aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/AMDGPU/AMDGPUAnnotateUniformValues.cpp
blob: 6f002860044c007ed747a5c46af67fe1d2998baf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
//===-- AMDGPUAnnotateUniformValues.cpp - ---------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass adds amdgpu.uniform metadata to IR values so this information
/// can be used during instruction selection.
//
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUIntrinsicInfo.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "amdgpu-annotate-uniform"

using namespace llvm;

namespace {

class AMDGPUAnnotateUniformValues : public FunctionPass,
                       public InstVisitor<AMDGPUAnnotateUniformValues> {
  DivergenceAnalysis *DA;
  MemoryDependenceResults *MDR;
  LoopInfo *LI;
  DenseMap<Value*, GetElementPtrInst*> noClobberClones;
  bool isKernelFunc;
  AMDGPUAS AMDGPUASI;

public:
  static char ID;
  AMDGPUAnnotateUniformValues() :
    FunctionPass(ID) { }
  bool doInitialization(Module &M) override;
  bool runOnFunction(Function &F) override;
  StringRef getPassName() const override {
    return "AMDGPU Annotate Uniform Values";
  }
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<DivergenceAnalysis>();
    AU.addRequired<MemoryDependenceWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.setPreservesAll();
 }

  void visitBranchInst(BranchInst &I);
  void visitLoadInst(LoadInst &I);
  bool isClobberedInFunction(LoadInst * Load);
};

} // End anonymous namespace

INITIALIZE_PASS_BEGIN(AMDGPUAnnotateUniformValues, DEBUG_TYPE,
                      "Add AMDGPU uniform metadata", false, false)
INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(AMDGPUAnnotateUniformValues, DEBUG_TYPE,
                    "Add AMDGPU uniform metadata", false, false)

char AMDGPUAnnotateUniformValues::ID = 0;

static void setUniformMetadata(Instruction *I) {
  I->setMetadata("amdgpu.uniform", MDNode::get(I->getContext(), {}));
}
static void setNoClobberMetadata(Instruction *I) {
  I->setMetadata("amdgpu.noclobber", MDNode::get(I->getContext(), {}));
}

static void DFS(BasicBlock *Root, SetVector<BasicBlock*> & Set) {
  for (auto I : predecessors(Root))
    if (Set.insert(I))
      DFS(I, Set);
}

bool AMDGPUAnnotateUniformValues::isClobberedInFunction(LoadInst * Load) {
  // 1. get Loop for the Load->getparent();
  // 2. if it exists, collect all the BBs from the most outer
  // loop and check for the writes. If NOT - start DFS over all preds.
  // 3. Start DFS over all preds from the most outer loop header.
  SetVector<BasicBlock *> Checklist;
  BasicBlock *Start = Load->getParent();
  Checklist.insert(Start);
  const Value *Ptr = Load->getPointerOperand();
  const Loop *L = LI->getLoopFor(Start);
  if (L) {
    const Loop *P = L;
    do {
      L = P;
      P = P->getParentLoop();
    } while (P);
    Checklist.insert(L->block_begin(), L->block_end());
    Start = L->getHeader();
  }

  DFS(Start, Checklist);
  for (auto &BB : Checklist) {
    BasicBlock::iterator StartIt = (!L && (BB == Load->getParent())) ?
     BasicBlock::iterator(Load) : BB->end();
     if (MDR->getPointerDependencyFrom(MemoryLocation(Ptr),
       true, StartIt, BB, Load).isClobber())
       return true;
  }
  return false;
}

void AMDGPUAnnotateUniformValues::visitBranchInst(BranchInst &I) {
  if (I.isUnconditional())
    return;

  Value *Cond = I.getCondition();
  if (!DA->isUniform(Cond))
    return;

  setUniformMetadata(I.getParent()->getTerminator());
}

void AMDGPUAnnotateUniformValues::visitLoadInst(LoadInst &I) {
  Value *Ptr = I.getPointerOperand();
  if (!DA->isUniform(Ptr))
    return;
  auto isGlobalLoad = [&](LoadInst &Load)->bool {
    return Load.getPointerAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS;
  };
  // We're tracking up to the Function boundaries
  // We cannot go beyond because of FunctionPass restrictions
  // Thus we can ensure that memory not clobbered for memory
  // operations that live in kernel only.
  bool NotClobbered = isKernelFunc &&   !isClobberedInFunction(&I);
  Instruction *PtrI = dyn_cast<Instruction>(Ptr);
  if (!PtrI && NotClobbered && isGlobalLoad(I)) {
    if (isa<Argument>(Ptr) || isa<GlobalValue>(Ptr)) {
      // Lookup for the existing GEP
      if (noClobberClones.count(Ptr)) {
        PtrI = noClobberClones[Ptr];
      } else {
        // Create GEP of the Value
        Function *F = I.getParent()->getParent();
        Value *Idx = Constant::getIntegerValue(
          Type::getInt32Ty(Ptr->getContext()), APInt(64, 0));
        // Insert GEP at the entry to make it dominate all uses
        PtrI = GetElementPtrInst::Create(
          Ptr->getType()->getPointerElementType(), Ptr,
          ArrayRef<Value*>(Idx), Twine(""), F->getEntryBlock().getFirstNonPHI());
      }
      I.replaceUsesOfWith(Ptr, PtrI);
    }
  }

  if (PtrI) {
    setUniformMetadata(PtrI);
    if (NotClobbered)
      setNoClobberMetadata(PtrI);
  }
}

bool AMDGPUAnnotateUniformValues::doInitialization(Module &M) {
  AMDGPUASI = AMDGPU::getAMDGPUAS(M);
  return false;
}

bool AMDGPUAnnotateUniformValues::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  DA  = &getAnalysis<DivergenceAnalysis>();
  MDR = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
  LI  = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  isKernelFunc = F.getCallingConv() == CallingConv::AMDGPU_KERNEL;

  visit(F);
  noClobberClones.clear();
  return true;
}

FunctionPass *
llvm::createAMDGPUAnnotateUniformValues() {
  return new AMDGPUAnnotateUniformValues();
}