case Intrinsic::aarch64_neon_st4: {
    // Create a struct type
    StructType *ST = dyn_cast<StructType>(ExpectedType);
    if (!ST)
      return nullptr;
    unsigned NumElts = Inst->getNumArgOperands() - 1;
    if (ST->getNumElements() != NumElts)
      return nullptr;
    for (unsigned i = 0, e = NumElts; i != e; ++i) {
      if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
        return nullptr;
    }
    Value *Res = UndefValue::get(ExpectedType);
    IRBuilder<> Builder(Inst);
    for (unsigned i = 0, e = NumElts; i != e; ++i) {
      Value *L = Inst->getArgOperand(i);
      Res = Builder.CreateInsertValue(Res, L, i);
    }
    return Res;
  }
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_ld4:
    if (Inst->getType() == ExpectedType)
      return Inst;
    return nullptr;
  }
}

bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
                                        MemIntrinsicInfo &Info) {
  switch (Inst->getIntrinsicID()) {
  default:
    break;
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_ld4:
    Info.ReadMem = true;
    Info.WriteMem = false;
    Info.PtrVal = Inst->getArgOperand(0);
    break;
  case Intrinsic::aarch64_neon_st2:
  case Intrinsic::aarch64_neon_st3:
  case Intrinsic::aarch64_neon_st4:
    Info.ReadMem = false;
    Info.WriteMem = true;
    Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
    break;
  }

  switch (Inst->getIntrinsicID()) {
  default:
    return false;
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_st2:
    Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
    break;
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_st3:
    Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
    break;
  case Intrinsic::aarch64_neon_ld4:
  case Intrinsic::aarch64_neon_st4:
    Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
    break;
  }
  return true;
}

/// See if \p I should be considered for address type promotion. We check if \p
/// I is a sext with right type and used in memory accesses. If it used in a
/// "complex" getelementptr, we allow it to be promoted without finding other
/// sext instructions that sign extended the same initial value. A getelementptr
/// is considered as "complex" if it has more than 2 operands.
bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
    const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
  bool Considerable = false;
  AllowPromotionWithoutCommonHeader = false;
  if (!isa<SExtInst>(&I))
    return false;
  Type *ConsideredSExtType =
      Type::getInt64Ty(I.getParent()->getParent()->getContext());
  if (I.getType() != ConsideredSExtType)
    return false;
  // See if the sext is the one with the right type and used in at least one
  // GetElementPtrInst.
  for (const User *U : I.users()) {
    if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
      Considerable = true;
      // A getelementptr is considered as "complex" if it has more than 2
      // operands. We will promote a SExt used in such complex GEP as we
      // expect some computation to be merged if they are done on 64 bits.
      if (GEPInst->getNumOperands() > 2) {
        AllowPromotionWithoutCommonHeader = true;
        break;
      }
    }
  }
  return Considerable;
}

unsigned AArch64TTIImpl::getCacheLineSize() {
  return ST->getCacheLineSize();
}

unsigned AArch64TTIImpl::getPrefetchDistance() {
  return ST->getPrefetchDistance();
}

unsigned AArch64TTIImpl::getMinPrefetchStride() {
  return ST->getMinPrefetchStride();
}

unsigned AArch64TTIImpl::getMaxPrefetchIterationsAhead() {
  return ST->getMaxPrefetchIterationsAhead();
}

bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
                                           TTI::ReductionFlags Flags) const {
  assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type");
  unsigned ScalarBits = Ty->getScalarSizeInBits();
  switch (Opcode) {
  case Instruction::FAdd:
  case Instruction::FMul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Mul:
    return false;
  case Instruction::Add:
    return ScalarBits * Ty->getVectorNumElements() >= 128;
  case Instruction::ICmp:
    return (ScalarBits < 64) &&
           (ScalarBits * Ty->getVectorNumElements() >= 128);
  case Instruction::FCmp:
    return Flags.NoNaN;
  default:
    llvm_unreachable("Unhandled reduction opcode");
  }
  return false;
}

int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
                                               bool IsPairwiseForm) {

  if (IsPairwiseForm)
    return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);

  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
  MVT MTy = LT.second;
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  // Horizontal adds can use the 'addv' instruction. We model the cost of these
  // instructions as normal vector adds. This is the only arithmetic vector
  // reduction operation for which we have an instruction.
  static const CostTblEntry CostTblNoPairwise[]{
      {ISD::ADD, MVT::v8i8,  1},
      {ISD::ADD, MVT::v16i8, 1},
      {ISD::ADD, MVT::v4i16, 1},
      {ISD::ADD, MVT::v8i16, 1},
      {ISD::ADD, MVT::v4i32, 1},
  };

  if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
    return LT.first * Entry->Cost;

  return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);
}

int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
                                   Type *SubTp) {
  if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
      Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc) {
    static const CostTblEntry ShuffleTbl[] = {
      // Broadcast shuffle kinds can be performed with 'dup'.
      { TTI::SK_Broadcast, MVT::v8i8,  1 },
      { TTI::SK_Broadcast, MVT::v16i8, 1 },
      { TTI::SK_Broadcast, MVT::v4i16, 1 },
      { TTI::SK_Broadcast, MVT::v8i16, 1 },
      { TTI::SK_Broadcast, MVT::v2i32, 1 },
      { TTI::SK_Broadcast, MVT::v4i32, 1 },
      { TTI::SK_Broadcast, MVT::v2i64, 1 },
      { TTI::SK_Broadcast, MVT::v2f32, 1 },
      { TTI::SK_Broadcast, MVT::v4f32, 1 },
      { TTI::SK_Broadcast, MVT::v2f64, 1 },
      // Transpose shuffle kinds can be performed with 'trn1/trn2' and
      // 'zip1/zip2' instructions.
      { TTI::SK_Transpose, MVT::v8i8,  1 },
      { TTI::SK_Transpose, MVT::v16i8, 1 },
      { TTI::SK_Transpose, MVT::v4i16, 1 },
      { TTI::SK_Transpose, MVT::v8i16, 1 },
      { TTI::SK_Transpose, MVT::v2i32, 1 },
      { TTI::SK_Transpose, MVT::v4i32, 1 },
      { TTI::SK_Transpose, MVT::v2i64, 1 },
      { TTI::SK_Transpose, MVT::v2f32, 1 },
      { TTI::SK_Transpose, MVT::v4f32, 1 },
      { TTI::SK_Transpose, MVT::v2f64, 1 },
      // Select shuffle kinds.
      // TODO: handle vXi8/vXi16.
      { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
      { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
      { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
      { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
      { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
      { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
      // PermuteSingleSrc shuffle kinds.
      // TODO: handle vXi8/vXi16.
      { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
      { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
      { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
      { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
      { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
      { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
    };
    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
    if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
      return LT.first * Entry->Cost;
  }

  return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
}