aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/AMDGPU/SIISelLowering.cpp
blob: 41ca7fe8bfaa888ead73af513751e3483e8e948a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Custom DAG lowering for SI
//
//===----------------------------------------------------------------------===//

#ifdef _MSC_VER
// Provide M_PI.
#define _USE_MATH_DEFINES
#endif

#include "SIISelLowering.h"
#include "AMDGPU.h"
#include "AMDGPUIntrinsicInfo.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "SIDefines.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/DAGCombine.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetCallingConv.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetOptions.h"
#include <cassert>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "si-lower"

STATISTIC(NumTailCalls, "Number of tail calls");

static cl::opt<bool> EnableVGPRIndexMode(
  "amdgpu-vgpr-index-mode",
  cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
  cl::init(false));

static cl::opt<unsigned> AssumeFrameIndexHighZeroBits(
  "amdgpu-frame-index-zero-bits",
  cl::desc("High bits of frame index assumed to be zero"),
  cl::init(5),
  cl::ReallyHidden);

static unsigned findFirstFreeSGPR(CCState &CCInfo) {
  unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
  for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
    if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
      return AMDGPU::SGPR0 + Reg;
    }
  }
  llvm_unreachable("Cannot allocate sgpr");
}

SITargetLowering::SITargetLowering(const TargetMachine &TM,
                                   const SISubtarget &STI)
    : AMDGPUTargetLowering(TM, STI) {
  addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
  addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);

  addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass);
  addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);

  addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
  addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
  addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);

  addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
  addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);

  addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
  addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);

  addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
  addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);

  addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
  addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);

  if (Subtarget->has16BitInsts()) {
    addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass);
    addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass);
  }

  if (Subtarget->hasVOP3PInsts()) {
    addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass);
    addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass);
  }

  computeRegisterProperties(STI.getRegisterInfo());

  // We need to custom lower vector stores from local memory
  setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
  setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
  setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
  setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
  setOperationAction(ISD::LOAD, MVT::i1, Custom);

  setOperationAction(ISD::STORE, MVT::v2i32, Custom);
  setOperationAction(ISD::STORE, MVT::v4i32, Custom);
  setOperationAction(ISD::STORE, MVT::v8i32, Custom);
  setOperationAction(ISD::STORE, MVT::v16i32, Custom);
  setOperationAction(ISD::STORE, MVT::i1, Custom);

  setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
  setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
  setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
  setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
  setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
  setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
  setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
  setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
  setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
  setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);

  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
  setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);

  setOperationAction(ISD::SELECT, MVT::i1, Promote);
  setOperationAction(ISD::SELECT, MVT::i64, Custom);
  setOperationAction(ISD::SELECT, MVT::f64, Promote);
  AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);

  setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
  setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
  setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
  setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);

  setOperationAction(ISD::SETCC, MVT::i1, Promote);
  setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
  setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);

  setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
  setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);

  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);

  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);

  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);

  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
  setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
  setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);

  setOperationAction(ISD::BRCOND, MVT::Other, Custom);
  setOperationAction(ISD::BR_CC, MVT::i1, Expand);
  setOperationAction(ISD::BR_CC, MVT::i32, Expand);
  setOperationAction(ISD::BR_CC, MVT::i64, Expand);
  setOperationAction(ISD::BR_CC, MVT::f32, Expand);
  setOperationAction(ISD::BR_CC, MVT::f64, Expand);

  setOperationAction(ISD::UADDO, MVT::i32, Legal);
  setOperationAction(ISD::USUBO, MVT::i32, Legal);

  setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
  setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);

#if 0
  setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
  setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
#endif

  //setOperationAction(ISD::ADDC, MVT::i64, Expand);
  //setOperationAction(ISD::SUBC, MVT::i64, Expand);

  // We only support LOAD/STORE and vector manipulation ops for vectors
  // with > 4 elements.
  for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
        MVT::v2i64, MVT::v2f64}) {
    for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
      switch (Op) {
      case ISD::LOAD:
      case ISD::STORE:
      case ISD::BUILD_VECTOR:
      case ISD::BITCAST:
      case ISD::EXTRACT_VECTOR_ELT:
      case ISD::INSERT_VECTOR_ELT:
      case ISD::INSERT_SUBVECTOR:
      case ISD::EXTRACT_SUBVECTOR:
      case ISD::SCALAR_TO_VECTOR:
        break;
      case ISD::CONCAT_VECTORS:
        setOperationAction(Op, VT, Custom);
        break;
      default:
        setOperationAction(Op, VT, Expand);
        break;
      }
    }
  }

  // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
  // is expanded to avoid having two separate loops in case the index is a VGPR.

  // Most operations are naturally 32-bit vector operations. We only support
  // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
  for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
    setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
    AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);

    setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
    AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);

    setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
    AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);

    setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
    AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
  }

  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);

  // Avoid stack access for these.
  // TODO: Generalize to more vector types.
  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);

  // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
  // and output demarshalling
  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);

  // We can't return success/failure, only the old value,
  // let LLVM add the comparison
  setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
  setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);

  if (getSubtarget()->hasFlatAddressSpace()) {
    setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
    setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
  }

  setOperationAction(ISD::BSWAP, MVT::i32, Legal);
  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);

  // On SI this is s_memtime and s_memrealtime on VI.
  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
  setOperationAction(ISD::TRAP, MVT::Other, Custom);
  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);

  setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
  setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);

  if (Subtarget->getGeneration() >= SISubtarget::SEA_ISLANDS) {
    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
    setOperationAction(ISD::FCEIL, MVT::f64, Legal);
    setOperationAction(ISD::FRINT, MVT::f64, Legal);
  }

  setOperationAction(ISD::FFLOOR, MVT::f64, Legal);

  setOperationAction(ISD::FSIN, MVT::f32, Custom);
  setOperationAction(ISD::FCOS, MVT::f32, Custom);
  setOperationAction(ISD::FDIV, MVT::f32, Custom);
  setOperationAction(ISD::FDIV, MVT::f64, Custom);

  if (Subtarget->has16BitInsts()) {
    setOperationAction(ISD::Constant, MVT::i16, Legal);

    setOperationAction(ISD::SMIN, MVT::i16, Legal);
    setOperationAction(ISD::SMAX, MVT::i16, Legal);

    setOperationAction(ISD::UMIN, MVT::i16, Legal);
    setOperationAction(ISD::UMAX, MVT::i16, Legal);

    setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
    AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);

    setOperationAction(ISD::ROTR, MVT::i16, Promote);
    setOperationAction(ISD::ROTL, MVT::i16, Promote);

    setOperationAction(ISD::SDIV, MVT::i16, Promote);
    setOperationAction(ISD::UDIV, MVT::i16, Promote);
    setOperationAction(ISD::SREM, MVT::i16, Promote);
    setOperationAction(ISD::UREM, MVT::i16, Promote);

    setOperationAction(ISD::BSWAP, MVT::i16, Promote);
    setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);

    setOperationAction(ISD::CTTZ, MVT::i16, Promote);
    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
    setOperationAction(ISD::CTLZ, MVT::i16, Promote);
    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
    setOperationAction(ISD::CTPOP, MVT::i16, Promote);

    setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);

    setOperationAction(ISD::BR_CC, MVT::i16, Expand);

    setOperationAction(ISD::LOAD, MVT::i16, Custom);

    setTruncStoreAction(MVT::i64, MVT::i16, Expand);

    setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
    AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
    setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
    AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);

    setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
    setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
    setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
    setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);

    // F16 - Constant Actions.
    setOperationAction(ISD::ConstantFP, MVT::f16, Legal);

    // F16 - Load/Store Actions.
    setOperationAction(ISD::LOAD, MVT::f16, Promote);
    AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
    setOperationAction(ISD::STORE, MVT::f16, Promote);
    AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);

    // F16 - VOP1 Actions.
    setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
    setOperationAction(ISD::FCOS, MVT::f16, Promote);
    setOperationAction(ISD::FSIN, MVT::f16, Promote);
    setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
    setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
    setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
    setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
    setOperationAction(ISD::FROUND, MVT::f16, Custom);

    // F16 - VOP2 Actions.
    setOperationAction(ISD::BR_CC, MVT::f16, Expand);
    setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
    setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
    setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
    setOperationAction(ISD::FDIV, MVT::f16, Custom);

    // F16 - VOP3 Actions.
    setOperationAction(ISD::FMA, MVT::f16, Legal);
    if (!Subtarget->hasFP16Denormals())
      setOperationAction(ISD::FMAD, MVT::f16, Legal);
  }

  if (Subtarget->hasVOP3PInsts()) {
    for (MVT VT : {MVT::v2i16, MVT::v2f16}) {
      for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
        switch (Op) {
        case ISD::LOAD:
        case ISD::STORE:
        case ISD::BUILD_VECTOR:
        case ISD::BITCAST:
        case ISD::EXTRACT_VECTOR_ELT:
        case ISD::INSERT_VECTOR_ELT:
        case ISD::INSERT_SUBVECTOR:
        case ISD::EXTRACT_SUBVECTOR:
        case ISD::SCALAR_TO_VECTOR:
          break;
        case ISD::CONCAT_VECTORS:
          setOperationAction(Op, VT, Custom);
          break;
        default:
          setOperationAction(Op, VT, Expand);
          break;
        }
      }
    }

    // XXX - Do these do anything? Vector constants turn into build_vector.
    setOperationAction(ISD::Constant, MVT::v2i16, Legal);
    setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);

    setOperationAction(ISD::STORE, MVT::v2i16, Promote);
    AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
    setOperationAction(ISD::STORE, MVT::v2f16, Promote);
    AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);

    setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
    AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
    setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
    AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);

    setOperationAction(ISD::AND, MVT::v2i16, Promote);
    AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
    setOperationAction(ISD::OR, MVT::v2i16, Promote);
    AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
    setOperationAction(ISD::XOR, MVT::v2i16, Promote);
    AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
    setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
    AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
    setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
    AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);

    setOperationAction(ISD::ADD, MVT::v2i16, Legal);
    setOperationAction(ISD::SUB, MVT::v2i16, Legal);
    setOperationAction(ISD::MUL, MVT::v2i16, Legal);
    setOperationAction(ISD::SHL, MVT::v2i16, Legal);
    setOperationAction(ISD::SRL, MVT::v2i16, Legal);
    setOperationAction(ISD::SRA, MVT::v2i16, Legal);
    setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
    setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
    setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
    setOperationAction(ISD::UMAX, MVT::v2i16, Legal);

    setOperationAction(ISD::FADD, MVT::v2f16, Legal);
    setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
    setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
    setOperationAction(ISD::FMA, MVT::v2f16, Legal);
    setOperationAction(ISD::FMINNUM, MVT::v2f16, Legal);
    setOperationAction(ISD::FMAXNUM, MVT::v2f16, Legal);

    // This isn't really legal, but this avoids the legalizer unrolling it (and
    // allows matching fneg (fabs x) patterns)
    setOperationAction(ISD::FABS, MVT::v2f16, Legal);

    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);

    setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
    setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
    setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
    setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
  } else {
    setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
    setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
  }

  for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
    setOperationAction(ISD::SELECT, VT, Custom);
  }

  setTargetDAGCombine(ISD::ADD);
  setTargetDAGCombine(ISD::ADDCARRY);
  setTargetDAGCombine(ISD::SUB);
  setTargetDAGCombine(ISD::SUBCARRY);
  setTargetDAGCombine(ISD::FADD);
  setTargetDAGCombine(ISD::FSUB);
  setTargetDAGCombine(ISD::FMINNUM);
  setTargetDAGCombine(ISD::FMAXNUM);
  setTargetDAGCombine(ISD::SMIN);
  setTargetDAGCombine(ISD::SMAX);
  setTargetDAGCombine(ISD::UMIN);
  setTargetDAGCombine(ISD::UMAX);
  setTargetDAGCombine(ISD::SETCC);
  setTargetDAGCombine(ISD::AND);
  setTargetDAGCombine(ISD::OR);
  setTargetDAGCombine(ISD::XOR);
  setTargetDAGCombine(ISD::SINT_TO_FP);
  setTargetDAGCombine(ISD::UINT_TO_FP);
  setTargetDAGCombine(ISD::FCANONICALIZE);
  setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
  setTargetDAGCombine(ISD::ZERO_EXTEND);
  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
  setTargetDAGCombine(ISD::BUILD_VECTOR);

  // All memory operations. Some folding on the pointer operand is done to help
  // matching the constant offsets in the addressing modes.
  setTargetDAGCombine(ISD::LOAD);
  setTargetDAGCombine(ISD::STORE);
  setTargetDAGCombine(ISD::ATOMIC_LOAD);
  setTargetDAGCombine(ISD::ATOMIC_STORE);
  setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
  setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
  setTargetDAGCombine(ISD::ATOMIC_SWAP);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
  setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);

  setSchedulingPreference(Sched::RegPressure);
}

const SISubtarget *SITargetLowering::getSubtarget() const {
  return static_cast<const SISubtarget *>(Subtarget);
}

//===----------------------------------------------------------------------===//
// TargetLowering queries
//===----------------------------------------------------------------------===//

bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
  // SI has some legal vector types, but no legal vector operations. Say no
  // shuffles are legal in order to prefer scalarizing some vector operations.
  return false;
}

bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
                                          const CallInst &CI,
                                          MachineFunction &MF,
                                          unsigned IntrID) const {
  switch (IntrID) {
  case Intrinsic::amdgcn_atomic_inc:
  case Intrinsic::amdgcn_atomic_dec: {
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::getVT(CI.getType());
    Info.ptrVal = CI.getOperand(0);
    Info.align = 0;
    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;

    const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
    if (!Vol || !Vol->isZero())
      Info.flags |= MachineMemOperand::MOVolatile;

    return true;
  }

  // Image load.
  case Intrinsic::amdgcn_image_load:
  case Intrinsic::amdgcn_image_load_mip:

  // Sample.
  case Intrinsic::amdgcn_image_sample:
  case Intrinsic::amdgcn_image_sample_cl:
  case Intrinsic::amdgcn_image_sample_d:
  case Intrinsic::amdgcn_image_sample_d_cl:
  case Intrinsic::amdgcn_image_sample_l:
  case Intrinsic::amdgcn_image_sample_b:
  case Intrinsic::amdgcn_image_sample_b_cl:
  case Intrinsic::amdgcn_image_sample_lz:
  case Intrinsic::amdgcn_image_sample_cd:
  case Intrinsic::amdgcn_image_sample_cd_cl:

    // Sample with comparison.
  case Intrinsic::amdgcn_image_sample_c:
  case Intrinsic::amdgcn_image_sample_c_cl:
  case Intrinsic::amdgcn_image_sample_c_d:
  case Intrinsic::amdgcn_image_sample_c_d_cl:
  case Intrinsic::amdgcn_image_sample_c_l:
  case Intrinsic::amdgcn_image_sample_c_b:
  case Intrinsic::amdgcn_image_sample_c_b_cl:
  case Intrinsic::amdgcn_image_sample_c_lz:
  case Intrinsic::amdgcn_image_sample_c_cd:
  case Intrinsic::amdgcn_image_sample_c_cd_cl:

    // Sample with offsets.
  case Intrinsic::amdgcn_image_sample_o:
  case Intrinsic::amdgcn_image_sample_cl_o:
  case Intrinsic::amdgcn_image_sample_d_o:
  case Intrinsic::amdgcn_image_sample_d_cl_o:
  case Intrinsic::amdgcn_image_sample_l_o:
  case Intrinsic::amdgcn_image_sample_b_o:
  case Intrinsic::amdgcn_image_sample_b_cl_o:
  case Intrinsic::amdgcn_image_sample_lz_o:
  case Intrinsic::amdgcn_image_sample_cd_o:
  case Intrinsic::amdgcn_image_sample_cd_cl_o:

    // Sample with comparison and offsets.
  case Intrinsic::amdgcn_image_sample_c_o:
  case Intrinsic::amdgcn_image_sample_c_cl_o:
  case Intrinsic::amdgcn_image_sample_c_d_o:
  case Intrinsic::amdgcn_image_sample_c_d_cl_o:
  case Intrinsic::amdgcn_image_sample_c_l_o:
  case Intrinsic::amdgcn_image_sample_c_b_o:
  case Intrinsic::amdgcn_image_sample_c_b_cl_o:
  case Intrinsic::amdgcn_image_sample_c_lz_o:
  case Intrinsic::amdgcn_image_sample_c_cd_o:
  case Intrinsic::amdgcn_image_sample_c_cd_cl_o:

    // Basic gather4
  case Intrinsic::amdgcn_image_gather4:
  case Intrinsic::amdgcn_image_gather4_cl:
  case Intrinsic::amdgcn_image_gather4_l:
  case Intrinsic::amdgcn_image_gather4_b:
  case Intrinsic::amdgcn_image_gather4_b_cl:
  case Intrinsic::amdgcn_image_gather4_lz:

    // Gather4 with comparison
  case Intrinsic::amdgcn_image_gather4_c:
  case Intrinsic::amdgcn_image_gather4_c_cl:
  case Intrinsic::amdgcn_image_gather4_c_l:
  case Intrinsic::amdgcn_image_gather4_c_b:
  case Intrinsic::amdgcn_image_gather4_c_b_cl:
  case Intrinsic::amdgcn_image_gather4_c_lz:

    // Gather4 with offsets
  case Intrinsic::amdgcn_image_gather4_o:
  case Intrinsic::amdgcn_image_gather4_cl_o:
  case Intrinsic::amdgcn_image_gather4_l_o:
  case Intrinsic::amdgcn_image_gather4_b_o:
  case Intrinsic::amdgcn_image_gather4_b_cl_o:
  case Intrinsic::amdgcn_image_gather4_lz_o:

    // Gather4 with comparison and offsets
  case Intrinsic::amdgcn_image_gather4_c_o:
  case Intrinsic::amdgcn_image_gather4_c_cl_o:
  case Intrinsic::amdgcn_image_gather4_c_l_o:
  case Intrinsic::amdgcn_image_gather4_c_b_o:
  case Intrinsic::amdgcn_image_gather4_c_b_cl_o:
  case Intrinsic::amdgcn_image_gather4_c_lz_o: {
    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::getVT(CI.getType());
    Info.ptrVal = MFI->getImagePSV(
      *MF.getSubtarget<SISubtarget>().getInstrInfo(),
      CI.getArgOperand(1));
    Info.align = 0;
    Info.flags = MachineMemOperand::MOLoad |
                 MachineMemOperand::MODereferenceable;
    return true;
  }
  case Intrinsic::amdgcn_image_store:
  case Intrinsic::amdgcn_image_store_mip: {
    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
    Info.opc = ISD::INTRINSIC_VOID;
    Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
    Info.ptrVal = MFI->getImagePSV(
      *MF.getSubtarget<SISubtarget>().getInstrInfo(),
      CI.getArgOperand(2));
    Info.flags = MachineMemOperand::MOStore |
                 MachineMemOperand::MODereferenceable;
    Info.align = 0;
    return true;
  }
  case Intrinsic::amdgcn_image_atomic_swap:
  case Intrinsic::amdgcn_image_atomic_add:
  case Intrinsic::amdgcn_image_atomic_sub:
  case Intrinsic::amdgcn_image_atomic_smin:
  case Intrinsic::amdgcn_image_atomic_umin:
  case Intrinsic::amdgcn_image_atomic_smax:
  case Intrinsic::amdgcn_image_atomic_umax:
  case Intrinsic::amdgcn_image_atomic_and:
  case Intrinsic::amdgcn_image_atomic_or:
  case Intrinsic::amdgcn_image_atomic_xor:
  case Intrinsic::amdgcn_image_atomic_inc:
  case Intrinsic::amdgcn_image_atomic_dec: {
    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::getVT(CI.getType());
    Info.ptrVal = MFI->getImagePSV(
      *MF.getSubtarget<SISubtarget>().getInstrInfo(),
      CI.getArgOperand(2));

    Info.flags = MachineMemOperand::MOLoad |
                 MachineMemOperand::MOStore |
                 MachineMemOperand::MODereferenceable;

    // XXX - Should this be volatile without known ordering?
    Info.flags |= MachineMemOperand::MOVolatile;
    return true;
  }
  case Intrinsic::amdgcn_image_atomic_cmpswap: {
    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::getVT(CI.getType());
    Info.ptrVal = MFI->getImagePSV(
      *MF.getSubtarget<SISubtarget>().getInstrInfo(),
      CI.getArgOperand(3));

    Info.flags = MachineMemOperand::MOLoad |
                 MachineMemOperand::MOStore |
                 MachineMemOperand::MODereferenceable;

    // XXX - Should this be volatile without known ordering?
    Info.flags |= MachineMemOperand::MOVolatile;
    return true;
  }
  case Intrinsic::amdgcn_tbuffer_load:
  case Intrinsic::amdgcn_buffer_load:
  case Intrinsic::amdgcn_buffer_load_format: {
    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.ptrVal = MFI->getBufferPSV(
      *MF.getSubtarget<SISubtarget>().getInstrInfo(),
      CI.getArgOperand(0));
    Info.memVT = MVT::getVT(CI.getType());
    Info.flags = MachineMemOperand::MOLoad |
                 MachineMemOperand::MODereferenceable;

    // There is a constant offset component, but there are additional register
    // offsets which could break AA if we set the offset to anything non-0.
    return true;
  }
  case Intrinsic::amdgcn_tbuffer_store:
  case Intrinsic::amdgcn_buffer_store:
  case Intrinsic::amdgcn_buffer_store_format: {
    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
    Info.opc = ISD::INTRINSIC_VOID;
    Info.ptrVal = MFI->getBufferPSV(
      *MF.getSubtarget<SISubtarget>().getInstrInfo(),
      CI.getArgOperand(1));
    Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
    Info.flags = MachineMemOperand::MOStore |
                 MachineMemOperand::MODereferenceable;
    return true;
  }
  case Intrinsic::amdgcn_buffer_atomic_swap:
  case Intrinsic::amdgcn_buffer_atomic_add:
  case Intrinsic::amdgcn_buffer_atomic_sub:
  case Intrinsic::amdgcn_buffer_atomic_smin:
  case Intrinsic::amdgcn_buffer_atomic_umin:
  case Intrinsic::amdgcn_buffer_atomic_smax:
  case Intrinsic::amdgcn_buffer_atomic_umax:
  case Intrinsic::amdgcn_buffer_atomic_and:
  case Intrinsic::amdgcn_buffer_atomic_or:
  case Intrinsic::amdgcn_buffer_atomic_xor: {
    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.ptrVal = MFI->getBufferPSV(
      *MF.getSubtarget<SISubtarget>().getInstrInfo(),
      CI.getArgOperand(1));
    Info.memVT = MVT::getVT(CI.getType());
    Info.flags = MachineMemOperand::MOLoad |
                 MachineMemOperand::MOStore |
                 MachineMemOperand::MODereferenceable |
                 MachineMemOperand::MOVolatile;
    return true;
  }
  case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.ptrVal = MFI->getBufferPSV(
      *MF.getSubtarget<SISubtarget>().getInstrInfo(),
      CI.getArgOperand(2));
    Info.memVT = MVT::getVT(CI.getType());
    Info.flags = MachineMemOperand::MOLoad |
                 MachineMemOperand::MOStore |
                 MachineMemOperand::MODereferenceable |
                 MachineMemOperand::MOVolatile;
    return true;
  }
  default:
    return false;
  }
}

bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
                                            SmallVectorImpl<Value*> &Ops,
                                            Type *&AccessTy) const {
  switch (II->getIntrinsicID()) {
  case Intrinsic::amdgcn_atomic_inc:
  case Intrinsic::amdgcn_atomic_dec: {
    Value *Ptr = II->getArgOperand(0);
    AccessTy = II->getType();
    Ops.push_back(Ptr);
    return true;
  }
  default:
    return false;
  }
}

bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
  if (!Subtarget->hasFlatInstOffsets()) {
    // Flat instructions do not have offsets, and only have the register
    // address.
    return AM.BaseOffs == 0 && AM.Scale == 0;
  }

  // GFX9 added a 13-bit signed offset. When using regular flat instructions,
  // the sign bit is ignored and is treated as a 12-bit unsigned offset.

  // Just r + i
  return isUInt<12>(AM.BaseOffs) && AM.Scale == 0;
}

bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
  if (Subtarget->hasFlatGlobalInsts())
    return isInt<13>(AM.BaseOffs) && AM.Scale == 0;

  if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
      // Assume the we will use FLAT for all global memory accesses
      // on VI.
      // FIXME: This assumption is currently wrong.  On VI we still use
      // MUBUF instructions for the r + i addressing mode.  As currently
      // implemented, the MUBUF instructions only work on buffer < 4GB.
      // It may be possible to support > 4GB buffers with MUBUF instructions,
      // by setting the stride value in the resource descriptor which would
      // increase the size limit to (stride * 4GB).  However, this is risky,
      // because it has never been validated.
    return isLegalFlatAddressingMode(AM);
  }

  return isLegalMUBUFAddressingMode(AM);
}

bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
  // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
  // additionally can do r + r + i with addr64. 32-bit has more addressing
  // mode options. Depending on the resource constant, it can also do
  // (i64 r0) + (i32 r1) * (i14 i).
  //
  // Private arrays end up using a scratch buffer most of the time, so also
  // assume those use MUBUF instructions. Scratch loads / stores are currently
  // implemented as mubuf instructions with offen bit set, so slightly
  // different than the normal addr64.
  if (!isUInt<12>(AM.BaseOffs))
    return false;

  // FIXME: Since we can split immediate into soffset and immediate offset,
  // would it make sense to allow any immediate?

  switch (AM.Scale) {
  case 0: // r + i or just i, depending on HasBaseReg.
    return true;
  case 1:
    return true; // We have r + r or r + i.
  case 2:
    if (AM.HasBaseReg) {
      // Reject 2 * r + r.
      return false;
    }

    // Allow 2 * r as r + r
    // Or  2 * r + i is allowed as r + r + i.
    return true;
  default: // Don't allow n * r
    return false;
  }
}

bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
                                             const AddrMode &AM, Type *Ty,
                                             unsigned AS, Instruction *I) const {
  // No global is ever allowed as a base.
  if (AM.BaseGV)
    return false;

  if (AS == AMDGPUASI.GLOBAL_ADDRESS)
    return isLegalGlobalAddressingMode(AM);

  if (AS == AMDGPUASI.CONSTANT_ADDRESS) {
    // If the offset isn't a multiple of 4, it probably isn't going to be
    // correctly aligned.
    // FIXME: Can we get the real alignment here?
    if (AM.BaseOffs % 4 != 0)
      return isLegalMUBUFAddressingMode(AM);

    // There are no SMRD extloads, so if we have to do a small type access we
    // will use a MUBUF load.
    // FIXME?: We also need to do this if unaligned, but we don't know the
    // alignment here.
    if (DL.getTypeStoreSize(Ty) < 4)
      return isLegalGlobalAddressingMode(AM);

    if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
      // SMRD instructions have an 8-bit, dword offset on SI.
      if (!isUInt<8>(AM.BaseOffs / 4))
        return false;
    } else if (Subtarget->getGeneration() == SISubtarget::SEA_ISLANDS) {
      // On CI+, this can also be a 32-bit literal constant offset. If it fits
      // in 8-bits, it can use a smaller encoding.
      if (!isUInt<32>(AM.BaseOffs / 4))
        return false;
    } else if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
      // On VI, these use the SMEM format and the offset is 20-bit in bytes.
      if (!isUInt<20>(AM.BaseOffs))
        return false;
    } else
      llvm_unreachable("unhandled generation");

    if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
      return true;

    if (AM.Scale == 1 && AM.HasBaseReg)
      return true;

    return false;

  } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
    return isLegalMUBUFAddressingMode(AM);
  } else if (AS == AMDGPUASI.LOCAL_ADDRESS ||
             AS == AMDGPUASI.REGION_ADDRESS) {
    // Basic, single offset DS instructions allow a 16-bit unsigned immediate
    // field.
    // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
    // an 8-bit dword offset but we don't know the alignment here.
    if (!isUInt<16>(AM.BaseOffs))
      return false;

    if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
      return true;

    if (AM.Scale == 1 && AM.HasBaseReg)
      return true;

    return false;
  } else if (AS == AMDGPUASI.FLAT_ADDRESS ||
             AS == AMDGPUASI.UNKNOWN_ADDRESS_SPACE) {
    // For an unknown address space, this usually means that this is for some
    // reason being used for pure arithmetic, and not based on some addressing
    // computation. We don't have instructions that compute pointers with any
    // addressing modes, so treat them as having no offset like flat
    // instructions.
    return isLegalFlatAddressingMode(AM);
  } else {
    llvm_unreachable("unhandled address space");
  }
}

bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
                                        const SelectionDAG &DAG) const {
  if (AS == AMDGPUASI.GLOBAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) {
    return (MemVT.getSizeInBits() <= 4 * 32);
  } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
    unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
    return (MemVT.getSizeInBits() <= MaxPrivateBits);
  } else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
    return (MemVT.getSizeInBits() <= 2 * 32);
  }
  return true;
}

bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
                                                      unsigned AddrSpace,
                                                      unsigned Align,
                                                      bool *IsFast) const {
  if (IsFast)
    *IsFast = false;

  // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
  // which isn't a simple VT.
  // Until MVT is extended to handle this, simply check for the size and
  // rely on the condition below: allow accesses if the size is a multiple of 4.
  if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
                           VT.getStoreSize() > 16)) {
    return false;
  }

  if (AddrSpace == AMDGPUASI.LOCAL_ADDRESS ||
      AddrSpace == AMDGPUASI.REGION_ADDRESS) {
    // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
    // aligned, 8 byte access in a single operation using ds_read2/write2_b32
    // with adjacent offsets.
    bool AlignedBy4 = (Align % 4 == 0);
    if (IsFast)
      *IsFast = AlignedBy4;

    return AlignedBy4;
  }

  // FIXME: We have to be conservative here and assume that flat operations
  // will access scratch.  If we had access to the IR function, then we
  // could determine if any private memory was used in the function.
  if (!Subtarget->hasUnalignedScratchAccess() &&
      (AddrSpace == AMDGPUASI.PRIVATE_ADDRESS ||
       AddrSpace == AMDGPUASI.FLAT_ADDRESS)) {
    return false;
  }

  if (Subtarget->hasUnalignedBufferAccess()) {
    // If we have an uniform constant load, it still requires using a slow
    // buffer instruction if unaligned.
    if (IsFast) {
      *IsFast = (AddrSpace == AMDGPUASI.CONSTANT_ADDRESS) ?
        (Align % 4 == 0) : true;
    }

    return true;
  }

  // Smaller than dword value must be aligned.
  if (VT.bitsLT(MVT::i32))
    return false;

  // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
  // byte-address are ignored, thus forcing Dword alignment.
  // This applies to private, global, and constant memory.
  if (IsFast)
    *IsFast = true;

  return VT.bitsGT(MVT::i32) && Align % 4 == 0;
}

EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
                                          unsigned SrcAlign, bool IsMemset,
                                          bool ZeroMemset,
                                          bool MemcpyStrSrc,
                                          MachineFunction &MF) const {
  // FIXME: Should account for address space here.

  // The default fallback uses the private pointer size as a guess for a type to
  // use. Make sure we switch these to 64-bit accesses.

  if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
    return MVT::v4i32;

  if (Size >= 8 && DstAlign >= 4)
    return MVT::v2i32;

  // Use the default.
  return MVT::Other;
}

static bool isFlatGlobalAddrSpace(unsigned AS, AMDGPUAS AMDGPUASI) {
  return AS == AMDGPUASI.GLOBAL_ADDRESS ||
         AS == AMDGPUASI.FLAT_ADDRESS ||
         AS == AMDGPUASI.CONSTANT_ADDRESS;
}

bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
                                           unsigned DestAS) const {
  return isFlatGlobalAddrSpace(SrcAS, AMDGPUASI) &&
         isFlatGlobalAddrSpace(DestAS, AMDGPUASI);
}

bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
  const MemSDNode *MemNode = cast<MemSDNode>(N);
  const Value *Ptr = MemNode->getMemOperand()->getValue();
  const Instruction *I = dyn_cast<Instruction>(Ptr);
  return I && I->getMetadata("amdgpu.noclobber");
}

bool SITargetLowering::isCheapAddrSpaceCast(unsigned SrcAS,
                                            unsigned DestAS) const {
  // Flat -> private/local is a simple truncate.
  // Flat -> global is no-op
  if (SrcAS == AMDGPUASI.FLAT_ADDRESS)
    return true;

  return isNoopAddrSpaceCast(SrcAS, DestAS);
}

bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
  const MemSDNode *MemNode = cast<MemSDNode>(N);

  return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
}

TargetLoweringBase::LegalizeTypeAction
SITargetLowering::getPreferredVectorAction(EVT VT) const {
  if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
    return TypeSplitVector;

  return TargetLoweringBase::getPreferredVectorAction(VT);
}

bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
                                                         Type *Ty) const {
  // FIXME: Could be smarter if called for vector constants.
  return true;
}

bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
  if (Subtarget->has16BitInsts() && VT == MVT::i16) {
    switch (Op) {
    case ISD::LOAD:
    case ISD::STORE:

    // These operations are done with 32-bit instructions anyway.
    case ISD::AND:
    case ISD::OR:
    case ISD::XOR:
    case ISD::SELECT:
      // TODO: Extensions?
      return true;
    default:
      return false;
    }
  }

  // SimplifySetCC uses this function to determine whether or not it should
  // create setcc with i1 operands.  We don't have instructions for i1 setcc.
  if (VT == MVT::i1 && Op == ISD::SETCC)
    return false;

  return TargetLowering::isTypeDesirableForOp(Op, VT);
}

SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
                                                   const SDLoc &SL,
                                                   SDValue Chain,
                                                   uint64_t Offset) const {
  const DataLayout &DL = DAG.getDataLayout();
  MachineFunction &MF = DAG.getMachineFunction();
  const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();

  const ArgDescriptor *InputPtrReg;
  const TargetRegisterClass *RC;

  std::tie(InputPtrReg, RC)
    = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);

  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
  MVT PtrVT = getPointerTy(DL, AMDGPUASI.CONSTANT_ADDRESS);
  SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
    MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);

  return DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
                     DAG.getConstant(Offset, SL, PtrVT));
}

SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
                                            const SDLoc &SL) const {
  auto MFI = DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>();
  uint64_t Offset = getImplicitParameterOffset(MFI, FIRST_IMPLICIT);
  return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
}

SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
                                         const SDLoc &SL, SDValue Val,
                                         bool Signed,
                                         const ISD::InputArg *Arg) const {
  if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
      VT.bitsLT(MemVT)) {
    unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
    Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
  }

  if (MemVT.isFloatingPoint())
    Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
  else if (Signed)
    Val = DAG.getSExtOrTrunc(Val, SL, VT);
  else
    Val = DAG.getZExtOrTrunc(Val, SL, VT);

  return Val;
}

SDValue SITargetLowering::lowerKernargMemParameter(
  SelectionDAG &DAG, EVT VT, EVT MemVT,
  const SDLoc &SL, SDValue Chain,
  uint64_t Offset, bool Signed,
  const ISD::InputArg *Arg) const {
  const DataLayout &DL = DAG.getDataLayout();
  Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
  PointerType *PtrTy = PointerType::get(Ty, AMDGPUASI.CONSTANT_ADDRESS);
  MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));

  unsigned Align = DL.getABITypeAlignment(Ty);

  SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
  SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
                             MachineMemOperand::MONonTemporal |
                             MachineMemOperand::MODereferenceable |
                             MachineMemOperand::MOInvariant);

  SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
  return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
}

SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
                                              const SDLoc &SL, SDValue Chain,
                                              const ISD::InputArg &Arg) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();

  if (Arg.Flags.isByVal()) {
    unsigned Size = Arg.Flags.getByValSize();
    int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
    return DAG.getFrameIndex(FrameIdx, MVT::i32);
  }

  unsigned ArgOffset = VA.getLocMemOffset();
  unsigned ArgSize = VA.getValVT().getStoreSize();

  int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);

  // Create load nodes to retrieve arguments from the stack.
  SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
  SDValue ArgValue;

  // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
  MVT MemVT = VA.getValVT();

  switch (VA.getLocInfo()) {
  default:
    break;
  case CCValAssign::BCvt:
    MemVT = VA.getLocVT();
    break;
  case CCValAssign::SExt:
    ExtType = ISD::SEXTLOAD;
    break;
  case CCValAssign::ZExt:
    ExtType = ISD::ZEXTLOAD;
    break;
  case CCValAssign::AExt:
    ExtType = ISD::EXTLOAD;
    break;
  }

  ArgValue = DAG.getExtLoad(
    ExtType, SL, VA.getLocVT(), Chain, FIN,
    MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
    MemVT);
  return ArgValue;
}

SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
  const SIMachineFunctionInfo &MFI,
  EVT VT,
  AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
  const ArgDescriptor *Reg;
  const TargetRegisterClass *RC;

  std::tie(Reg, RC) = MFI.getPreloadedValue(PVID);
  return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
}

static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
                                   CallingConv::ID CallConv,
                                   ArrayRef<ISD::InputArg> Ins,
                                   BitVector &Skipped,
                                   FunctionType *FType,
                                   SIMachineFunctionInfo *Info) {
  for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
    const ISD::InputArg &Arg = Ins[I];

    // First check if it's a PS input addr.
    if (CallConv == CallingConv::AMDGPU_PS && !Arg.Flags.isInReg() &&
        !Arg.Flags.isByVal() && PSInputNum <= 15) {

      if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) {
        // We can safely skip PS inputs.
        Skipped.set(I);
        ++PSInputNum;
        continue;
      }

      Info->markPSInputAllocated(PSInputNum);
      if (Arg.Used)
        Info->markPSInputEnabled(PSInputNum);

      ++PSInputNum;
    }

    // Second split vertices into their elements.
    if (Arg.VT.isVector()) {
      ISD::InputArg NewArg = Arg;
      NewArg.Flags.setSplit();
      NewArg.VT = Arg.VT.getVectorElementType();

      // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
      // three or five element vertex only needs three or five registers,
      // NOT four or eight.
      Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
      unsigned NumElements = ParamType->getVectorNumElements();

      for (unsigned J = 0; J != NumElements; ++J) {
        Splits.push_back(NewArg);
        NewArg.PartOffset += NewArg.VT.getStoreSize();
      }
    } else {
      Splits.push_back(Arg);
    }
  }
}

// Allocate special inputs passed in VGPRs.
static void allocateSpecialEntryInputVGPRs(CCState &CCInfo,
                                           MachineFunction &MF,
                                           const SIRegisterInfo &TRI,
                                           SIMachineFunctionInfo &Info) {
  if (Info.hasWorkItemIDX()) {
    unsigned Reg = AMDGPU::VGPR0;
    MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);

    CCInfo.AllocateReg(Reg);
    Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
  }

  if (Info.hasWorkItemIDY()) {
    unsigned Reg = AMDGPU::VGPR1;
    MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);

    CCInfo.AllocateReg(Reg);
    Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
  }

  if (Info.hasWorkItemIDZ()) {
    unsigned Reg = AMDGPU::VGPR2;
    MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);

    CCInfo.AllocateReg(Reg);
    Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
  }
}

// Try to allocate a VGPR at the end of the argument list, or if no argument
// VGPRs are left allocating a stack slot.
static ArgDescriptor allocateVGPR32Input(CCState &CCInfo) {
  ArrayRef<MCPhysReg> ArgVGPRs
    = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
  unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
  if (RegIdx == ArgVGPRs.size()) {
    // Spill to stack required.
    int64_t Offset = CCInfo.AllocateStack(4, 4);

    return ArgDescriptor::createStack(Offset);
  }

  unsigned Reg = ArgVGPRs[RegIdx];
  Reg = CCInfo.AllocateReg(Reg);
  assert(Reg != AMDGPU::NoRegister);

  MachineFunction &MF = CCInfo.getMachineFunction();
  MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
  return ArgDescriptor::createRegister(Reg);
}

static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
                                             const TargetRegisterClass *RC,
                                             unsigned NumArgRegs) {
  ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
  unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
  if (RegIdx == ArgSGPRs.size())
    report_fatal_error("ran out of SGPRs for arguments");

  unsigned Reg = ArgSGPRs[RegIdx];
  Reg = CCInfo.AllocateReg(Reg);
  assert(Reg != AMDGPU::NoRegister);

  MachineFunction &MF = CCInfo.getMachineFunction();
  MF.addLiveIn(Reg, RC);
  return ArgDescriptor::createRegister(Reg);
}

static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
  return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
}

static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
  return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
}

static void allocateSpecialInputVGPRs(CCState &CCInfo,
                                      MachineFunction &MF,
                                      const SIRegisterInfo &TRI,
                                      SIMachineFunctionInfo &Info) {
  if (Info.hasWorkItemIDX())
    Info.setWorkItemIDX(allocateVGPR32Input(CCInfo));

  if (Info.hasWorkItemIDY())
    Info.setWorkItemIDY(allocateVGPR32Input(CCInfo));

  if (Info.hasWorkItemIDZ())
    Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo));
}

static void allocateSpecialInputSGPRs(CCState &CCInfo,
                                      MachineFunction &MF,
                                      const SIRegisterInfo &TRI,
                                      SIMachineFunctionInfo &Info) {
  auto &ArgInfo = Info.getArgInfo();

  // TODO: Unify handling with private memory pointers.

  if (Info.hasDispatchPtr())
    ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);

  if (Info.hasQueuePtr())
    ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);

  if (Info.hasKernargSegmentPtr())
    ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo);

  if (Info.hasDispatchID())
    ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);

  // flat_scratch_init is not applicable for non-kernel functions.

  if (Info.hasWorkGroupIDX())
    ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);

  if (Info.hasWorkGroupIDY())
    ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);

  if (Info.hasWorkGroupIDZ())
    ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);

  if (Info.hasImplicitArgPtr())
    ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
}

// Allocate special inputs passed in user SGPRs.
static void allocateHSAUserSGPRs(CCState &CCInfo,
                                 MachineFunction &MF,
                                 const SIRegisterInfo &TRI,
                                 SIMachineFunctionInfo &Info) {
  if (Info.hasImplicitBufferPtr()) {
    unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
    MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(ImplicitBufferPtrReg);
  }

  // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
  if (Info.hasPrivateSegmentBuffer()) {
    unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
    MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
    CCInfo.AllocateReg(PrivateSegmentBufferReg);
  }

  if (Info.hasDispatchPtr()) {
    unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
    MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(DispatchPtrReg);
  }

  if (Info.hasQueuePtr()) {
    unsigned QueuePtrReg = Info.addQueuePtr(TRI);
    MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(QueuePtrReg);
  }

  if (Info.hasKernargSegmentPtr()) {
    unsigned InputPtrReg = Info.addKernargSegmentPtr(TRI);
    MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(InputPtrReg);
  }

  if (Info.hasDispatchID()) {
    unsigned DispatchIDReg = Info.addDispatchID(TRI);
    MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(DispatchIDReg);
  }

  if (Info.hasFlatScratchInit()) {
    unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
    MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(FlatScratchInitReg);
  }

  // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
  // these from the dispatch pointer.
}

// Allocate special input registers that are initialized per-wave.
static void allocateSystemSGPRs(CCState &CCInfo,
                                MachineFunction &MF,
                                SIMachineFunctionInfo &Info,
                                CallingConv::ID CallConv,
                                bool IsShader) {
  if (Info.hasWorkGroupIDX()) {
    unsigned Reg = Info.addWorkGroupIDX();
    MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
    CCInfo.AllocateReg(Reg);
  }

  if (Info.hasWorkGroupIDY()) {
    unsigned Reg = Info.addWorkGroupIDY();
    MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
    CCInfo.AllocateReg(Reg);
  }

  if (Info.hasWorkGroupIDZ()) {
    unsigned Reg = Info.addWorkGroupIDZ();
    MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
    CCInfo.AllocateReg(Reg);
  }

  if (Info.hasWorkGroupInfo()) {
    unsigned Reg = Info.addWorkGroupInfo();
    MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
    CCInfo.AllocateReg(Reg);
  }

  if (Info.hasPrivateSegmentWaveByteOffset()) {
    // Scratch wave offset passed in system SGPR.
    unsigned PrivateSegmentWaveByteOffsetReg;

    if (IsShader) {
      PrivateSegmentWaveByteOffsetReg =
        Info.getPrivateSegmentWaveByteOffsetSystemSGPR();

      // This is true if the scratch wave byte offset doesn't have a fixed
      // location.
      if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
        PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
        Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
      }
    } else
      PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();

    MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
    CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
  }
}

static void reservePrivateMemoryRegs(const TargetMachine &TM,
                                     MachineFunction &MF,
                                     const SIRegisterInfo &TRI,
                                     SIMachineFunctionInfo &Info) {
  // Now that we've figured out where the scratch register inputs are, see if
  // should reserve the arguments and use them directly.
  MachineFrameInfo &MFI = MF.getFrameInfo();
  bool HasStackObjects = MFI.hasStackObjects();

  // Record that we know we have non-spill stack objects so we don't need to
  // check all stack objects later.
  if (HasStackObjects)
    Info.setHasNonSpillStackObjects(true);

  // Everything live out of a block is spilled with fast regalloc, so it's
  // almost certain that spilling will be required.
  if (TM.getOptLevel() == CodeGenOpt::None)
    HasStackObjects = true;

  // For now assume stack access is needed in any callee functions, so we need
  // the scratch registers to pass in.
  bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();

  const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
  if (ST.isAmdCodeObjectV2(MF)) {
    if (RequiresStackAccess) {
      // If we have stack objects, we unquestionably need the private buffer
      // resource. For the Code Object V2 ABI, this will be the first 4 user
      // SGPR inputs. We can reserve those and use them directly.

      unsigned PrivateSegmentBufferReg = Info.getPreloadedReg(
        AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
      Info.setScratchRSrcReg(PrivateSegmentBufferReg);

      if (MFI.hasCalls()) {
        // If we have calls, we need to keep the frame register in a register
        // that won't be clobbered by a call, so ensure it is copied somewhere.

        // This is not a problem for the scratch wave offset, because the same
        // registers are reserved in all functions.

        // FIXME: Nothing is really ensuring this is a call preserved register,
        // it's just selected from the end so it happens to be.
        unsigned ReservedOffsetReg
          = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
        Info.setScratchWaveOffsetReg(ReservedOffsetReg);
      } else {
        unsigned PrivateSegmentWaveByteOffsetReg = Info.getPreloadedReg(
          AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
        Info.setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
      }
    } else {
      unsigned ReservedBufferReg
        = TRI.reservedPrivateSegmentBufferReg(MF);
      unsigned ReservedOffsetReg
        = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);

      // We tentatively reserve the last registers (skipping the last two
      // which may contain VCC). After register allocation, we'll replace
      // these with the ones immediately after those which were really
      // allocated. In the prologue copies will be inserted from the argument
      // to these reserved registers.
      Info.setScratchRSrcReg(ReservedBufferReg);
      Info.setScratchWaveOffsetReg(ReservedOffsetReg);
    }
  } else {
    unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);

    // Without HSA, relocations are used for the scratch pointer and the
    // buffer resource setup is always inserted in the prologue. Scratch wave
    // offset is still in an input SGPR.
    Info.setScratchRSrcReg(ReservedBufferReg);

    if (HasStackObjects && !MFI.hasCalls()) {
      unsigned ScratchWaveOffsetReg = Info.getPreloadedReg(
        AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
      Info.setScratchWaveOffsetReg(ScratchWaveOffsetReg);
    } else {
      unsigned ReservedOffsetReg
        = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
      Info.setScratchWaveOffsetReg(ReservedOffsetReg);
    }
  }
}

bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
  const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
  return !Info->isEntryFunction();
}

void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {

}

void SITargetLowering::insertCopiesSplitCSR(
  MachineBasicBlock *Entry,
  const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
  const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();

  const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
  if (!IStart)
    return;

  const TargetInstrInfo *TII = Subtarget->getInstrInfo();
  MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
  MachineBasicBlock::iterator MBBI = Entry->begin();
  for (const MCPhysReg *I = IStart; *I; ++I) {
    const TargetRegisterClass *RC = nullptr;
    if (AMDGPU::SReg_64RegClass.contains(*I))
      RC = &AMDGPU::SGPR_64RegClass;
    else if (AMDGPU::SReg_32RegClass.contains(*I))
      RC = &AMDGPU::SGPR_32RegClass;
    else
      llvm_unreachable("Unexpected register class in CSRsViaCopy!");

    unsigned NewVR = MRI->createVirtualRegister(RC);
    // Create copy from CSR to a virtual register.
    Entry->addLiveIn(*I);
    BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
      .addReg(*I);

    // Insert the copy-back instructions right before the terminator.
    for (auto *Exit : Exits)
      BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
              TII->get(TargetOpcode::COPY), *I)
        .addReg(NewVR);
  }
}

SDValue SITargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();

  MachineFunction &MF = DAG.getMachineFunction();
  FunctionType *FType = MF.getFunction().getFunctionType();
  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
  const SISubtarget &ST = MF.getSubtarget<SISubtarget>();

  if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
    const Function &Fn = MF.getFunction();
    DiagnosticInfoUnsupported NoGraphicsHSA(
        Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
    DAG.getContext()->diagnose(NoGraphicsHSA);
    return DAG.getEntryNode();
  }

  // Create stack objects that are used for emitting debugger prologue if
  // "amdgpu-debugger-emit-prologue" attribute was specified.
  if (ST.debuggerEmitPrologue())
    createDebuggerPrologueStackObjects(MF);

  SmallVector<ISD::InputArg, 16> Splits;
  SmallVector<CCValAssign, 16> ArgLocs;
  BitVector Skipped(Ins.size());
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
                 *DAG.getContext());

  bool IsShader = AMDGPU::isShader(CallConv);
  bool IsKernel = AMDGPU::isKernel(CallConv);
  bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);

  if (!IsEntryFunc) {
    // 4 bytes are reserved at offset 0 for the emergency stack slot. Skip over
    // this when allocating argument fixed offsets.
    CCInfo.AllocateStack(4, 4);
  }

  if (IsShader) {
    processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);

    // At least one interpolation mode must be enabled or else the GPU will
    // hang.
    //
    // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
    // set PSInputAddr, the user wants to enable some bits after the compilation
    // based on run-time states. Since we can't know what the final PSInputEna
    // will look like, so we shouldn't do anything here and the user should take
    // responsibility for the correct programming.
    //
    // Otherwise, the following restrictions apply:
    // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
    // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
    //   enabled too.
    if (CallConv == CallingConv::AMDGPU_PS) {
      if ((Info->getPSInputAddr() & 0x7F) == 0 ||
           ((Info->getPSInputAddr() & 0xF) == 0 &&
            Info->isPSInputAllocated(11))) {
        CCInfo.AllocateReg(AMDGPU::VGPR0);
        CCInfo.AllocateReg(AMDGPU::VGPR1);
        Info->markPSInputAllocated(0);
        Info->markPSInputEnabled(0);
      }
      if (Subtarget->isAmdPalOS()) {
        // For isAmdPalOS, the user does not enable some bits after compilation
        // based on run-time states; the register values being generated here are
        // the final ones set in hardware. Therefore we need to apply the
        // workaround to PSInputAddr and PSInputEnable together.  (The case where
        // a bit is set in PSInputAddr but not PSInputEnable is where the
        // frontend set up an input arg for a particular interpolation mode, but
        // nothing uses that input arg. Really we should have an earlier pass
        // that removes such an arg.)
        unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
        if ((PsInputBits & 0x7F) == 0 ||
            ((PsInputBits & 0xF) == 0 &&
             (PsInputBits >> 11 & 1)))
          Info->markPSInputEnabled(
              countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
      }
    }

    assert(!Info->hasDispatchPtr() &&
           !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
           !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
           !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
           !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
           !Info->hasWorkItemIDZ());
  } else if (IsKernel) {
    assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
  } else {
    Splits.append(Ins.begin(), Ins.end());
  }

  if (IsEntryFunc) {
    allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
    allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
  }

  if (IsKernel) {
    analyzeFormalArgumentsCompute(CCInfo, Ins);
  } else {
    CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
    CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
  }

  SmallVector<SDValue, 16> Chains;

  for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
    const ISD::InputArg &Arg = Ins[i];
    if (Skipped[i]) {
      InVals.push_back(DAG.getUNDEF(Arg.VT));
      continue;
    }

    CCValAssign &VA = ArgLocs[ArgIdx++];
    MVT VT = VA.getLocVT();

    if (IsEntryFunc && VA.isMemLoc()) {
      VT = Ins[i].VT;
      EVT MemVT = VA.getLocVT();

      const uint64_t Offset = Subtarget->getExplicitKernelArgOffset(MF) +
        VA.getLocMemOffset();
      Info->setABIArgOffset(Offset + MemVT.getStoreSize());

      // The first 36 bytes of the input buffer contains information about
      // thread group and global sizes.
      SDValue Arg = lowerKernargMemParameter(
        DAG, VT, MemVT, DL, Chain, Offset, Ins[i].Flags.isSExt(), &Ins[i]);
      Chains.push_back(Arg.getValue(1));

      auto *ParamTy =
        dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
      if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
          ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
        // On SI local pointers are just offsets into LDS, so they are always
        // less than 16-bits.  On CI and newer they could potentially be
        // real pointers, so we can't guarantee their size.
        Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
                          DAG.getValueType(MVT::i16));
      }

      InVals.push_back(Arg);
      continue;
    } else if (!IsEntryFunc && VA.isMemLoc()) {
      SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
      InVals.push_back(Val);
      if (!Arg.Flags.isByVal())
        Chains.push_back(Val.getValue(1));
      continue;
    }

    assert(VA.isRegLoc() && "Parameter must be in a register!");

    unsigned Reg = VA.getLocReg();
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
    EVT ValVT = VA.getValVT();

    Reg = MF.addLiveIn(Reg, RC);
    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);

    if (Arg.Flags.isSRet() && !getSubtarget()->enableHugePrivateBuffer()) {
      // The return object should be reasonably addressable.

      // FIXME: This helps when the return is a real sret. If it is a
      // automatically inserted sret (i.e. CanLowerReturn returns false), an
      // extra copy is inserted in SelectionDAGBuilder which obscures this.
      unsigned NumBits = 32 - AssumeFrameIndexHighZeroBits;
      Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
        DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
    }

    // If this is an 8 or 16-bit value, it is really passed promoted
    // to 32 bits. Insert an assert[sz]ext to capture this, then
    // truncate to the right size.
    switch (VA.getLocInfo()) {
    case CCValAssign::Full:
      break;
    case CCValAssign::BCvt:
      Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
      break;
    case CCValAssign::SExt:
      Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
                        DAG.getValueType(ValVT));
      Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
      break;
    case CCValAssign::ZExt:
      Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
                        DAG.getValueType(ValVT));
      Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
      break;
    case CCValAssign::AExt:
      Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
      break;
    default:
      llvm_unreachable("Unknown loc info!");
    }

    if (IsShader && Arg.VT.isVector()) {
      // Build a vector from the registers
      Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
      unsigned NumElements = ParamType->getVectorNumElements();

      SmallVector<SDValue, 4> Regs;
      Regs.push_back(Val);
      for (unsigned j = 1; j != NumElements; ++j) {
        Reg = ArgLocs[ArgIdx++].getLocReg();
        Reg = MF.addLiveIn(Reg, RC);

        SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
        Regs.push_back(Copy);
      }

      // Fill up the missing vector elements
      NumElements = Arg.VT.getVectorNumElements() - NumElements;
      Regs.append(NumElements, DAG.getUNDEF(VT));

      InVals.push_back(DAG.getBuildVector(Arg.VT, DL, Regs));
      continue;
    }

    InVals.push_back(Val);
  }

  if (!IsEntryFunc) {
    // Special inputs come after user arguments.
    allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
  }

  // Start adding system SGPRs.
  if (IsEntryFunc) {
    allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
  } else {
    CCInfo.AllocateReg(Info->getScratchRSrcReg());
    CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
    CCInfo.AllocateReg(Info->getFrameOffsetReg());
    allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
  }

  auto &ArgUsageInfo =
    DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
  ArgUsageInfo.setFuncArgInfo(MF.getFunction(), Info->getArgInfo());

  unsigned StackArgSize = CCInfo.getNextStackOffset();
  Info->setBytesInStackArgArea(StackArgSize);

  return Chains.empty() ? Chain :
    DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
}

// TODO: If return values can't fit in registers, we should return as many as
// possible in registers before passing on stack.
bool SITargetLowering::CanLowerReturn(
  CallingConv::ID CallConv,
  MachineFunction &MF, bool IsVarArg,
  const SmallVectorImpl<ISD::OutputArg> &Outs,
  LLVMContext &Context) const {
  // Replacing returns with sret/stack usage doesn't make sense for shaders.
  // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
  // for shaders. Vector types should be explicitly handled by CC.
  if (AMDGPU::isEntryFunctionCC(CallConv))
    return true;

  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
  return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
}

SDValue
SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                              bool isVarArg,
                              const SmallVectorImpl<ISD::OutputArg> &Outs,
                              const SmallVectorImpl<SDValue> &OutVals,
                              const SDLoc &DL, SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();

  if (AMDGPU::isKernel(CallConv)) {
    return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
                                             OutVals, DL, DAG);
  }

  bool IsShader = AMDGPU::isShader(CallConv);

  Info->setIfReturnsVoid(Outs.size() == 0);
  bool IsWaveEnd = Info->returnsVoid() && IsShader;

  SmallVector<ISD::OutputArg, 48> Splits;
  SmallVector<SDValue, 48> SplitVals;

  // Split vectors into their elements.
  for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
    const ISD::OutputArg &Out = Outs[i];

    if (IsShader && Out.VT.isVector()) {
      MVT VT = Out.VT.getVectorElementType();
      ISD::OutputArg NewOut = Out;
      NewOut.Flags.setSplit();
      NewOut.VT = VT;

      // We want the original number of vector elements here, e.g.
      // three or five, not four or eight.
      unsigned NumElements = Out.ArgVT.getVectorNumElements();

      for (unsigned j = 0; j != NumElements; ++j) {
        SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i],
                                   DAG.getConstant(j, DL, MVT::i32));
        SplitVals.push_back(Elem);
        Splits.push_back(NewOut);
        NewOut.PartOffset += NewOut.VT.getStoreSize();
      }
    } else {
      SplitVals.push_back(OutVals[i]);
      Splits.push_back(Out);
    }
  }

  // CCValAssign - represent the assignment of the return value to a location.
  SmallVector<CCValAssign, 48> RVLocs;

  // CCState - Info about the registers and stack slots.
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());

  // Analyze outgoing return values.
  CCInfo.AnalyzeReturn(Splits, CCAssignFnForReturn(CallConv, isVarArg));

  SDValue Flag;
  SmallVector<SDValue, 48> RetOps;
  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)

  // Add return address for callable functions.
  if (!Info->isEntryFunction()) {
    const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
    SDValue ReturnAddrReg = CreateLiveInRegister(
      DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);

    // FIXME: Should be able to use a vreg here, but need a way to prevent it
    // from being allcoated to a CSR.

    SDValue PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
                                                MVT::i64);

    Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, Flag);
    Flag = Chain.getValue(1);

    RetOps.push_back(PhysReturnAddrReg);
  }

  // Copy the result values into the output registers.
  for (unsigned i = 0, realRVLocIdx = 0;
       i != RVLocs.size();
       ++i, ++realRVLocIdx) {
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");
    // TODO: Partially return in registers if return values don't fit.

    SDValue Arg = SplitVals[realRVLocIdx];

    // Copied from other backends.
    switch (VA.getLocInfo()) {
    case CCValAssign::Full:
      break;
    case CCValAssign::BCvt:
      Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::AExt:
      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    default:
      llvm_unreachable("Unknown loc info!");
    }

    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
  }

  // FIXME: Does sret work properly?
  if (!Info->isEntryFunction()) {
    const SIRegisterInfo *TRI
      = static_cast<const SISubtarget *>(Subtarget)->getRegisterInfo();
    const MCPhysReg *I =
      TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
    if (I) {
      for (; *I; ++I) {
        if (AMDGPU::SReg_64RegClass.contains(*I))
          RetOps.push_back(DAG.getRegister(*I, MVT::i64));
        else if (AMDGPU::SReg_32RegClass.contains(*I))
          RetOps.push_back(DAG.getRegister(*I, MVT::i32));
        else
          llvm_unreachable("Unexpected register class in CSRsViaCopy!");
      }
    }
  }

  // Update chain and glue.
  RetOps[0] = Chain;
  if (Flag.getNode())
    RetOps.push_back(Flag);

  unsigned Opc = AMDGPUISD::ENDPGM;
  if (!IsWaveEnd)
    Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
  return DAG.getNode(Opc, DL, MVT::Other, RetOps);
}

SDValue SITargetLowering::LowerCallResult(
    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
    SDValue ThisVal) const {
  CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);

  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());
  CCInfo.AnalyzeCallResult(Ins, RetCC);

  // Copy all of the result registers out of their specified physreg.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign VA = RVLocs[i];
    SDValue Val;

    if (VA.isRegLoc()) {
      Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
      Chain = Val.getValue(1);
      InFlag = Val.getValue(2);
    } else if (VA.isMemLoc()) {
      report_fatal_error("TODO: return values in memory");
    } else
      llvm_unreachable("unknown argument location type");

    switch (VA.getLocInfo()) {
    case CCValAssign::Full:
      break;
    case CCValAssign::BCvt:
      Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
      break;
    case CCValAssign::ZExt:
      Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
                        DAG.getValueType(VA.getValVT()));
      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
      break;
    case CCValAssign::SExt:
      Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
                        DAG.getValueType(VA.getValVT()));
      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
      break;
    case CCValAssign::AExt:
      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
      break;
    default:
      llvm_unreachable("Unknown loc info!");
    }

    InVals.push_back(Val);
  }

  return Chain;
}

// Add code to pass special inputs required depending on used features separate
// from the explicit user arguments present in the IR.
void SITargetLowering::passSpecialInputs(
    CallLoweringInfo &CLI,
    const SIMachineFunctionInfo &Info,
    SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
    SmallVectorImpl<SDValue> &MemOpChains,
    SDValue Chain,
    SDValue StackPtr) const {
  // If we don't have a call site, this was a call inserted by
  // legalization. These can never use special inputs.
  if (!CLI.CS)
    return;

  const Function *CalleeFunc = CLI.CS.getCalledFunction();
  assert(CalleeFunc);

  SelectionDAG &DAG = CLI.DAG;
  const SDLoc &DL = CLI.DL;

  const SISubtarget *ST = getSubtarget();
  const SIRegisterInfo *TRI = ST->getRegisterInfo();

  auto &ArgUsageInfo =
    DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
  const AMDGPUFunctionArgInfo &CalleeArgInfo
    = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);

  const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();

  // TODO: Unify with private memory register handling. This is complicated by
  // the fact that at least in kernels, the input argument is not necessarily
  // in the same location as the input.
  AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
    AMDGPUFunctionArgInfo::DISPATCH_PTR,
    AMDGPUFunctionArgInfo::QUEUE_PTR,
    AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR,
    AMDGPUFunctionArgInfo::DISPATCH_ID,
    AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
    AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
    AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
    AMDGPUFunctionArgInfo::WORKITEM_ID_X,
    AMDGPUFunctionArgInfo::WORKITEM_ID_Y,
    AMDGPUFunctionArgInfo::WORKITEM_ID_Z,
    AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR
  };

  for (auto InputID : InputRegs) {
    const ArgDescriptor *OutgoingArg;
    const TargetRegisterClass *ArgRC;

    std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID);
    if (!OutgoingArg)
      continue;

    const ArgDescriptor *IncomingArg;
    const TargetRegisterClass *IncomingArgRC;
    std::tie(IncomingArg, IncomingArgRC)
      = CallerArgInfo.getPreloadedValue(InputID);
    assert(IncomingArgRC == ArgRC);

    // All special arguments are ints for now.
    EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
    SDValue InputReg;

    if (IncomingArg) {
      InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
    } else {
      // The implicit arg ptr is special because it doesn't have a corresponding
      // input for kernels, and is computed from the kernarg segment pointer.
      assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
      InputReg = getImplicitArgPtr(DAG, DL);
    }

    if (OutgoingArg->isRegister()) {
      RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
    } else {
      SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, StackPtr,
                                              InputReg,
                                              OutgoingArg->getStackOffset());
      MemOpChains.push_back(ArgStore);
    }
  }
}

static bool canGuaranteeTCO(CallingConv::ID CC) {
  return CC == CallingConv::Fast;
}

/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
  switch (CC) {
  case CallingConv::C:
    return true;
  default:
    return canGuaranteeTCO(CC);
  }
}

bool SITargetLowering::isEligibleForTailCallOptimization(
    SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
    const SmallVectorImpl<ISD::OutputArg> &Outs,
    const SmallVectorImpl<SDValue> &OutVals,
    const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
  if (!mayTailCallThisCC(CalleeCC))
    return false;

  MachineFunction &MF = DAG.getMachineFunction();
  const Function &CallerF = MF.getFunction();
  CallingConv::ID CallerCC = CallerF.getCallingConv();
  const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
  const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);

  // Kernels aren't callable, and don't have a live in return address so it
  // doesn't make sense to do a tail call with entry functions.
  if (!CallerPreserved)
    return false;

  bool CCMatch = CallerCC == CalleeCC;

  if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
    if (canGuaranteeTCO(CalleeCC) && CCMatch)
      return true;
    return false;
  }

  // TODO: Can we handle var args?
  if (IsVarArg)
    return false;

  for (const Argument &Arg : CallerF.args()) {
    if (Arg.hasByValAttr())
      return false;
  }

  LLVMContext &Ctx = *DAG.getContext();

  // Check that the call results are passed in the same way.
  if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
                                  CCAssignFnForCall(CalleeCC, IsVarArg),
                                  CCAssignFnForCall(CallerCC, IsVarArg)))
    return false;

  // The callee has to preserve all registers the caller needs to preserve.
  if (!CCMatch) {
    const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
    if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
      return false;
  }

  // Nothing more to check if the callee is taking no arguments.
  if (Outs.empty())
    return true;

  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);

  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));

  const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
  // If the stack arguments for this call do not fit into our own save area then
  // the call cannot be made tail.
  // TODO: Is this really necessary?
  if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
    return false;

  const MachineRegisterInfo &MRI = MF.getRegInfo();
  return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
}

bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
  if (!CI->isTailCall())
    return false;

  const Function *ParentFn = CI->getParent()->getParent();
  if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
    return false;

  auto Attr = ParentFn->getFnAttribute("disable-tail-calls");
  return (Attr.getValueAsString() != "true");
}

// The wave scratch offset register is used as the global base pointer.
SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
                                    SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG = CLI.DAG;
  const SDLoc &DL = CLI.DL;
  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
  SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
  SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
  SDValue Chain = CLI.Chain;
  SDValue Callee = CLI.Callee;
  bool &IsTailCall = CLI.IsTailCall;
  CallingConv::ID CallConv = CLI.CallConv;
  bool IsVarArg = CLI.IsVarArg;
  bool IsSibCall = false;
  bool IsThisReturn = false;
  MachineFunction &MF = DAG.getMachineFunction();

  if (IsVarArg) {
    return lowerUnhandledCall(CLI, InVals,
                              "unsupported call to variadic function ");
  }

  if (!CLI.CS.getCalledFunction()) {
    return lowerUnhandledCall(CLI, InVals,
                              "unsupported indirect call to function ");
  }

  if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
    return lowerUnhandledCall(CLI, InVals,
                              "unsupported required tail call to function ");
  }

  // The first 4 bytes are reserved for the callee's emergency stack slot.
  const unsigned CalleeUsableStackOffset = 4;

  if (IsTailCall) {
    IsTailCall = isEligibleForTailCallOptimization(
      Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
    if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) {
      report_fatal_error("failed to perform tail call elimination on a call "
                         "site marked musttail");
    }

    bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;

    // A sibling call is one where we're under the usual C ABI and not planning
    // to change that but can still do a tail call:
    if (!TailCallOpt && IsTailCall)
      IsSibCall = true;

    if (IsTailCall)
      ++NumTailCalls;
  }

  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee)) {
    // FIXME: Remove this hack for function pointer types after removing
    // support of old address space mapping. In the new address space
    // mapping the pointer in default address space is 64 bit, therefore
    // does not need this hack.
    if (Callee.getValueType() == MVT::i32) {
      const GlobalValue *GV = GA->getGlobal();
      Callee = DAG.getGlobalAddress(GV, DL, MVT::i64, GA->getOffset(), false,
                                    GA->getTargetFlags());
    }
  }
  assert(Callee.getValueType() == MVT::i64);

  const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
  CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
  CCInfo.AnalyzeCallOperands(Outs, AssignFn);

  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NumBytes = CCInfo.getNextStackOffset();

  if (IsSibCall) {
    // Since we're not changing the ABI to make this a tail call, the memory
    // operands are already available in the caller's incoming argument space.
    NumBytes = 0;
  }

  // FPDiff is the byte offset of the call's argument area from the callee's.
  // Stores to callee stack arguments will be placed in FixedStackSlots offset
  // by this amount for a tail call. In a sibling call it must be 0 because the
  // caller will deallocate the entire stack and the callee still expects its
  // arguments to begin at SP+0. Completely unused for non-tail calls.
  int32_t FPDiff = 0;
  MachineFrameInfo &MFI = MF.getFrameInfo();
  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;

  SDValue CallerSavedFP;

  // Adjust the stack pointer for the new arguments...
  // These operations are automatically eliminated by the prolog/epilog pass
  if (!IsSibCall) {
    Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);

    unsigned OffsetReg = Info->getScratchWaveOffsetReg();

    // In the HSA case, this should be an identity copy.
    SDValue ScratchRSrcReg
      = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
    RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);

    // TODO: Don't hardcode these registers and get from the callee function.
    SDValue ScratchWaveOffsetReg
      = DAG.getCopyFromReg(Chain, DL, OffsetReg, MVT::i32);
    RegsToPass.emplace_back(AMDGPU::SGPR4, ScratchWaveOffsetReg);

    if (!Info->isEntryFunction()) {
      // Avoid clobbering this function's FP value. In the current convention
      // callee will overwrite this, so do save/restore around the call site.
      CallerSavedFP = DAG.getCopyFromReg(Chain, DL,
                                         Info->getFrameOffsetReg(), MVT::i32);
    }
  }

  // Stack pointer relative accesses are done by changing the offset SGPR. This
  // is just the VGPR offset component.
  SDValue StackPtr = DAG.getConstant(CalleeUsableStackOffset, DL, MVT::i32);

  SmallVector<SDValue, 8> MemOpChains;
  MVT PtrVT = MVT::i32;

  // Walk the register/memloc assignments, inserting copies/loads.
  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
       ++i, ++realArgIdx) {
    CCValAssign &VA = ArgLocs[i];
    SDValue Arg = OutVals[realArgIdx];

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
    case CCValAssign::Full:
      break;
    case CCValAssign::BCvt:
      Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::AExt:
      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::FPExt:
      Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
      break;
    default:
      llvm_unreachable("Unknown loc info!");
    }

    if (VA.isRegLoc()) {
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
    } else {
      assert(VA.isMemLoc());

      SDValue DstAddr;
      MachinePointerInfo DstInfo;

      unsigned LocMemOffset = VA.getLocMemOffset();
      int32_t Offset = LocMemOffset;

      SDValue PtrOff = DAG.getObjectPtrOffset(DL, StackPtr, Offset);

      if (IsTailCall) {
        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
        unsigned OpSize = Flags.isByVal() ?
          Flags.getByValSize() : VA.getValVT().getStoreSize();

        Offset = Offset + FPDiff;
        int FI = MFI.CreateFixedObject(OpSize, Offset, true);

        DstAddr = DAG.getObjectPtrOffset(DL, DAG.getFrameIndex(FI, PtrVT),
                                         StackPtr);
        DstInfo = MachinePointerInfo::getFixedStack(MF, FI);

        // Make sure any stack arguments overlapping with where we're storing
        // are loaded before this eventual operation. Otherwise they'll be
        // clobbered.

        // FIXME: Why is this really necessary? This seems to just result in a
        // lot of code to copy the stack and write them back to the same
        // locations, which are supposed to be immutable?
        Chain = addTokenForArgument(Chain, DAG, MFI, FI);
      } else {
        DstAddr = PtrOff;
        DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
      }

      if (Outs[i].Flags.isByVal()) {
        SDValue SizeNode =
            DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
        SDValue Cpy = DAG.getMemcpy(
            Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
            /*isVol = */ false, /*AlwaysInline = */ true,
            /*isTailCall = */ false, DstInfo,
            MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy(
                *DAG.getContext(), AMDGPUASI.PRIVATE_ADDRESS))));

        MemOpChains.push_back(Cpy);
      } else {
        SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
        MemOpChains.push_back(Store);
      }
    }
  }

  // Copy special input registers after user input arguments.
  passSpecialInputs(CLI, *Info, RegsToPass, MemOpChains, Chain, StackPtr);

  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);

  // Build a sequence of copy-to-reg nodes chained together with token chain
  // and flag operands which copy the outgoing args into the appropriate regs.
  SDValue InFlag;
  for (auto &RegToPass : RegsToPass) {
    Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
                             RegToPass.second, InFlag);
    InFlag = Chain.getValue(1);
  }


  SDValue PhysReturnAddrReg;
  if (IsTailCall) {
    // Since the return is being combined with the call, we need to pass on the
    // return address.

    const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
    SDValue ReturnAddrReg = CreateLiveInRegister(
      DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);

    PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
                                        MVT::i64);
    Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
    InFlag = Chain.getValue(1);
  }

  // We don't usually want to end the call-sequence here because we would tidy
  // the frame up *after* the call, however in the ABI-changing tail-call case
  // we've carefully laid out the parameters so that when sp is reset they'll be
  // in the correct location.
  if (IsTailCall && !IsSibCall) {
    Chain = DAG.getCALLSEQ_END(Chain,
                               DAG.getTargetConstant(NumBytes, DL, MVT::i32),
                               DAG.getTargetConstant(0, DL, MVT::i32),
                               InFlag, DL);
    InFlag = Chain.getValue(1);
  }

  std::vector<SDValue> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);

  if (IsTailCall) {
    // Each tail call may have to adjust the stack by a different amount, so
    // this information must travel along with the operation for eventual
    // consumption by emitEpilogue.
    Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));

    Ops.push_back(PhysReturnAddrReg);
  }

  // Add argument registers to the end of the list so that they are known live
  // into the call.
  for (auto &RegToPass : RegsToPass) {
    Ops.push_back(DAG.getRegister(RegToPass.first,
                                  RegToPass.second.getValueType()));
  }

  // Add a register mask operand representing the call-preserved registers.

  const AMDGPURegisterInfo *TRI = Subtarget->getRegisterInfo();
  const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
  assert(Mask && "Missing call preserved mask for calling convention");
  Ops.push_back(DAG.getRegisterMask(Mask));

  if (InFlag.getNode())
    Ops.push_back(InFlag);

  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);

  // If we're doing a tall call, use a TC_RETURN here rather than an
  // actual call instruction.
  if (IsTailCall) {
    MFI.setHasTailCall();
    return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
  }

  // Returns a chain and a flag for retval copy to use.
  SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
  Chain = Call.getValue(0);
  InFlag = Call.getValue(1);

  if (CallerSavedFP) {
    SDValue FPReg = DAG.getRegister(Info->getFrameOffsetReg(), MVT::i32);
    Chain = DAG.getCopyToReg(Chain, DL, FPReg, CallerSavedFP, InFlag);
    InFlag = Chain.getValue(1);
  }

  uint64_t CalleePopBytes = NumBytes;
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
                             DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
                             InFlag, DL);
  if (!Ins.empty())
    InFlag = Chain.getValue(1);

  // Handle result values, copying them out of physregs into vregs that we
  // return.
  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
                         InVals, IsThisReturn,
                         IsThisReturn ? OutVals[0] : SDValue());
}

unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
                                             SelectionDAG &DAG) const {
  unsigned Reg = StringSwitch<unsigned>(RegName)
    .Case("m0", AMDGPU::M0)
    .Case("exec", AMDGPU::EXEC)
    .Case("exec_lo", AMDGPU::EXEC_LO)
    .Case("exec_hi", AMDGPU::EXEC_HI)
    .Case("flat_scratch", AMDGPU::FLAT_SCR)
    .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
    .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
    .Default(AMDGPU::NoRegister);

  if (Reg == AMDGPU::NoRegister) {
    report_fatal_error(Twine("invalid register name \""
                             + StringRef(RegName)  + "\"."));

  }

  if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
      Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
    report_fatal_error(Twine("invalid register \""
                             + StringRef(RegName)  + "\" for subtarget."));
  }

  switch (Reg) {
  case AMDGPU::M0:
  case AMDGPU::EXEC_LO:
  case AMDGPU::EXEC_HI:
  case AMDGPU::FLAT_SCR_LO:
  case AMDGPU::FLAT_SCR_HI:
    if (VT.getSizeInBits() == 32)
      return Reg;
    break;
  case AMDGPU::EXEC:
  case AMDGPU::FLAT_SCR:
    if (VT.getSizeInBits() == 64)
      return Reg;
    break;
  default:
    llvm_unreachable("missing register type checking");
  }

  report_fatal_error(Twine("invalid type for register \""
                           + StringRef(RegName) + "\"."));
}

// If kill is not the last instruction, split the block so kill is always a
// proper terminator.
MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
                                                    MachineBasicBlock *BB) const {
  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();

  MachineBasicBlock::iterator SplitPoint(&MI);
  ++SplitPoint;

  if (SplitPoint == BB->end()) {
    // Don't bother with a new block.
    MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
    return BB;
  }

  MachineFunction *MF = BB->getParent();
  MachineBasicBlock *SplitBB
    = MF->CreateMachineBasicBlock(BB->getBasicBlock());

  MF->insert(++MachineFunction::iterator(BB), SplitBB);
  SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());

  SplitBB->transferSuccessorsAndUpdatePHIs(BB);
  BB->addSuccessor(SplitBB);

  MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
  return SplitBB;
}

// Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
// wavefront. If the value is uniform and just happens to be in a VGPR, this
// will only do one iteration. In the worst case, this will loop 64 times.
//
// TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
  const SIInstrInfo *TII,
  MachineRegisterInfo &MRI,
  MachineBasicBlock &OrigBB,
  MachineBasicBlock &LoopBB,
  const DebugLoc &DL,
  const MachineOperand &IdxReg,
  unsigned InitReg,
  unsigned ResultReg,
  unsigned PhiReg,
  unsigned InitSaveExecReg,
  int Offset,
  bool UseGPRIdxMode) {
  MachineBasicBlock::iterator I = LoopBB.begin();

  unsigned PhiExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
  unsigned NewExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
  unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
  unsigned CondReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);

  BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
    .addReg(InitReg)
    .addMBB(&OrigBB)
    .addReg(ResultReg)
    .addMBB(&LoopBB);

  BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
    .addReg(InitSaveExecReg)
    .addMBB(&OrigBB)
    .addReg(NewExec)
    .addMBB(&LoopBB);

  // Read the next variant <- also loop target.
  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
    .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));

  // Compare the just read M0 value to all possible Idx values.
  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
    .addReg(CurrentIdxReg)
    .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());

  if (UseGPRIdxMode) {
    unsigned IdxReg;
    if (Offset == 0) {
      IdxReg = CurrentIdxReg;
    } else {
      IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
      BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
        .addReg(CurrentIdxReg, RegState::Kill)
        .addImm(Offset);
    }

    MachineInstr *SetIdx =
      BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_IDX))
      .addReg(IdxReg, RegState::Kill);
    SetIdx->getOperand(2).setIsUndef();
  } else {
    // Move index from VCC into M0
    if (Offset == 0) {
      BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
        .addReg(CurrentIdxReg, RegState::Kill);
    } else {
      BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
        .addReg(CurrentIdxReg, RegState::Kill)
        .addImm(Offset);
    }
  }

  // Update EXEC, save the original EXEC value to VCC.
  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), NewExec)
    .addReg(CondReg, RegState::Kill);

  MRI.setSimpleHint(NewExec, CondReg);

  // Update EXEC, switch all done bits to 0 and all todo bits to 1.
  MachineInstr *InsertPt =
    BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
    .addReg(AMDGPU::EXEC)
    .addReg(NewExec);

  // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
  // s_cbranch_scc0?

  // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
    .addMBB(&LoopBB);

  return InsertPt->getIterator();
}

// This has slightly sub-optimal regalloc when the source vector is killed by
// the read. The register allocator does not understand that the kill is
// per-workitem, so is kept alive for the whole loop so we end up not re-using a
// subregister from it, using 1 more VGPR than necessary. This was saved when
// this was expanded after register allocation.
static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
                                                  MachineBasicBlock &MBB,
                                                  MachineInstr &MI,
                                                  unsigned InitResultReg,
                                                  unsigned PhiReg,
                                                  int Offset,
                                                  bool UseGPRIdxMode) {
  MachineFunction *MF = MBB.getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  const DebugLoc &DL = MI.getDebugLoc();
  MachineBasicBlock::iterator I(&MI);

  unsigned DstReg = MI.getOperand(0).getReg();
  unsigned SaveExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
  unsigned TmpExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);

  BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);

  // Save the EXEC mask
  BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64), SaveExec)
    .addReg(AMDGPU::EXEC);

  // To insert the loop we need to split the block. Move everything after this
  // point to a new block, and insert a new empty block between the two.
  MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
  MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
  MachineFunction::iterator MBBI(MBB);
  ++MBBI;

  MF->insert(MBBI, LoopBB);
  MF->insert(MBBI, RemainderBB);

  LoopBB->addSuccessor(LoopBB);
  LoopBB->addSuccessor(RemainderBB);

  // Move the rest of the block into a new block.
  RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
  RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());

  MBB.addSuccessor(LoopBB);

  const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);

  auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
                                      InitResultReg, DstReg, PhiReg, TmpExec,
                                      Offset, UseGPRIdxMode);

  MachineBasicBlock::iterator First = RemainderBB->begin();
  BuildMI(*RemainderBB, First, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
    .addReg(SaveExec);

  return InsPt;
}

// Returns subreg index, offset
static std::pair<unsigned, int>
computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
                            const TargetRegisterClass *SuperRC,
                            unsigned VecReg,
                            int Offset) {
  int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;

  // Skip out of bounds offsets, or else we would end up using an undefined
  // register.
  if (Offset >= NumElts || Offset < 0)
    return std::make_pair(AMDGPU::sub0, Offset);

  return std::make_pair(AMDGPU::sub0 + Offset, 0);
}

// Return true if the index is an SGPR and was set.
static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
                                 MachineRegisterInfo &MRI,
                                 MachineInstr &MI,
                                 int Offset,
                                 bool UseGPRIdxMode,
                                 bool IsIndirectSrc) {
  MachineBasicBlock *MBB = MI.getParent();
  const DebugLoc &DL = MI.getDebugLoc();
  MachineBasicBlock::iterator I(&MI);

  const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
  const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());

  assert(Idx->getReg() != AMDGPU::NoRegister);

  if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
    return false;

  if (UseGPRIdxMode) {
    unsigned IdxMode = IsIndirectSrc ?
      VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE;
    if (Offset == 0) {
      MachineInstr *SetOn =
          BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
              .add(*Idx)
              .addImm(IdxMode);

      SetOn->getOperand(3).setIsUndef();
    } else {
      unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
      BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
          .add(*Idx)
          .addImm(Offset);
      MachineInstr *SetOn =
        BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
        .addReg(Tmp, RegState::Kill)
        .addImm(IdxMode);

      SetOn->getOperand(3).setIsUndef();
    }

    return true;
  }

  if (Offset == 0) {
    BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
      .add(*Idx);
  } else {
    BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
      .add(*Idx)
      .addImm(Offset);
  }

  return true;
}

// Control flow needs to be inserted if indexing with a VGPR.
static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
                                          MachineBasicBlock &MBB,
                                          const SISubtarget &ST) {
  const SIInstrInfo *TII = ST.getInstrInfo();
  const SIRegisterInfo &TRI = TII->getRegisterInfo();
  MachineFunction *MF = MBB.getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();

  unsigned Dst = MI.getOperand(0).getReg();
  unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
  int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();

  const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);

  unsigned SubReg;
  std::tie(SubReg, Offset)
    = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);

  bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);

  if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
    MachineBasicBlock::iterator I(&MI);
    const DebugLoc &DL = MI.getDebugLoc();

    if (UseGPRIdxMode) {
      // TODO: Look at the uses to avoid the copy. This may require rescheduling
      // to avoid interfering with other uses, so probably requires a new
      // optimization pass.
      BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
        .addReg(SrcReg, RegState::Undef, SubReg)
        .addReg(SrcReg, RegState::Implicit)
        .addReg(AMDGPU::M0, RegState::Implicit);
      BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
    } else {
      BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
        .addReg(SrcReg, RegState::Undef, SubReg)
        .addReg(SrcReg, RegState::Implicit);
    }

    MI.eraseFromParent();

    return &MBB;
  }

  const DebugLoc &DL = MI.getDebugLoc();
  MachineBasicBlock::iterator I(&MI);

  unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
  unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);

  BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);

  if (UseGPRIdxMode) {
    MachineInstr *SetOn = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
      .addImm(0) // Reset inside loop.
      .addImm(VGPRIndexMode::SRC0_ENABLE);
    SetOn->getOperand(3).setIsUndef();

    // Disable again after the loop.
    BuildMI(MBB, std::next(I), DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
  }

  auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, UseGPRIdxMode);
  MachineBasicBlock *LoopBB = InsPt->getParent();

  if (UseGPRIdxMode) {
    BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
      .addReg(SrcReg, RegState::Undef, SubReg)
      .addReg(SrcReg, RegState::Implicit)
      .addReg(AMDGPU::M0, RegState::Implicit);
  } else {
    BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
      .addReg(SrcReg, RegState::Undef, SubReg)
      .addReg(SrcReg, RegState::Implicit);
  }

  MI.eraseFromParent();

  return LoopBB;
}

static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI,
                                 const TargetRegisterClass *VecRC) {
  switch (TRI.getRegSizeInBits(*VecRC)) {
  case 32: // 4 bytes
    return AMDGPU::V_MOVRELD_B32_V1;
  case 64: // 8 bytes
    return AMDGPU::V_MOVRELD_B32_V2;
  case 128: // 16 bytes
    return AMDGPU::V_MOVRELD_B32_V4;
  case 256: // 32 bytes
    return AMDGPU::V_MOVRELD_B32_V8;
  case 512: // 64 bytes
    return AMDGPU::V_MOVRELD_B32_V16;
  default:
    llvm_unreachable("unsupported size for MOVRELD pseudos");
  }
}

static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
                                          MachineBasicBlock &MBB,
                                          const SISubtarget &ST) {
  const SIInstrInfo *TII = ST.getInstrInfo();
  const SIRegisterInfo &TRI = TII->getRegisterInfo();
  MachineFunction *MF = MBB.getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();

  unsigned Dst = MI.getOperand(0).getReg();
  const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
  const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
  const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
  int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
  const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());

  // This can be an immediate, but will be folded later.
  assert(Val->getReg());

  unsigned SubReg;
  std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
                                                         SrcVec->getReg(),
                                                         Offset);
  bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);

  if (Idx->getReg() == AMDGPU::NoRegister) {
    MachineBasicBlock::iterator I(&MI);
    const DebugLoc &DL = MI.getDebugLoc();

    assert(Offset == 0);

    BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
        .add(*SrcVec)
        .add(*Val)
        .addImm(SubReg);

    MI.eraseFromParent();
    return &MBB;
  }

  if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
    MachineBasicBlock::iterator I(&MI);
    const DebugLoc &DL = MI.getDebugLoc();

    if (UseGPRIdxMode) {
      BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
          .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
          .add(*Val)
          .addReg(Dst, RegState::ImplicitDefine)
          .addReg(SrcVec->getReg(), RegState::Implicit)
          .addReg(AMDGPU::M0, RegState::Implicit);

      BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
    } else {
      const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));

      BuildMI(MBB, I, DL, MovRelDesc)
          .addReg(Dst, RegState::Define)
          .addReg(SrcVec->getReg())
          .add(*Val)
          .addImm(SubReg - AMDGPU::sub0);
    }

    MI.eraseFromParent();
    return &MBB;
  }

  if (Val->isReg())
    MRI.clearKillFlags(Val->getReg());

  const DebugLoc &DL = MI.getDebugLoc();

  if (UseGPRIdxMode) {
    MachineBasicBlock::iterator I(&MI);

    MachineInstr *SetOn = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
      .addImm(0) // Reset inside loop.
      .addImm(VGPRIndexMode::DST_ENABLE);
    SetOn->getOperand(3).setIsUndef();

    // Disable again after the loop.
    BuildMI(MBB, std::next(I), DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
  }

  unsigned PhiReg = MRI.createVirtualRegister(VecRC);

  auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
                              Offset, UseGPRIdxMode);
  MachineBasicBlock *LoopBB = InsPt->getParent();

  if (UseGPRIdxMode) {
    BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
        .addReg(PhiReg, RegState::Undef, SubReg) // vdst
        .add(*Val)                               // src0
        .addReg(Dst, RegState::ImplicitDefine)
        .addReg(PhiReg, RegState::Implicit)
        .addReg(AMDGPU::M0, RegState::Implicit);
  } else {
    const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));

    BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
        .addReg(Dst, RegState::Define)
        .addReg(PhiReg)
        .add(*Val)
        .addImm(SubReg - AMDGPU::sub0);
  }

  MI.eraseFromParent();

  return LoopBB;
}

MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
  MachineInstr &MI, MachineBasicBlock *BB) const {

  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
  MachineFunction *MF = BB->getParent();
  SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();

  if (TII->isMIMG(MI)) {
    if (MI.memoperands_empty() && MI.mayLoadOrStore()) {
      report_fatal_error("missing mem operand from MIMG instruction");
    }
    // Add a memoperand for mimg instructions so that they aren't assumed to
    // be ordered memory instuctions.

    return BB;
  }

  switch (MI.getOpcode()) {
  case AMDGPU::S_ADD_U64_PSEUDO:
  case AMDGPU::S_SUB_U64_PSEUDO: {
    MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
    const DebugLoc &DL = MI.getDebugLoc();

    MachineOperand &Dest = MI.getOperand(0);
    MachineOperand &Src0 = MI.getOperand(1);
    MachineOperand &Src1 = MI.getOperand(2);

    unsigned DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
    unsigned DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);

    MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
     Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub0,
     &AMDGPU::SReg_32_XM0RegClass);
    MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
      Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub1,
      &AMDGPU::SReg_32_XM0RegClass);

    MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
      Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub0,
      &AMDGPU::SReg_32_XM0RegClass);
    MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
      Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub1,
      &AMDGPU::SReg_32_XM0RegClass);

    bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);

    unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
    unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
    BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
      .add(Src0Sub0)
      .add(Src1Sub0);
    BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
      .add(Src0Sub1)
      .add(Src1Sub1);
    BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
      .addReg(DestSub0)
      .addImm(AMDGPU::sub0)
      .addReg(DestSub1)
      .addImm(AMDGPU::sub1);
    MI.eraseFromParent();
    return BB;
  }
  case AMDGPU::SI_INIT_M0: {
    BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
            TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
        .add(MI.getOperand(0));
    MI.eraseFromParent();
    return BB;
  }
  case AMDGPU::SI_INIT_EXEC:
    // This should be before all vector instructions.
    BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
            AMDGPU::EXEC)
        .addImm(MI.getOperand(0).getImm());
    MI.eraseFromParent();
    return BB;

  case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
    // Extract the thread count from an SGPR input and set EXEC accordingly.
    // Since BFM can't shift by 64, handle that case with CMP + CMOV.
    //
    // S_BFE_U32 count, input, {shift, 7}
    // S_BFM_B64 exec, count, 0
    // S_CMP_EQ_U32 count, 64
    // S_CMOV_B64 exec, -1
    MachineInstr *FirstMI = &*BB->begin();
    MachineRegisterInfo &MRI = MF->getRegInfo();
    unsigned InputReg = MI.getOperand(0).getReg();
    unsigned CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
    bool Found = false;

    // Move the COPY of the input reg to the beginning, so that we can use it.
    for (auto I = BB->begin(); I != &MI; I++) {
      if (I->getOpcode() != TargetOpcode::COPY ||
          I->getOperand(0).getReg() != InputReg)
        continue;

      if (I == FirstMI) {
        FirstMI = &*++BB->begin();
      } else {
        I->removeFromParent();
        BB->insert(FirstMI, &*I);
      }
      Found = true;
      break;
    }
    assert(Found);
    (void)Found;

    // This should be before all vector instructions.
    BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
        .addReg(InputReg)
        .addImm((MI.getOperand(1).getImm() & 0x7f) | 0x70000);
    BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFM_B64),
            AMDGPU::EXEC)
        .addReg(CountReg)
        .addImm(0);
    BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
        .addReg(CountReg, RegState::Kill)
        .addImm(64);
    BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMOV_B64),
            AMDGPU::EXEC)
        .addImm(-1);
    MI.eraseFromParent();
    return BB;
  }

  case AMDGPU::GET_GROUPSTATICSIZE: {
    DebugLoc DL = MI.getDebugLoc();
    BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
        .add(MI.getOperand(0))
        .addImm(MFI->getLDSSize());
    MI.eraseFromParent();
    return BB;
  }
  case AMDGPU::SI_INDIRECT_SRC_V1:
  case AMDGPU::SI_INDIRECT_SRC_V2:
  case AMDGPU::SI_INDIRECT_SRC_V4:
  case AMDGPU::SI_INDIRECT_SRC_V8:
  case AMDGPU::SI_INDIRECT_SRC_V16:
    return emitIndirectSrc(MI, *BB, *getSubtarget());
  case AMDGPU::SI_INDIRECT_DST_V1:
  case AMDGPU::SI_INDIRECT_DST_V2:
  case AMDGPU::SI_INDIRECT_DST_V4:
  case AMDGPU::SI_INDIRECT_DST_V8:
  case AMDGPU::SI_INDIRECT_DST_V16:
    return emitIndirectDst(MI, *BB, *getSubtarget());
  case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
  case AMDGPU::SI_KILL_I1_PSEUDO:
    return splitKillBlock(MI, BB);
  case AMDGPU::V_CNDMASK_B64_PSEUDO: {
    MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();

    unsigned Dst = MI.getOperand(0).getReg();
    unsigned Src0 = MI.getOperand(1).getReg();
    unsigned Src1 = MI.getOperand(2).getReg();
    const DebugLoc &DL = MI.getDebugLoc();
    unsigned SrcCond = MI.getOperand(3).getReg();

    unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
    unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
    unsigned SrcCondCopy = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);

    BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
      .addReg(SrcCond);
    BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
      .addReg(Src0, 0, AMDGPU::sub0)
      .addReg(Src1, 0, AMDGPU::sub0)
      .addReg(SrcCondCopy);
    BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
      .addReg(Src0, 0, AMDGPU::sub1)
      .addReg(Src1, 0, AMDGPU::sub1)
      .addReg(SrcCondCopy);

    BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
      .addReg(DstLo)
      .addImm(AMDGPU::sub0)
      .addReg(DstHi)
      .addImm(AMDGPU::sub1);
    MI.eraseFromParent();
    return BB;
  }
  case AMDGPU::SI_BR_UNDEF: {
    const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
    const DebugLoc &DL = MI.getDebugLoc();
    MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
                           .add(MI.getOperand(0));
    Br->getOperand(1).setIsUndef(true); // read undef SCC
    MI.eraseFromParent();
    return BB;
  }
  case AMDGPU::ADJCALLSTACKUP:
  case AMDGPU::ADJCALLSTACKDOWN: {
    const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
    MachineInstrBuilder MIB(*MF, &MI);
    MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
        .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
    return BB;
  }
  case AMDGPU::SI_CALL_ISEL:
  case AMDGPU::SI_TCRETURN_ISEL: {
    const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
    const DebugLoc &DL = MI.getDebugLoc();
    unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);

    MachineRegisterInfo &MRI = MF->getRegInfo();
    unsigned GlobalAddrReg = MI.getOperand(0).getReg();
    MachineInstr *PCRel = MRI.getVRegDef(GlobalAddrReg);
    assert(PCRel->getOpcode() == AMDGPU::SI_PC_ADD_REL_OFFSET);

    const GlobalValue *G = PCRel->getOperand(1).getGlobal();

    MachineInstrBuilder MIB;
    if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) {
      MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg)
        .add(MI.getOperand(0))
        .addGlobalAddress(G);
    } else {
      MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_TCRETURN))
        .add(MI.getOperand(0))
        .addGlobalAddress(G);

      // There is an additional imm operand for tcreturn, but it should be in the
      // right place already.
    }

    for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
      MIB.add(MI.getOperand(I));

    MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
    MI.eraseFromParent();
    return BB;
  }
  default:
    return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
  }
}

bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
  return isTypeLegal(VT.getScalarType());
}

bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
  // This currently forces unfolding various combinations of fsub into fma with
  // free fneg'd operands. As long as we have fast FMA (controlled by
  // isFMAFasterThanFMulAndFAdd), we should perform these.

  // When fma is quarter rate, for f64 where add / sub are at best half rate,
  // most of these combines appear to be cycle neutral but save on instruction
  // count / code size.
  return true;
}

EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
                                         EVT VT) const {
  if (!VT.isVector()) {
    return MVT::i1;
  }
  return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
}

MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
  // TODO: Should i16 be used always if legal? For now it would force VALU
  // shifts.
  return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
}

// Answering this is somewhat tricky and depends on the specific device which
// have different rates for fma or all f64 operations.
//
// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
// regardless of which device (although the number of cycles differs between
// devices), so it is always profitable for f64.
//
// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
// only on full rate devices. Normally, we should prefer selecting v_mad_f32
// which we can always do even without fused FP ops since it returns the same
// result as the separate operations and since it is always full
// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
// however does not support denormals, so we do report fma as faster if we have
// a fast fma device and require denormals.
//
bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
  VT = VT.getScalarType();

  switch (VT.getSimpleVT().SimpleTy) {
  case MVT::f32:
    // This is as fast on some subtargets. However, we always have full rate f32
    // mad available which returns the same result as the separate operations
    // which we should prefer over fma. We can't use this if we want to support
    // denormals, so only report this in these cases.
    return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
  case MVT::f64:
    return true;
  case MVT::f16:
    return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals();
  default:
    break;
  }

  return false;
}

//===----------------------------------------------------------------------===//
// Custom DAG Lowering Operations
//===----------------------------------------------------------------------===//

SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  switch (Op.getOpcode()) {
  default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
  case ISD::LOAD: {
    SDValue Result = LowerLOAD(Op, DAG);
    assert((!Result.getNode() ||
            Result.getNode()->getNumValues() == 2) &&
           "Load should return a value and a chain");
    return Result;
  }

  case ISD::FSIN:
  case ISD::FCOS:
    return LowerTrig(Op, DAG);
  case ISD::SELECT: return LowerSELECT(Op, DAG);
  case ISD::FDIV: return LowerFDIV(Op, DAG);
  case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
  case ISD::STORE: return LowerSTORE(Op, DAG);
  case ISD::GlobalAddress: {
    MachineFunction &MF = DAG.getMachineFunction();
    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
    return LowerGlobalAddress(MFI, Op, DAG);
  }
  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
  case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
  case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
  case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
  case ISD::INSERT_VECTOR_ELT:
    return lowerINSERT_VECTOR_ELT(Op, DAG);
  case ISD::EXTRACT_VECTOR_ELT:
    return lowerEXTRACT_VECTOR_ELT(Op, DAG);
  case ISD::FP_ROUND:
    return lowerFP_ROUND(Op, DAG);
  case ISD::TRAP:
  case ISD::DEBUGTRAP:
    return lowerTRAP(Op, DAG);
  }
  return SDValue();
}

void SITargetLowering::ReplaceNodeResults(SDNode *N,
                                          SmallVectorImpl<SDValue> &Results,
                                          SelectionDAG &DAG) const {
  switch (N->getOpcode()) {
  case ISD::INSERT_VECTOR_ELT: {
    if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
      Results.push_back(Res);
    return;
  }
  case ISD::EXTRACT_VECTOR_ELT: {
    if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
      Results.push_back(Res);
    return;
  }
  case ISD::INTRINSIC_WO_CHAIN: {
    unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
    switch (IID) {
    case Intrinsic::amdgcn_cvt_pkrtz: {
      SDValue Src0 = N->getOperand(1);
      SDValue Src1 = N->getOperand(2);
      SDLoc SL(N);
      SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
                                Src0, Src1);
      Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
      return;
    }
    case Intrinsic::amdgcn_cvt_pknorm_i16:
    case Intrinsic::amdgcn_cvt_pknorm_u16:
    case Intrinsic::amdgcn_cvt_pk_i16:
    case Intrinsic::amdgcn_cvt_pk_u16: {
      SDValue Src0 = N->getOperand(1);
      SDValue Src1 = N->getOperand(2);
      SDLoc SL(N);
      unsigned Opcode;

      if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
        Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
      else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
        Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
      else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
        Opcode = AMDGPUISD::CVT_PK_I16_I32;
      else
        Opcode = AMDGPUISD::CVT_PK_U16_U32;

      SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
      Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
      return;
    }
    }
    break;
  }
  case ISD::SELECT: {
    SDLoc SL(N);
    EVT VT = N->getValueType(0);
    EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
    SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
    SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));

    EVT SelectVT = NewVT;
    if (NewVT.bitsLT(MVT::i32)) {
      LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
      RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
      SelectVT = MVT::i32;
    }

    SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
                                    N->getOperand(0), LHS, RHS);

    if (NewVT != SelectVT)
      NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
    Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
    return;
  }
  default:
    break;
  }
}

/// \brief Helper function for LowerBRCOND
static SDNode *findUser(SDValue Value, unsigned Opcode) {

  SDNode *Parent = Value.getNode();
  for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
       I != E; ++I) {

    if (I.getUse().get() != Value)
      continue;

    if (I->getOpcode() == Opcode)
      return *I;
  }
  return nullptr;
}

unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
  if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
    switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
    case Intrinsic::amdgcn_if:
      return AMDGPUISD::IF;
    case Intrinsic::amdgcn_else:
      return AMDGPUISD::ELSE;
    case Intrinsic::amdgcn_loop:
      return AMDGPUISD::LOOP;
    case Intrinsic::amdgcn_end_cf:
      llvm_unreachable("should not occur");
    default:
      return 0;
    }
  }

  // break, if_break, else_break are all only used as inputs to loop, not
  // directly as branch conditions.
  return 0;
}

void SITargetLowering::createDebuggerPrologueStackObjects(
    MachineFunction &MF) const {
  // Create stack objects that are used for emitting debugger prologue.
  //
  // Debugger prologue writes work group IDs and work item IDs to scratch memory
  // at fixed location in the following format:
  //   offset 0:  work group ID x
  //   offset 4:  work group ID y
  //   offset 8:  work group ID z
  //   offset 16: work item ID x
  //   offset 20: work item ID y
  //   offset 24: work item ID z
  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
  int ObjectIdx = 0;

  // For each dimension:
  for (unsigned i = 0; i < 3; ++i) {
    // Create fixed stack object for work group ID.
    ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4, true);
    Info->setDebuggerWorkGroupIDStackObjectIndex(i, ObjectIdx);
    // Create fixed stack object for work item ID.
    ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4 + 16, true);
    Info->setDebuggerWorkItemIDStackObjectIndex(i, ObjectIdx);
  }
}

bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
  const Triple &TT = getTargetMachine().getTargetTriple();
  return GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS &&
         AMDGPU::shouldEmitConstantsToTextSection(TT);
}

bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
  return (GV->getType()->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS ||
              GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS) &&
         !shouldEmitFixup(GV) &&
         !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
}

bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
  return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
}

/// This transforms the control flow intrinsics to get the branch destination as
/// last parameter, also switches branch target with BR if the need arise
SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
                                      SelectionDAG &DAG) const {
  SDLoc DL(BRCOND);

  SDNode *Intr = BRCOND.getOperand(1).getNode();
  SDValue Target = BRCOND.getOperand(2);
  SDNode *BR = nullptr;
  SDNode *SetCC = nullptr;

  if (Intr->getOpcode() == ISD::SETCC) {
    // As long as we negate the condition everything is fine
    SetCC = Intr;
    Intr = SetCC->getOperand(0).getNode();

  } else {
    // Get the target from BR if we don't negate the condition
    BR = findUser(BRCOND, ISD::BR);
    Target = BR->getOperand(1);
  }

  // FIXME: This changes the types of the intrinsics instead of introducing new
  // nodes with the correct types.
  // e.g. llvm.amdgcn.loop

  // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
  // =>     t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>

  unsigned CFNode = isCFIntrinsic(Intr);
  if (CFNode == 0) {
    // This is a uniform branch so we don't need to legalize.
    return BRCOND;
  }

  bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
                   Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;

  assert(!SetCC ||
        (SetCC->getConstantOperandVal(1) == 1 &&
         cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
                                                             ISD::SETNE));

  // operands of the new intrinsic call
  SmallVector<SDValue, 4> Ops;
  if (HaveChain)
    Ops.push_back(BRCOND.getOperand(0));

  Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
  Ops.push_back(Target);

  ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());

  // build the new intrinsic call
  SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();

  if (!HaveChain) {
    SDValue Ops[] =  {
      SDValue(Result, 0),
      BRCOND.getOperand(0)
    };

    Result = DAG.getMergeValues(Ops, DL).getNode();
  }

  if (BR) {
    // Give the branch instruction our target
    SDValue Ops[] = {
      BR->getOperand(0),
      BRCOND.getOperand(2)
    };
    SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
    DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
    BR = NewBR.getNode();
  }

  SDValue Chain = SDValue(Result, Result->getNumValues() - 1);

  // Copy the intrinsic results to registers
  for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
    SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
    if (!CopyToReg)
      continue;

    Chain = DAG.getCopyToReg(
      Chain, DL,
      CopyToReg->getOperand(1),
      SDValue(Result, i - 1),
      SDValue());

    DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
  }

  // Remove the old intrinsic from the chain
  DAG.ReplaceAllUsesOfValueWith(
    SDValue(Intr, Intr->getNumValues() - 1),
    Intr->getOperand(0));

  return Chain;
}

SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
                                            SDValue Op,
                                            const SDLoc &DL,
                                            EVT VT) const {
  return Op.getValueType().bitsLE(VT) ?
      DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
      DAG.getNode(ISD::FTRUNC, DL, VT, Op);
}

SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
  assert(Op.getValueType() == MVT::f16 &&
         "Do not know how to custom lower FP_ROUND for non-f16 type");

  SDValue Src = Op.getOperand(0);
  EVT SrcVT = Src.getValueType();
  if (SrcVT != MVT::f64)
    return Op;

  SDLoc DL(Op);

  SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
  return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
}

SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
  SDLoc SL(Op);
  MachineFunction &MF = DAG.getMachineFunction();
  SDValue Chain = Op.getOperand(0);

  unsigned TrapID = Op.getOpcode() == ISD::DEBUGTRAP ?
    SISubtarget::TrapIDLLVMDebugTrap : SISubtarget::TrapIDLLVMTrap;

  if (Subtarget->getTrapHandlerAbi() == SISubtarget::TrapHandlerAbiHsa &&
      Subtarget->isTrapHandlerEnabled()) {
    SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
    unsigned UserSGPR = Info->getQueuePtrUserSGPR();
    assert(UserSGPR != AMDGPU::NoRegister);

    SDValue QueuePtr = CreateLiveInRegister(
      DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);

    SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);

    SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
                                     QueuePtr, SDValue());

    SDValue Ops[] = {
      ToReg,
      DAG.getTargetConstant(TrapID, SL, MVT::i16),
      SGPR01,
      ToReg.getValue(1)
    };

    return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
  }

  switch (TrapID) {
  case SISubtarget::TrapIDLLVMTrap:
    return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
  case SISubtarget::TrapIDLLVMDebugTrap: {
    DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
                                     "debugtrap handler not supported",
                                     Op.getDebugLoc(),
                                     DS_Warning);
    LLVMContext &Ctx = MF.getFunction().getContext();
    Ctx.diagnose(NoTrap);
    return Chain;
  }
  default:
    llvm_unreachable("unsupported trap handler type!");
  }

  return Chain;
}

SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
                                             SelectionDAG &DAG) const {
  // FIXME: Use inline constants (src_{shared, private}_base) instead.
  if (Subtarget->hasApertureRegs()) {
    unsigned Offset = AS == AMDGPUASI.LOCAL_ADDRESS ?
        AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
        AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
    unsigned WidthM1 = AS == AMDGPUASI.LOCAL_ADDRESS ?
        AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
        AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
    unsigned Encoding =
        AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
        Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
        WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;

    SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
    SDValue ApertureReg = SDValue(
        DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
    SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
    return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
  }

  MachineFunction &MF = DAG.getMachineFunction();
  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
  unsigned UserSGPR = Info->getQueuePtrUserSGPR();
  assert(UserSGPR != AMDGPU::NoRegister);

  SDValue QueuePtr = CreateLiveInRegister(
    DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);

  // Offset into amd_queue_t for group_segment_aperture_base_hi /
  // private_segment_aperture_base_hi.
  uint32_t StructOffset = (AS == AMDGPUASI.LOCAL_ADDRESS) ? 0x40 : 0x44;

  SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset);

  // TODO: Use custom target PseudoSourceValue.
  // TODO: We should use the value from the IR intrinsic call, but it might not
  // be available and how do we get it?
  Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
                                              AMDGPUASI.CONSTANT_ADDRESS));

  MachinePointerInfo PtrInfo(V, StructOffset);
  return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
                     MinAlign(64, StructOffset),
                     MachineMemOperand::MODereferenceable |
                         MachineMemOperand::MOInvariant);
}

SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
                                             SelectionDAG &DAG) const {
  SDLoc SL(Op);
  const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);

  SDValue Src = ASC->getOperand(0);
  SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);

  const AMDGPUTargetMachine &TM =
    static_cast<const AMDGPUTargetMachine &>(getTargetMachine());

  // flat -> local/private
  if (ASC->getSrcAddressSpace() == AMDGPUASI.FLAT_ADDRESS) {
    unsigned DestAS = ASC->getDestAddressSpace();

    if (DestAS == AMDGPUASI.LOCAL_ADDRESS ||
        DestAS == AMDGPUASI.PRIVATE_ADDRESS) {
      unsigned NullVal = TM.getNullPointerValue(DestAS);
      SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
      SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
      SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);

      return DAG.getNode(ISD::SELECT, SL, MVT::i32,
                         NonNull, Ptr, SegmentNullPtr);
    }
  }

  // local/private -> flat
  if (ASC->getDestAddressSpace() == AMDGPUASI.FLAT_ADDRESS) {
    unsigned SrcAS = ASC->getSrcAddressSpace();

    if (SrcAS == AMDGPUASI.LOCAL_ADDRESS ||
        SrcAS == AMDGPUASI.PRIVATE_ADDRESS) {
      unsigned NullVal = TM.getNullPointerValue(SrcAS);
      SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);

      SDValue NonNull
        = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);

      SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
      SDValue CvtPtr
        = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);

      return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
                         DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
                         FlatNullPtr);
    }
  }

  // global <-> flat are no-ops and never emitted.

  const MachineFunction &MF = DAG.getMachineFunction();
  DiagnosticInfoUnsupported InvalidAddrSpaceCast(
    MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
  DAG.getContext()->diagnose(InvalidAddrSpaceCast);

  return DAG.getUNDEF(ASC->getValueType(0));
}

SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
                                                 SelectionDAG &DAG) const {
  SDValue Idx = Op.getOperand(2);
  if (isa<ConstantSDNode>(Idx))
    return SDValue();

  // Avoid stack access for dynamic indexing.
  SDLoc SL(Op);
  SDValue Vec = Op.getOperand(0);
  SDValue Val = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Op.getOperand(1));

  // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
  SDValue ExtVal = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Val);

  // Convert vector index to bit-index.
  SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx,
                                  DAG.getConstant(16, SL, MVT::i32));

  SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);

  SDValue BFM = DAG.getNode(ISD::SHL, SL, MVT::i32,
                            DAG.getConstant(0xffff, SL, MVT::i32),
                            ScaledIdx);

  SDValue LHS = DAG.getNode(ISD::AND, SL, MVT::i32, BFM, ExtVal);
  SDValue RHS = DAG.getNode(ISD::AND, SL, MVT::i32,
                            DAG.getNOT(SL, BFM, MVT::i32), BCVec);

  SDValue BFI = DAG.getNode(ISD::OR, SL, MVT::i32, LHS, RHS);
  return DAG.getNode(ISD::BITCAST, SL, Op.getValueType(), BFI);
}

SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
                                                  SelectionDAG &DAG) const {
  SDLoc SL(Op);

  EVT ResultVT = Op.getValueType();
  SDValue Vec = Op.getOperand(0);
  SDValue Idx = Op.getOperand(1);

  DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);

  // Make sure we we do any optimizations that will make it easier to fold
  // source modifiers before obscuring it with bit operations.

  // XXX - Why doesn't this get called when vector_shuffle is expanded?
  if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
    return Combined;

  if (const ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
    SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);

    if (CIdx->getZExtValue() == 1) {
      Result = DAG.getNode(ISD::SRL, SL, MVT::i32, Result,
                           DAG.getConstant(16, SL, MVT::i32));
    } else {
      assert(CIdx->getZExtValue() == 0);
    }

    if (ResultVT.bitsLT(MVT::i32))
      Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Result);
    return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
  }

  SDValue Sixteen = DAG.getConstant(16, SL, MVT::i32);

  // Convert vector index to bit-index.
  SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, Sixteen);

  SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
  SDValue Elt = DAG.getNode(ISD::SRL, SL, MVT::i32, BC, ScaledIdx);

  SDValue Result = Elt;
  if (ResultVT.bitsLT(MVT::i32))
    Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Result);

  return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
}

bool
SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
  // We can fold offsets for anything that doesn't require a GOT relocation.
  return (GA->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS ||
              GA->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS) &&
         !shouldEmitGOTReloc(GA->getGlobal());
}

static SDValue
buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
                        const SDLoc &DL, unsigned Offset, EVT PtrVT,
                        unsigned GAFlags = SIInstrInfo::MO_NONE) {
  // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
  // lowered to the following code sequence:
  //
  // For constant address space:
  //   s_getpc_b64 s[0:1]
  //   s_add_u32 s0, s0, $symbol
  //   s_addc_u32 s1, s1, 0
  //
  //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
  //   a fixup or relocation is emitted to replace $symbol with a literal
  //   constant, which is a pc-relative offset from the encoding of the $symbol
  //   operand to the global variable.
  //
  // For global address space:
  //   s_getpc_b64 s[0:1]
  //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
  //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
  //
  //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
  //   fixups or relocations are emitted to replace $symbol@*@lo and
  //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
  //   which is a 64-bit pc-relative offset from the encoding of the $symbol
  //   operand to the global variable.
  //
  // What we want here is an offset from the value returned by s_getpc
  // (which is the address of the s_add_u32 instruction) to the global
  // variable, but since the encoding of $symbol starts 4 bytes after the start
  // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
  // small. This requires us to add 4 to the global variable offset in order to
  // compute the correct address.
  SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
                                             GAFlags);
  SDValue PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
                                             GAFlags == SIInstrInfo::MO_NONE ?
                                             GAFlags : GAFlags + 1);
  return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
}

SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
                                             SDValue Op,
                                             SelectionDAG &DAG) const {
  GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
  const GlobalValue *GV = GSD->getGlobal();

  if (GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS &&
      GSD->getAddressSpace() != AMDGPUASI.GLOBAL_ADDRESS &&
      // FIXME: It isn't correct to rely on the type of the pointer. This should
      // be removed when address space 0 is 64-bit.
      !GV->getType()->getElementType()->isFunctionTy())
    return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);

  SDLoc DL(GSD);
  EVT PtrVT = Op.getValueType();

  if (shouldEmitFixup(GV))
    return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
  else if (shouldEmitPCReloc(GV))
    return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
                                   SIInstrInfo::MO_REL32);

  SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
                                            SIInstrInfo::MO_GOTPCREL32);

  Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
  PointerType *PtrTy = PointerType::get(Ty, AMDGPUASI.CONSTANT_ADDRESS);
  const DataLayout &DataLayout = DAG.getDataLayout();
  unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
  // FIXME: Use a PseudoSourceValue once those can be assigned an address space.
  MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));

  return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
                     MachineMemOperand::MODereferenceable |
                         MachineMemOperand::MOInvariant);
}

SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
                                   const SDLoc &DL, SDValue V) const {
  // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
  // the destination register.
  //
  // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
  // so we will end up with redundant moves to m0.
  //
  // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.

  // A Null SDValue creates a glue result.
  SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
                                  V, Chain);
  return SDValue(M0, 0);
}

SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
                                                 SDValue Op,
                                                 MVT VT,
                                                 unsigned Offset) const {
  SDLoc SL(Op);
  SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL,
                                           DAG.getEntryNode(), Offset, false);
  // The local size values will have the hi 16-bits as zero.
  return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
                     DAG.getValueType(VT));
}

static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
                                        EVT VT) {
  DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
                                      "non-hsa intrinsic with hsa target",
                                      DL.getDebugLoc());
  DAG.getContext()->diagnose(BadIntrin);
  return DAG.getUNDEF(VT);
}

static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
                                         EVT VT) {
  DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
                                      "intrinsic not supported on subtarget",
                                      DL.getDebugLoc());
  DAG.getContext()->diagnose(BadIntrin);
  return DAG.getUNDEF(VT);
}

SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
                                                  SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  auto MFI = MF.getInfo<SIMachineFunctionInfo>();

  EVT VT = Op.getValueType();
  SDLoc DL(Op);
  unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();

  // TODO: Should this propagate fast-math-flags?

  switch (IntrinsicID) {
  case Intrinsic::amdgcn_implicit_buffer_ptr: {
    if (getSubtarget()->isAmdCodeObjectV2(MF))
      return emitNonHSAIntrinsicError(DAG, DL, VT);
    return getPreloadedValue(DAG, *MFI, VT,
                             AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
  }
  case Intrinsic::amdgcn_dispatch_ptr:
  case Intrinsic::amdgcn_queue_ptr: {
    if (!Subtarget->isAmdCodeObjectV2(MF)) {
      DiagnosticInfoUnsupported BadIntrin(
          MF.getFunction(), "unsupported hsa intrinsic without hsa target",
          DL.getDebugLoc());
      DAG.getContext()->diagnose(BadIntrin);
      return DAG.getUNDEF(VT);
    }

    auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
      AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
    return getPreloadedValue(DAG, *MFI, VT, RegID);
  }
  case Intrinsic::amdgcn_implicitarg_ptr: {
    if (MFI->isEntryFunction())
      return getImplicitArgPtr(DAG, DL);
    return getPreloadedValue(DAG, *MFI, VT,
                             AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
  }
  case Intrinsic::amdgcn_kernarg_segment_ptr: {
    return getPreloadedValue(DAG, *MFI, VT,
                             AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
  }
  case Intrinsic::amdgcn_dispatch_id: {
    return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
  }
  case Intrinsic::amdgcn_rcp:
    return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
  case Intrinsic::amdgcn_rsq:
    return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
  case Intrinsic::amdgcn_rsq_legacy:
    if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
      return emitRemovedIntrinsicError(DAG, DL, VT);

    return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
  case Intrinsic::amdgcn_rcp_legacy:
    if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
      return emitRemovedIntrinsicError(DAG, DL, VT);
    return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
  case Intrinsic::amdgcn_rsq_clamp: {
    if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
      return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));

    Type *Type = VT.getTypeForEVT(*DAG.getContext());
    APFloat Max = APFloat::getLargest(Type->getFltSemantics());
    APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);

    SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
    SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
                              DAG.getConstantFP(Max, DL, VT));
    return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
                       DAG.getConstantFP(Min, DL, VT));
  }
  case Intrinsic::r600_read_ngroups_x:
    if (Subtarget->isAmdHsaOS())
      return emitNonHSAIntrinsicError(DAG, DL, VT);

    return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
                                    SI::KernelInputOffsets::NGROUPS_X, false);
  case Intrinsic::r600_read_ngroups_y:
    if (Subtarget->isAmdHsaOS())
      return emitNonHSAIntrinsicError(DAG, DL, VT);

    return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
                                    SI::KernelInputOffsets::NGROUPS_Y, false);
  case Intrinsic::r600_read_ngroups_z:
    if (Subtarget->isAmdHsaOS())
      return emitNonHSAIntrinsicError(DAG, DL, VT);

    return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
                                    SI::KernelInputOffsets::NGROUPS_Z, false);
  case Intrinsic::r600_read_global_size_x:
    if (Subtarget->isAmdHsaOS())
      return emitNonHSAIntrinsicError(DAG, DL, VT);

    return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
                                    SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
  case Intrinsic::r600_read_global_size_y:
    if (Subtarget->isAmdHsaOS())
      return emitNonHSAIntrinsicError(DAG, DL, VT);

    return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
                                    SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
  case Intrinsic::r600_read_global_size_z:
    if (Subtarget->isAmdHsaOS())
      return emitNonHSAIntrinsicError(DAG, DL, VT);

    return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
                                    SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
  case Intrinsic::r600_read_local_size_x:
    if (Subtarget->isAmdHsaOS())
      return emitNonHSAIntrinsicError(DAG, DL, VT);

    return lowerImplicitZextParam(DAG, Op, MVT::i16,
                                  SI::KernelInputOffsets::LOCAL_SIZE_X);
  case Intrinsic::r600_read_local_size_y:
    if (Subtarget->isAmdHsaOS())
      return emitNonHSAIntrinsicError(DAG, DL, VT);

    return lowerImplicitZextParam(DAG, Op, MVT::i16,
                                  SI::KernelInputOffsets::LOCAL_SIZE_Y);
  case Intrinsic::r600_read_local_size_z:
    if (Subtarget->isAmdHsaOS())
      return emitNonHSAIntrinsicError(DAG, DL, VT);

    return lowerImplicitZextParam(DAG, Op, MVT::i16,
                                  SI::KernelInputOffsets::LOCAL_SIZE_Z);
  case Intrinsic::amdgcn_workgroup_id_x:
  case Intrinsic::r600_read_tgid_x:
    return getPreloadedValue(DAG, *MFI, VT,
                             AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
  case Intrinsic::amdgcn_workgroup_id_y:
  case Intrinsic::r600_read_tgid_y:
    return getPreloadedValue(DAG, *MFI, VT,
                             AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
  case Intrinsic::amdgcn_workgroup_id_z:
  case Intrinsic::r600_read_tgid_z:
    return getPreloadedValue(DAG, *MFI, VT,
                             AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
  case Intrinsic::amdgcn_workitem_id_x: {
  case Intrinsic::r600_read_tidig_x:
    return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
                          SDLoc(DAG.getEntryNode()),
                          MFI->getArgInfo().WorkItemIDX);
  }
  case Intrinsic::amdgcn_workitem_id_y:
  case Intrinsic::r600_read_tidig_y:
    return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
                          SDLoc(DAG.getEntryNode()),
                          MFI->getArgInfo().WorkItemIDY);
  case Intrinsic::amdgcn_workitem_id_z:
  case Intrinsic::r600_read_tidig_z:
    return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
                          SDLoc(DAG.getEntryNode()),
                          MFI->getArgInfo().WorkItemIDZ);
  case AMDGPUIntrinsic::SI_load_const: {
    SDValue Ops[] = {
      Op.getOperand(1),
      Op.getOperand(2)
    };

    MachineMemOperand *MMO = MF.getMachineMemOperand(
        MachinePointerInfo(),
        MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
            MachineMemOperand::MOInvariant,
        VT.getStoreSize(), 4);
    return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
                                   Op->getVTList(), Ops, VT, MMO);
  }
  case Intrinsic::amdgcn_fdiv_fast:
    return lowerFDIV_FAST(Op, DAG);
  case Intrinsic::amdgcn_interp_mov: {
    SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
    SDValue Glue = M0.getValue(1);
    return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1),
                       Op.getOperand(2), Op.getOperand(3), Glue);
  }
  case Intrinsic::amdgcn_interp_p1: {
    SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
    SDValue Glue = M0.getValue(1);
    return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
                       Op.getOperand(2), Op.getOperand(3), Glue);
  }
  case Intrinsic::amdgcn_interp_p2: {
    SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
    SDValue Glue = SDValue(M0.getNode(), 1);
    return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
                       Glue);
  }
  case Intrinsic::amdgcn_sin:
    return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));

  case Intrinsic::amdgcn_cos:
    return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));

  case Intrinsic::amdgcn_log_clamp: {
    if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
      return SDValue();

    DiagnosticInfoUnsupported BadIntrin(
      MF.getFunction(), "intrinsic not supported on subtarget",
      DL.getDebugLoc());
      DAG.getContext()->diagnose(BadIntrin);
      return DAG.getUNDEF(VT);
  }
  case Intrinsic::amdgcn_ldexp:
    return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
                       Op.getOperand(1), Op.getOperand(2));

  case Intrinsic::amdgcn_fract:
    return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));

  case Intrinsic::amdgcn_class:
    return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::amdgcn_div_fmas:
    return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
                       Op.getOperand(4));

  case Intrinsic::amdgcn_div_fixup:
    return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));

  case Intrinsic::amdgcn_trig_preop:
    return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::amdgcn_div_scale: {
    // 3rd parameter required to be a constant.
    const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
    if (!Param)
      return DAG.getMergeValues({ DAG.getUNDEF(VT), DAG.getUNDEF(MVT::i1) }, DL);

    // Translate to the operands expected by the machine instruction. The
    // first parameter must be the same as the first instruction.
    SDValue Numerator = Op.getOperand(1);
    SDValue Denominator = Op.getOperand(2);

    // Note this order is opposite of the machine instruction's operations,
    // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
    // intrinsic has the numerator as the first operand to match a normal
    // division operation.

    SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;

    return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
                       Denominator, Numerator);
  }
  case Intrinsic::amdgcn_icmp: {
    const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
    if (!CD)
      return DAG.getUNDEF(VT);

    int CondCode = CD->getSExtValue();
    if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
        CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE)
      return DAG.getUNDEF(VT);

    ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
    ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
    return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
                       Op.getOperand(2), DAG.getCondCode(CCOpcode));
  }
  case Intrinsic::amdgcn_fcmp: {
    const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
    if (!CD)
      return DAG.getUNDEF(VT);

    int CondCode = CD->getSExtValue();
    if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE ||
        CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE)
      return DAG.getUNDEF(VT);

    FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
    ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
    return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
                       Op.getOperand(2), DAG.getCondCode(CCOpcode));
  }
  case Intrinsic::amdgcn_fmed3:
    return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
  case Intrinsic::amdgcn_fmul_legacy:
    return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
                       Op.getOperand(1), Op.getOperand(2));
  case Intrinsic::amdgcn_sffbh:
    return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
  case Intrinsic::amdgcn_sbfe:
    return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
  case Intrinsic::amdgcn_ubfe:
    return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
  case Intrinsic::amdgcn_cvt_pkrtz:
  case Intrinsic::amdgcn_cvt_pknorm_i16:
  case Intrinsic::amdgcn_cvt_pknorm_u16:
  case Intrinsic::amdgcn_cvt_pk_i16:
  case Intrinsic::amdgcn_cvt_pk_u16: {
    // FIXME: Stop adding cast if v2f16/v2i16 are legal.
    EVT VT = Op.getValueType();
    unsigned Opcode;

    if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
      Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
    else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
      Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
    else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
      Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
    else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
      Opcode = AMDGPUISD::CVT_PK_I16_I32;
    else
      Opcode = AMDGPUISD::CVT_PK_U16_U32;

    SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
                               Op.getOperand(1), Op.getOperand(2));
    return DAG.getNode(ISD::BITCAST, DL, VT, Node);
  }
  case Intrinsic::amdgcn_wqm: {
    SDValue Src = Op.getOperand(1);
    return SDValue(DAG.getMachineNode(AMDGPU::WQM, DL, Src.getValueType(), Src),
                   0);
  }
  case Intrinsic::amdgcn_wwm: {
    SDValue Src = Op.getOperand(1);
    return SDValue(DAG.getMachineNode(AMDGPU::WWM, DL, Src.getValueType(), Src),
                   0);
  }
  case Intrinsic::amdgcn_image_getlod:
  case Intrinsic::amdgcn_image_getresinfo: {
    unsigned Idx = (IntrinsicID == Intrinsic::amdgcn_image_getresinfo) ? 3 : 4;

    // Replace dmask with everything disabled with undef.
    const ConstantSDNode *DMask = dyn_cast<ConstantSDNode>(Op.getOperand(Idx));
    if (!DMask || DMask->isNullValue())
      return DAG.getUNDEF(Op.getValueType());
    return SDValue();
  }
  default:
    return Op;
  }
}

SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
                                                 SelectionDAG &DAG) const {
  unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
  SDLoc DL(Op);

  switch (IntrID) {
  case Intrinsic::amdgcn_atomic_inc:
  case Intrinsic::amdgcn_atomic_dec: {
    MemSDNode *M = cast<MemSDNode>(Op);
    unsigned Opc = (IntrID == Intrinsic::amdgcn_atomic_inc) ?
      AMDGPUISD::ATOMIC_INC : AMDGPUISD::ATOMIC_DEC;
    SDValue Ops[] = {
      M->getOperand(0), // Chain
      M->getOperand(2), // Ptr
      M->getOperand(3)  // Value
    };

    return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
                                   M->getMemoryVT(), M->getMemOperand());
  }
  case Intrinsic::amdgcn_buffer_load:
  case Intrinsic::amdgcn_buffer_load_format: {
    SDValue Ops[] = {
      Op.getOperand(0), // Chain
      Op.getOperand(2), // rsrc
      Op.getOperand(3), // vindex
      Op.getOperand(4), // offset
      Op.getOperand(5), // glc
      Op.getOperand(6)  // slc
    };

    unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
        AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
    EVT VT = Op.getValueType();
    EVT IntVT = VT.changeTypeToInteger();

    auto *M = cast<MemSDNode>(Op);
    return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
                                   M->getMemOperand());
  }
  case Intrinsic::amdgcn_tbuffer_load: {
    MemSDNode *M = cast<MemSDNode>(Op);
    SDValue Ops[] = {
      Op.getOperand(0),  // Chain
      Op.getOperand(2),  // rsrc
      Op.getOperand(3),  // vindex
      Op.getOperand(4),  // voffset
      Op.getOperand(5),  // soffset
      Op.getOperand(6),  // offset
      Op.getOperand(7),  // dfmt
      Op.getOperand(8),  // nfmt
      Op.getOperand(9),  // glc
      Op.getOperand(10)   // slc
    };

    EVT VT = Op.getValueType();

    return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
                                   Op->getVTList(), Ops, VT, M->getMemOperand());
  }
  case Intrinsic::amdgcn_buffer_atomic_swap:
  case Intrinsic::amdgcn_buffer_atomic_add:
  case Intrinsic::amdgcn_buffer_atomic_sub:
  case Intrinsic::amdgcn_buffer_atomic_smin:
  case Intrinsic::amdgcn_buffer_atomic_umin:
  case Intrinsic::amdgcn_buffer_atomic_smax:
  case Intrinsic::amdgcn_buffer_atomic_umax:
  case Intrinsic::amdgcn_buffer_atomic_and:
  case Intrinsic::amdgcn_buffer_atomic_or:
  case Intrinsic::amdgcn_buffer_atomic_xor: {
    SDValue Ops[] = {
      Op.getOperand(0), // Chain
      Op.getOperand(2), // vdata
      Op.getOperand(3), // rsrc
      Op.getOperand(4), // vindex
      Op.getOperand(5), // offset
      Op.getOperand(6)  // slc
    };
    EVT VT = Op.getValueType();

    auto *M = cast<MemSDNode>(Op);
    unsigned Opcode = 0;

    switch (IntrID) {
    case Intrinsic::amdgcn_buffer_atomic_swap:
      Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
      break;
    case Intrinsic::amdgcn_buffer_atomic_add:
      Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
      break;
    case Intrinsic::amdgcn_buffer_atomic_sub:
      Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
      break;
    case Intrinsic::amdgcn_buffer_atomic_smin:
      Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
      break;
    case Intrinsic::amdgcn_buffer_atomic_umin:
      Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
      break;
    case Intrinsic::amdgcn_buffer_atomic_smax:
      Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
      break;
    case Intrinsic::amdgcn_buffer_atomic_umax:
      Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
      break;
    case Intrinsic::amdgcn_buffer_atomic_and:
      Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
      break;
    case Intrinsic::amdgcn_buffer_atomic_or:
      Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
      break;
    case Intrinsic::amdgcn_buffer_atomic_xor:
      Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
      break;
    default:
      llvm_unreachable("unhandled atomic opcode");
    }

    return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
                                   M->getMemOperand());
  }

  case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
    SDValue Ops[] = {
      Op.getOperand(0), // Chain
      Op.getOperand(2), // src
      Op.getOperand(3), // cmp
      Op.getOperand(4), // rsrc
      Op.getOperand(5), // vindex
      Op.getOperand(6), // offset
      Op.getOperand(7)  // slc
    };
    EVT VT = Op.getValueType();
    auto *M = cast<MemSDNode>(Op);

    return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
                                   Op->getVTList(), Ops, VT, M->getMemOperand());
  }

  // Basic sample.
  case Intrinsic::amdgcn_image_sample:
  case Intrinsic::amdgcn_image_sample_cl:
  case Intrinsic::amdgcn_image_sample_d:
  case Intrinsic::amdgcn_image_sample_d_cl:
  case Intrinsic::amdgcn_image_sample_l:
  case Intrinsic::amdgcn_image_sample_b:
  case Intrinsic::amdgcn_image_sample_b_cl:
  case Intrinsic::amdgcn_image_sample_lz:
  case Intrinsic::amdgcn_image_sample_cd:
  case Intrinsic::amdgcn_image_sample_cd_cl:

  // Sample with comparison.
  case Intrinsic::amdgcn_image_sample_c:
  case Intrinsic::amdgcn_image_sample_c_cl:
  case Intrinsic::amdgcn_image_sample_c_d:
  case Intrinsic::amdgcn_image_sample_c_d_cl:
  case Intrinsic::amdgcn_image_sample_c_l:
  case Intrinsic::amdgcn_image_sample_c_b:
  case Intrinsic::amdgcn_image_sample_c_b_cl:
  case Intrinsic::amdgcn_image_sample_c_lz:
  case Intrinsic::amdgcn_image_sample_c_cd:
  case Intrinsic::amdgcn_image_sample_c_cd_cl:

  // Sample with offsets.
  case Intrinsic::amdgcn_image_sample_o:
  case Intrinsic::amdgcn_image_sample_cl_o:
  case Intrinsic::amdgcn_image_sample_d_o:
  case Intrinsic::amdgcn_image_sample_d_cl_o:
  case Intrinsic::amdgcn_image_sample_l_o:
  case Intrinsic::amdgcn_image_sample_b_o:
  case Intrinsic::amdgcn_image_sample_b_cl_o:
  case Intrinsic::amdgcn_image_sample_lz_o:
  case Intrinsic::amdgcn_image_sample_cd_o:
  case Intrinsic::amdgcn_image_sample_cd_cl_o:

  // Sample with comparison and offsets.
  case Intrinsic::amdgcn_image_sample_c_o:
  case Intrinsic::amdgcn_image_sample_c_cl_o:
  case Intrinsic::amdgcn_image_sample_c_d_o:
  case Intrinsic::amdgcn_image_sample_c_d_cl_o:
  case Intrinsic::amdgcn_image_sample_c_l_o:
  case Intrinsic::amdgcn_image_sample_c_b_o:
  case Intrinsic::amdgcn_image_sample_c_b_cl_o:
  case Intrinsic::amdgcn_image_sample_c_lz_o:
  case Intrinsic::amdgcn_image_sample_c_cd_o:
  case Intrinsic::amdgcn_image_sample_c_cd_cl_o: {
    // Replace dmask with everything disabled with undef.
    const ConstantSDNode *DMask = dyn_cast<ConstantSDNode>(Op.getOperand(5));
    if (!DMask || DMask->isNullValue()) {
      SDValue Undef = DAG.getUNDEF(Op.getValueType());
      return DAG.getMergeValues({ Undef, Op.getOperand(0) }, SDLoc(Op));
    }

    return SDValue();
  }
  default:
    return SDValue();
  }
}

SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
                                              SelectionDAG &DAG) const {
  SDLoc DL(Op);
  SDValue Chain = Op.getOperand(0);
  unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
  MachineFunction &MF = DAG.getMachineFunction();

  switch (IntrinsicID) {
  case Intrinsic::amdgcn_exp: {
    const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
    const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
    const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8));
    const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9));

    const SDValue Ops[] = {
      Chain,
      DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
      DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
      Op.getOperand(4), // src0
      Op.getOperand(5), // src1
      Op.getOperand(6), // src2
      Op.getOperand(7), // src3
      DAG.getTargetConstant(0, DL, MVT::i1), // compr
      DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
    };

    unsigned Opc = Done->isNullValue() ?
      AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
    return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
  }
  case Intrinsic::amdgcn_exp_compr: {
    const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
    const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
    SDValue Src0 = Op.getOperand(4);
    SDValue Src1 = Op.getOperand(5);
    const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
    const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7));

    SDValue Undef = DAG.getUNDEF(MVT::f32);
    const SDValue Ops[] = {
      Chain,
      DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
      DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
      DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0),
      DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1),
      Undef, // src2
      Undef, // src3
      DAG.getTargetConstant(1, DL, MVT::i1), // compr
      DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
    };

    unsigned Opc = Done->isNullValue() ?
      AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
    return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
  }
  case Intrinsic::amdgcn_s_sendmsg:
  case Intrinsic::amdgcn_s_sendmsghalt: {
    unsigned NodeOp = (IntrinsicID == Intrinsic::amdgcn_s_sendmsg) ?
      AMDGPUISD::SENDMSG : AMDGPUISD::SENDMSGHALT;
    Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
    SDValue Glue = Chain.getValue(1);
    return DAG.getNode(NodeOp, DL, MVT::Other, Chain,
                       Op.getOperand(2), Glue);
  }
  case Intrinsic::amdgcn_init_exec: {
    return DAG.getNode(AMDGPUISD::INIT_EXEC, DL, MVT::Other, Chain,
                       Op.getOperand(2));
  }
  case Intrinsic::amdgcn_init_exec_from_input: {
    return DAG.getNode(AMDGPUISD::INIT_EXEC_FROM_INPUT, DL, MVT::Other, Chain,
                       Op.getOperand(2), Op.getOperand(3));
  }
  case AMDGPUIntrinsic::AMDGPU_kill: {
    SDValue Src = Op.getOperand(2);
    if (const ConstantFPSDNode *K = dyn_cast<ConstantFPSDNode>(Src)) {
      if (!K->isNegative())
        return Chain;

      SDValue NegOne = DAG.getTargetConstant(FloatToBits(-1.0f), DL, MVT::i32);
      return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, NegOne);
    }

    SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Src);
    return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, Cast);
  }
  case Intrinsic::amdgcn_s_barrier: {
    if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
      const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
      unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
      if (WGSize <= ST.getWavefrontSize())
        return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
                                          Op.getOperand(0)), 0);
    }
    return SDValue();
  };
  case AMDGPUIntrinsic::SI_tbuffer_store: {

    // Extract vindex and voffset from vaddr as appropriate
    const ConstantSDNode *OffEn = cast<ConstantSDNode>(Op.getOperand(10));
    const ConstantSDNode *IdxEn = cast<ConstantSDNode>(Op.getOperand(11));
    SDValue VAddr = Op.getOperand(5);

    SDValue Zero = DAG.getTargetConstant(0, DL, MVT::i32);

    assert(!(OffEn->isOne() && IdxEn->isOne()) &&
           "Legacy intrinsic doesn't support both offset and index - use new version");

    SDValue VIndex = IdxEn->isOne() ? VAddr : Zero;
    SDValue VOffset = OffEn->isOne() ? VAddr : Zero;

    // Deal with the vec-3 case
    const ConstantSDNode *NumChannels = cast<ConstantSDNode>(Op.getOperand(4));
    auto Opcode = NumChannels->getZExtValue() == 3 ?
      AMDGPUISD::TBUFFER_STORE_FORMAT_X3 : AMDGPUISD::TBUFFER_STORE_FORMAT;

    SDValue Ops[] = {
     Chain,
     Op.getOperand(3),  // vdata
     Op.getOperand(2),  // rsrc
     VIndex,
     VOffset,
     Op.getOperand(6),  // soffset
     Op.getOperand(7),  // inst_offset
     Op.getOperand(8),  // dfmt
     Op.getOperand(9),  // nfmt
     Op.getOperand(12), // glc
     Op.getOperand(13), // slc
    };

    assert((cast<ConstantSDNode>(Op.getOperand(14)))->getZExtValue() == 0 &&
           "Value of tfe other than zero is unsupported");

    EVT VT = Op.getOperand(3).getValueType();
    MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo(),
      MachineMemOperand::MOStore,
      VT.getStoreSize(), 4);
    return DAG.getMemIntrinsicNode(Opcode, DL,
                                   Op->getVTList(), Ops, VT, MMO);
  }

  case Intrinsic::amdgcn_tbuffer_store: {
    SDValue Ops[] = {
      Chain,
      Op.getOperand(2),  // vdata
      Op.getOperand(3),  // rsrc
      Op.getOperand(4),  // vindex
      Op.getOperand(5),  // voffset
      Op.getOperand(6),  // soffset
      Op.getOperand(7),  // offset
      Op.getOperand(8),  // dfmt
      Op.getOperand(9),  // nfmt
      Op.getOperand(10), // glc
      Op.getOperand(11)  // slc
    };
    EVT VT = Op.getOperand(3).getValueType();
    MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo(),
      MachineMemOperand::MOStore,
      VT.getStoreSize(), 4);
    return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
                                   Op->getVTList(), Ops, VT, MMO);
  }

  case Intrinsic::amdgcn_buffer_store:
  case Intrinsic::amdgcn_buffer_store_format: {
    SDValue Ops[] = {
      Chain,
      Op.getOperand(2), // vdata
      Op.getOperand(3), // rsrc
      Op.getOperand(4), // vindex
      Op.getOperand(5), // offset
      Op.getOperand(6), // glc
      Op.getOperand(7)  // slc
    };
    EVT VT = Op.getOperand(3).getValueType();
    MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo(),
      MachineMemOperand::MOStore |
      MachineMemOperand::MODereferenceable,
      VT.getStoreSize(), 4);

    unsigned Opcode = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
                        AMDGPUISD::BUFFER_STORE :
                        AMDGPUISD::BUFFER_STORE_FORMAT;
    return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, MMO);
  }

  default:
    return Op;
  }
}

SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
  SDLoc DL(Op);
  LoadSDNode *Load = cast<LoadSDNode>(Op);
  ISD::LoadExtType ExtType = Load->getExtensionType();
  EVT MemVT = Load->getMemoryVT();

  if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
    if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
      return SDValue();

    // FIXME: Copied from PPC
    // First, load into 32 bits, then truncate to 1 bit.

    SDValue Chain = Load->getChain();
    SDValue BasePtr = Load->getBasePtr();
    MachineMemOperand *MMO = Load->getMemOperand();

    EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;

    SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
                                   BasePtr, RealMemVT, MMO);

    SDValue Ops[] = {
      DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
      NewLD.getValue(1)
    };

    return DAG.getMergeValues(Ops, DL);
  }

  if (!MemVT.isVector())
    return SDValue();

  assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
         "Custom lowering for non-i32 vectors hasn't been implemented.");

  unsigned AS = Load->getAddressSpace();
  if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
                          AS, Load->getAlignment())) {
    SDValue Ops[2];
    std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
    return DAG.getMergeValues(Ops, DL);
  }

  MachineFunction &MF = DAG.getMachineFunction();
  SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  // If there is a possibilty that flat instruction access scratch memory
  // then we need to use the same legalization rules we use for private.
  if (AS == AMDGPUASI.FLAT_ADDRESS)
    AS = MFI->hasFlatScratchInit() ?
         AMDGPUASI.PRIVATE_ADDRESS : AMDGPUASI.GLOBAL_ADDRESS;

  unsigned NumElements = MemVT.getVectorNumElements();
  if (AS == AMDGPUASI.CONSTANT_ADDRESS) {
    if (isMemOpUniform(Load))
      return SDValue();
    // Non-uniform loads will be selected to MUBUF instructions, so they
    // have the same legalization requirements as global and private
    // loads.
    //
  }
  if (AS == AMDGPUASI.CONSTANT_ADDRESS || AS == AMDGPUASI.GLOBAL_ADDRESS) {
    if (Subtarget->getScalarizeGlobalBehavior() && isMemOpUniform(Load) &&
        !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load))
      return SDValue();
    // Non-uniform loads will be selected to MUBUF instructions, so they
    // have the same legalization requirements as global and private
    // loads.
    //
  }
  if (AS == AMDGPUASI.CONSTANT_ADDRESS || AS == AMDGPUASI.GLOBAL_ADDRESS ||
      AS == AMDGPUASI.FLAT_ADDRESS) {
    if (NumElements > 4)
      return SplitVectorLoad(Op, DAG);
    // v4 loads are supported for private and global memory.
    return SDValue();
  }
  if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
    // Depending on the setting of the private_element_size field in the
    // resource descriptor, we can only make private accesses up to a certain
    // size.
    switch (Subtarget->getMaxPrivateElementSize()) {
    case 4:
      return scalarizeVectorLoad(Load, DAG);
    case 8:
      if (NumElements > 2)
        return SplitVectorLoad(Op, DAG);
      return SDValue();
    case 16:
      // Same as global/flat
      if (NumElements > 4)
        return SplitVectorLoad(Op, DAG);
      return SDValue();
    default:
      llvm_unreachable("unsupported private_element_size");
    }
  } else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
    if (NumElements > 2)
      return SplitVectorLoad(Op, DAG);

    if (NumElements == 2)
      return SDValue();

    // If properly aligned, if we split we might be able to use ds_read_b64.
    return SplitVectorLoad(Op, DAG);
  }
  return SDValue();
}

SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
  if (Op.getValueType() != MVT::i64)
    return SDValue();

  SDLoc DL(Op);
  SDValue Cond = Op.getOperand(0);

  SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
  SDValue One = DAG.getConstant(1, DL, MVT::i32);

  SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
  SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));

  SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
  SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);

  SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);

  SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
  SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);

  SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);

  SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
  return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
}

// Catch division cases where we can use shortcuts with rcp and rsq
// instructions.
SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
                                              SelectionDAG &DAG) const {
  SDLoc SL(Op);
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  EVT VT = Op.getValueType();
  const SDNodeFlags Flags = Op->getFlags();
  bool Unsafe = DAG.getTarget().Options.UnsafeFPMath ||
                Flags.hasUnsafeAlgebra() || Flags.hasAllowReciprocal();

  if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals())
    return SDValue();

  if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
    if (Unsafe || VT == MVT::f32 || VT == MVT::f16) {
      if (CLHS->isExactlyValue(1.0)) {
        // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
        // the CI documentation has a worst case error of 1 ulp.
        // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
        // use it as long as we aren't trying to use denormals.
        //
        // v_rcp_f16 and v_rsq_f16 DO support denormals.

        // 1.0 / sqrt(x) -> rsq(x)

        // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
        // error seems really high at 2^29 ULP.
        if (RHS.getOpcode() == ISD::FSQRT)
          return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));

        // 1.0 / x -> rcp(x)
        return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
      }

      // Same as for 1.0, but expand the sign out of the constant.
      if (CLHS->isExactlyValue(-1.0)) {
        // -1.0 / x -> rcp (fneg x)
        SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
        return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
      }
    }
  }

  if (Unsafe) {
    // Turn into multiply by the reciprocal.
    // x / y -> x * (1.0 / y)
    SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
    return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
  }

  return SDValue();
}

static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
                          EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
  if (GlueChain->getNumValues() <= 1) {
    return DAG.getNode(Opcode, SL, VT, A, B);
  }

  assert(GlueChain->getNumValues() == 3);

  SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
  switch (Opcode) {
  default: llvm_unreachable("no chain equivalent for opcode");
  case ISD::FMUL:
    Opcode = AMDGPUISD::FMUL_W_CHAIN;
    break;
  }

  return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
                     GlueChain.getValue(2));
}

static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
                           EVT VT, SDValue A, SDValue B, SDValue C,
                           SDValue GlueChain) {
  if (GlueChain->getNumValues() <= 1) {
    return DAG.getNode(Opcode, SL, VT, A, B, C);
  }

  assert(GlueChain->getNumValues() == 3);

  SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
  switch (Opcode) {
  default: llvm_unreachable("no chain equivalent for opcode");
  case ISD::FMA:
    Opcode = AMDGPUISD::FMA_W_CHAIN;
    break;
  }

  return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
                     GlueChain.getValue(2));
}

SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
  if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
    return FastLowered;

  SDLoc SL(Op);
  SDValue Src0 = Op.getOperand(0);
  SDValue Src1 = Op.getOperand(1);

  SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
  SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);

  SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
  SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);

  SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
  SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);

  return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
}

// Faster 2.5 ULP division that does not support denormals.
SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
  SDLoc SL(Op);
  SDValue LHS = Op.getOperand(1);
  SDValue RHS = Op.getOperand(2);

  SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);

  const APFloat K0Val(BitsToFloat(0x6f800000));
  const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);

  const APFloat K1Val(BitsToFloat(0x2f800000));
  const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);

  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);

  EVT SetCCVT =
    getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);

  SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);

  SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);

  // TODO: Should this propagate fast-math-flags?
  r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);

  // rcp does not support denormals.
  SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);

  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);

  return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
}

SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
  if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
    return FastLowered;

  SDLoc SL(Op);
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);

  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);

  SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);

  SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
                                          RHS, RHS, LHS);
  SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
                                        LHS, RHS, LHS);

  // Denominator is scaled to not be denormal, so using rcp is ok.
  SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
                                  DenominatorScaled);
  SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
                                     DenominatorScaled);

  const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
                               (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
                               (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);

  const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);

  if (!Subtarget->hasFP32Denormals()) {
    SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
    const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
                                                      SL, MVT::i32);
    SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
                                       DAG.getEntryNode(),
                                       EnableDenormValue, BitField);
    SDValue Ops[3] = {
      NegDivScale0,
      EnableDenorm.getValue(0),
      EnableDenorm.getValue(1)
    };

    NegDivScale0 = DAG.getMergeValues(Ops, SL);
  }

  SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
                             ApproxRcp, One, NegDivScale0);

  SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
                             ApproxRcp, Fma0);

  SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
                           Fma1, Fma1);

  SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
                             NumeratorScaled, Mul);

  SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2);

  SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
                             NumeratorScaled, Fma3);

  if (!Subtarget->hasFP32Denormals()) {
    const SDValue DisableDenormValue =
        DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
    SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
                                        Fma4.getValue(1),
                                        DisableDenormValue,
                                        BitField,
                                        Fma4.getValue(2));

    SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
                                      DisableDenorm, DAG.getRoot());
    DAG.setRoot(OutputChain);
  }

  SDValue Scale = NumeratorScaled.getValue(1);
  SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
                             Fma4, Fma1, Fma3, Scale);

  return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
}

SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
  if (DAG.getTarget().Options.UnsafeFPMath)
    return lowerFastUnsafeFDIV(Op, DAG);

  SDLoc SL(Op);
  SDValue X = Op.getOperand(0);
  SDValue Y = Op.getOperand(1);

  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);

  SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);

  SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);

  SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);

  SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);

  SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);

  SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);

  SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);

  SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);

  SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);

  SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
                             NegDivScale0, Mul, DivScale1);

  SDValue Scale;

  if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
    // Workaround a hardware bug on SI where the condition output from div_scale
    // is not usable.

    const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);

    // Figure out if the scale to use for div_fmas.
    SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
    SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
    SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
    SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);

    SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
    SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);

    SDValue Scale0Hi
      = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
    SDValue Scale1Hi
      = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);

    SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
    SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
    Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
  } else {
    Scale = DivScale1.getValue(1);
  }

  SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
                             Fma4, Fma3, Mul, Scale);

  return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
}

SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();

  if (VT == MVT::f32)
    return LowerFDIV32(Op, DAG);

  if (VT == MVT::f64)
    return LowerFDIV64(Op, DAG);

  if (VT == MVT::f16)
    return LowerFDIV16(Op, DAG);

  llvm_unreachable("Unexpected type for fdiv");
}

SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
  SDLoc DL(Op);
  StoreSDNode *Store = cast<StoreSDNode>(Op);
  EVT VT = Store->getMemoryVT();

  if (VT == MVT::i1) {
    return DAG.getTruncStore(Store->getChain(), DL,
       DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
       Store->getBasePtr(), MVT::i1, Store->getMemOperand());
  }

  assert(VT.isVector() &&
         Store->getValue().getValueType().getScalarType() == MVT::i32);

  unsigned AS = Store->getAddressSpace();
  if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
                          AS, Store->getAlignment())) {
    return expandUnalignedStore(Store, DAG);
  }

  MachineFunction &MF = DAG.getMachineFunction();
  SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  // If there is a possibilty that flat instruction access scratch memory
  // then we need to use the same legalization rules we use for private.
  if (AS == AMDGPUASI.FLAT_ADDRESS)
    AS = MFI->hasFlatScratchInit() ?
         AMDGPUASI.PRIVATE_ADDRESS : AMDGPUASI.GLOBAL_ADDRESS;

  unsigned NumElements = VT.getVectorNumElements();
  if (AS == AMDGPUASI.GLOBAL_ADDRESS ||
      AS == AMDGPUASI.FLAT_ADDRESS) {
    if (NumElements > 4)
      return SplitVectorStore(Op, DAG);
    return SDValue();
  } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
    switch (Subtarget->getMaxPrivateElementSize()) {
    case 4:
      return scalarizeVectorStore(Store, DAG);
    case 8:
      if (NumElements > 2)
        return SplitVectorStore(Op, DAG);
      return SDValue();
    case 16:
      if (NumElements > 4)
        return SplitVectorStore(Op, DAG);
      return SDValue();
    default:
      llvm_unreachable("unsupported private_element_size");
    }
  } else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
    if (NumElements > 2)
      return SplitVectorStore(Op, DAG);

    if (NumElements == 2)
      return Op;

    // If properly aligned, if we split we might be able to use ds_write_b64.
    return SplitVectorStore(Op, DAG);
  } else {
    llvm_unreachable("unhandled address space");
  }
}

SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
  SDLoc DL(Op);
  EVT VT = Op.getValueType();
  SDValue Arg = Op.getOperand(0);
  // TODO: Should this propagate fast-math-flags?
  SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
                                  DAG.getNode(ISD::FMUL, DL, VT, Arg,
                                              DAG.getConstantFP(0.5/M_PI, DL,
                                                                VT)));

  switch (Op.getOpcode()) {
  case ISD::FCOS:
    return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
  case ISD::FSIN:
    return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
  default:
    llvm_unreachable("Wrong trig opcode");
  }
}

SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
  AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
  assert(AtomicNode->isCompareAndSwap());
  unsigned AS = AtomicNode->getAddressSpace();

  // No custom lowering required for local address space
  if (!isFlatGlobalAddrSpace(AS, AMDGPUASI))
    return Op;

  // Non-local address space requires custom lowering for atomic compare
  // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
  SDLoc DL(Op);
  SDValue ChainIn = Op.getOperand(0);
  SDValue Addr = Op.getOperand(1);
  SDValue Old = Op.getOperand(2);
  SDValue New = Op.getOperand(3);
  EVT VT = Op.getValueType();
  MVT SimpleVT = VT.getSimpleVT();
  MVT VecType = MVT::getVectorVT(SimpleVT, 2);

  SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
  SDValue Ops[] = { ChainIn, Addr, NewOld };

  return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
                                 Ops, VT, AtomicNode->getMemOperand());
}

//===----------------------------------------------------------------------===//
// Custom DAG optimizations
//===----------------------------------------------------------------------===//

SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
                                                     DAGCombinerInfo &DCI) const {
  EVT VT = N->getValueType(0);
  EVT ScalarVT = VT.getScalarType();
  if (ScalarVT != MVT::f32)
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);

  SDValue Src = N->getOperand(0);
  EVT SrcVT = Src.getValueType();

  // TODO: We could try to match extracting the higher bytes, which would be
  // easier if i8 vectors weren't promoted to i32 vectors, particularly after
  // types are legalized. v4i8 -> v4f32 is probably the only case to worry
  // about in practice.
  if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
    if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
      SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
      DCI.AddToWorklist(Cvt.getNode());
      return Cvt;
    }
  }

  return SDValue();
}

// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)

// This is a variant of
// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
//
// The normal DAG combiner will do this, but only if the add has one use since
// that would increase the number of instructions.
//
// This prevents us from seeing a constant offset that can be folded into a
// memory instruction's addressing mode. If we know the resulting add offset of
// a pointer can be folded into an addressing offset, we can replace the pointer
// operand with the add of new constant offset. This eliminates one of the uses,
// and may allow the remaining use to also be simplified.
//
SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
                                               unsigned AddrSpace,
                                               EVT MemVT,
                                               DAGCombinerInfo &DCI) const {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);

  // We only do this to handle cases where it's profitable when there are
  // multiple uses of the add, so defer to the standard combine.
  if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
      N0->hasOneUse())
    return SDValue();

  const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
  if (!CN1)
    return SDValue();

  const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
  if (!CAdd)
    return SDValue();

  // If the resulting offset is too large, we can't fold it into the addressing
  // mode offset.
  APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
  Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());

  AddrMode AM;
  AM.HasBaseReg = true;
  AM.BaseOffs = Offset.getSExtValue();
  if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  SDLoc SL(N);
  EVT VT = N->getValueType(0);

  SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
  SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);

  SDNodeFlags Flags;
  Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
                          (N0.getOpcode() == ISD::OR ||
                           N0->getFlags().hasNoUnsignedWrap()));

  return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
}

SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
                                                  DAGCombinerInfo &DCI) const {
  SDValue Ptr = N->getBasePtr();
  SelectionDAG &DAG = DCI.DAG;
  SDLoc SL(N);

  // TODO: We could also do this for multiplies.
  if (Ptr.getOpcode() == ISD::SHL) {
    SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
                                          N->getMemoryVT(), DCI);
    if (NewPtr) {
      SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());

      NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
      return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
    }
  }

  return SDValue();
}

static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
  return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
         (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
         (Opc == ISD::XOR && Val == 0);
}

// Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
// will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
// integer combine opportunities since most 64-bit operations are decomposed
// this way.  TODO: We won't want this for SALU especially if it is an inline
// immediate.
SDValue SITargetLowering::splitBinaryBitConstantOp(
  DAGCombinerInfo &DCI,
  const SDLoc &SL,
  unsigned Opc, SDValue LHS,
  const ConstantSDNode *CRHS) const {
  uint64_t Val = CRHS->getZExtValue();
  uint32_t ValLo = Lo_32(Val);
  uint32_t ValHi = Hi_32(Val);
  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();

    if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
         bitOpWithConstantIsReducible(Opc, ValHi)) ||
        (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
    // If we need to materialize a 64-bit immediate, it will be split up later
    // anyway. Avoid creating the harder to understand 64-bit immediate
    // materialization.
    return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
  }

  return SDValue();
}

// Returns true if argument is a boolean value which is not serialized into
// memory or argument and does not require v_cmdmask_b32 to be deserialized.
static bool isBoolSGPR(SDValue V) {
  if (V.getValueType() != MVT::i1)
    return false;
  switch (V.getOpcode()) {
  default: break;
  case ISD::SETCC:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
  case AMDGPUISD::FP_CLASS:
    return true;
  }
  return false;
}

SDValue SITargetLowering::performAndCombine(SDNode *N,
                                            DAGCombinerInfo &DCI) const {
  if (DCI.isBeforeLegalize())
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  EVT VT = N->getValueType(0);
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);


  const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
  if (VT == MVT::i64 && CRHS) {
    if (SDValue Split
        = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
      return Split;
  }

  if (CRHS && VT == MVT::i32) {
    // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
    // nb = number of trailing zeroes in mask
    // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
    // given that we are selecting 8 or 16 bit fields starting at byte boundary.
    uint64_t Mask = CRHS->getZExtValue();
    unsigned Bits = countPopulation(Mask);
    if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
        (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
      if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
        unsigned Shift = CShift->getZExtValue();
        unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
        unsigned Offset = NB + Shift;
        if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
          SDLoc SL(N);
          SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
                                    LHS->getOperand(0),
                                    DAG.getConstant(Offset, SL, MVT::i32),
                                    DAG.getConstant(Bits, SL, MVT::i32));
          EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
          SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
                                    DAG.getValueType(NarrowVT));
          SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
                                    DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
          return Shl;
        }
      }
    }
  }

  // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
  // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
  if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
    ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
    ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();

    SDValue X = LHS.getOperand(0);
    SDValue Y = RHS.getOperand(0);
    if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
      return SDValue();

    if (LCC == ISD::SETO) {
      if (X != LHS.getOperand(1))
        return SDValue();

      if (RCC == ISD::SETUNE) {
        const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
        if (!C1 || !C1->isInfinity() || C1->isNegative())
          return SDValue();

        const uint32_t Mask = SIInstrFlags::N_NORMAL |
                              SIInstrFlags::N_SUBNORMAL |
                              SIInstrFlags::N_ZERO |
                              SIInstrFlags::P_ZERO |
                              SIInstrFlags::P_SUBNORMAL |
                              SIInstrFlags::P_NORMAL;

        static_assert(((~(SIInstrFlags::S_NAN |
                          SIInstrFlags::Q_NAN |
                          SIInstrFlags::N_INFINITY |
                          SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
                      "mask not equal");

        SDLoc DL(N);
        return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
                           X, DAG.getConstant(Mask, DL, MVT::i32));
      }
    }
  }

  if (VT == MVT::i32 &&
      (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
    // and x, (sext cc from i1) => select cc, x, 0
    if (RHS.getOpcode() != ISD::SIGN_EXTEND)
      std::swap(LHS, RHS);
    if (isBoolSGPR(RHS.getOperand(0)))
      return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
                           LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
  }

  return SDValue();
}

SDValue SITargetLowering::performOrCombine(SDNode *N,
                                           DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);

  EVT VT = N->getValueType(0);
  if (VT == MVT::i1) {
    // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
    if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
        RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
      SDValue Src = LHS.getOperand(0);
      if (Src != RHS.getOperand(0))
        return SDValue();

      const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
      const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
      if (!CLHS || !CRHS)
        return SDValue();

      // Only 10 bits are used.
      static const uint32_t MaxMask = 0x3ff;

      uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
      SDLoc DL(N);
      return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
                         Src, DAG.getConstant(NewMask, DL, MVT::i32));
    }

    return SDValue();
  }

  if (VT != MVT::i64)
    return SDValue();

  // TODO: This could be a generic combine with a predicate for extracting the
  // high half of an integer being free.

  // (or i64:x, (zero_extend i32:y)) ->
  //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
  if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
      RHS.getOpcode() != ISD::ZERO_EXTEND)
    std::swap(LHS, RHS);

  if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
    SDValue ExtSrc = RHS.getOperand(0);
    EVT SrcVT = ExtSrc.getValueType();
    if (SrcVT == MVT::i32) {
      SDLoc SL(N);
      SDValue LowLHS, HiBits;
      std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
      SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);

      DCI.AddToWorklist(LowOr.getNode());
      DCI.AddToWorklist(HiBits.getNode());

      SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
                                LowOr, HiBits);
      return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
    }
  }

  const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
  if (CRHS) {
    if (SDValue Split
          = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
      return Split;
  }

  return SDValue();
}

SDValue SITargetLowering::performXorCombine(SDNode *N,
                                            DAGCombinerInfo &DCI) const {
  EVT VT = N->getValueType(0);
  if (VT != MVT::i64)
    return SDValue();

  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);

  const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
  if (CRHS) {
    if (SDValue Split
          = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
      return Split;
  }

  return SDValue();
}

// Instructions that will be lowered with a final instruction that zeros the
// high result bits.
// XXX - probably only need to list legal operations.
static bool fp16SrcZerosHighBits(unsigned Opc) {
  switch (Opc) {
  case ISD::FADD:
  case ISD::FSUB:
  case ISD::FMUL:
  case ISD::FDIV:
  case ISD::FREM:
  case ISD::FMA:
  case ISD::FMAD:
  case ISD::FCANONICALIZE:
  case ISD::FP_ROUND:
  case ISD::UINT_TO_FP:
  case ISD::SINT_TO_FP:
  case ISD::FABS:
    // Fabs is lowered to a bit operation, but it's an and which will clear the
    // high bits anyway.
  case ISD::FSQRT:
  case ISD::FSIN:
  case ISD::FCOS:
  case ISD::FPOWI:
  case ISD::FPOW:
  case ISD::FLOG:
  case ISD::FLOG2:
  case ISD::FLOG10:
  case ISD::FEXP:
  case ISD::FEXP2:
  case ISD::FCEIL:
  case ISD::FTRUNC:
  case ISD::FRINT:
  case ISD::FNEARBYINT:
  case ISD::FROUND:
  case ISD::FFLOOR:
  case ISD::FMINNUM:
  case ISD::FMAXNUM:
  case AMDGPUISD::FRACT:
  case AMDGPUISD::CLAMP:
  case AMDGPUISD::COS_HW:
  case AMDGPUISD::SIN_HW:
  case AMDGPUISD::FMIN3:
  case AMDGPUISD::FMAX3:
  case AMDGPUISD::FMED3:
  case AMDGPUISD::FMAD_FTZ:
  case AMDGPUISD::RCP:
  case AMDGPUISD::RSQ:
  case AMDGPUISD::LDEXP:
    return true;
  default:
    // fcopysign, select and others may be lowered to 32-bit bit operations
    // which don't zero the high bits.
    return false;
  }
}

SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
                                                   DAGCombinerInfo &DCI) const {
  if (!Subtarget->has16BitInsts() ||
      DCI.getDAGCombineLevel() < AfterLegalizeDAG)
    return SDValue();

  EVT VT = N->getValueType(0);
  if (VT != MVT::i32)
    return SDValue();

  SDValue Src = N->getOperand(0);
  if (Src.getValueType() != MVT::i16)
    return SDValue();

  // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
  // FIXME: It is not universally true that the high bits are zeroed on gfx9.
  if (Src.getOpcode() == ISD::BITCAST) {
    SDValue BCSrc = Src.getOperand(0);
    if (BCSrc.getValueType() == MVT::f16 &&
        fp16SrcZerosHighBits(BCSrc.getOpcode()))
      return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
  }

  return SDValue();
}

SDValue SITargetLowering::performClassCombine(SDNode *N,
                                              DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  SDValue Mask = N->getOperand(1);

  // fp_class x, 0 -> false
  if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
    if (CMask->isNullValue())
      return DAG.getConstant(0, SDLoc(N), MVT::i1);
  }

  if (N->getOperand(0).isUndef())
    return DAG.getUNDEF(MVT::i1);

  return SDValue();
}

static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) {
  if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions())
    return true;

  return DAG.isKnownNeverNaN(Op);
}

static bool isCanonicalized(SelectionDAG &DAG, SDValue Op,
                            const SISubtarget *ST, unsigned MaxDepth=5) {
  // If source is a result of another standard FP operation it is already in
  // canonical form.

  switch (Op.getOpcode()) {
  default:
    break;

  // These will flush denorms if required.
  case ISD::FADD:
  case ISD::FSUB:
  case ISD::FMUL:
  case ISD::FSQRT:
  case ISD::FCEIL:
  case ISD::FFLOOR:
  case ISD::FMA:
  case ISD::FMAD:

  case ISD::FCANONICALIZE:
    return true;

  case ISD::FP_ROUND:
    return Op.getValueType().getScalarType() != MVT::f16 ||
           ST->hasFP16Denormals();

  case ISD::FP_EXTEND:
    return Op.getOperand(0).getValueType().getScalarType() != MVT::f16 ||
           ST->hasFP16Denormals();

  case ISD::FP16_TO_FP:
  case ISD::FP_TO_FP16:
    return ST->hasFP16Denormals();

  // It can/will be lowered or combined as a bit operation.
  // Need to check their input recursively to handle.
  case ISD::FNEG:
  case ISD::FABS:
    return (MaxDepth > 0) &&
           isCanonicalized(DAG, Op.getOperand(0), ST, MaxDepth - 1);

  case ISD::FSIN:
  case ISD::FCOS:
  case ISD::FSINCOS:
    return Op.getValueType().getScalarType() != MVT::f16;

  // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms.
  // For such targets need to check their input recursively.
  case ISD::FMINNUM:
  case ISD::FMAXNUM:
  case ISD::FMINNAN:
  case ISD::FMAXNAN:

    if (ST->supportsMinMaxDenormModes() &&
        DAG.isKnownNeverNaN(Op.getOperand(0)) &&
        DAG.isKnownNeverNaN(Op.getOperand(1)))
      return true;

    return (MaxDepth > 0) &&
           isCanonicalized(DAG, Op.getOperand(0), ST, MaxDepth - 1) &&
           isCanonicalized(DAG, Op.getOperand(1), ST, MaxDepth - 1);

  case ISD::ConstantFP: {
    auto F = cast<ConstantFPSDNode>(Op)->getValueAPF();
    return !F.isDenormal() && !(F.isNaN() && F.isSignaling());
  }
  }
  return false;
}

// Constant fold canonicalize.
SDValue SITargetLowering::performFCanonicalizeCombine(
  SDNode *N,
  DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  ConstantFPSDNode *CFP = isConstOrConstSplatFP(N->getOperand(0));

  if (!CFP) {
    SDValue N0 = N->getOperand(0);
    EVT VT = N0.getValueType().getScalarType();
    auto ST = getSubtarget();

    if (((VT == MVT::f32 && ST->hasFP32Denormals()) ||
         (VT == MVT::f64 && ST->hasFP64Denormals()) ||
         (VT == MVT::f16 && ST->hasFP16Denormals())) &&
        DAG.isKnownNeverNaN(N0))
      return N0;

    bool IsIEEEMode = Subtarget->enableIEEEBit(DAG.getMachineFunction());

    if ((IsIEEEMode || isKnownNeverSNan(DAG, N0)) &&
        isCanonicalized(DAG, N0, ST))
      return N0;

    return SDValue();
  }

  const APFloat &C = CFP->getValueAPF();

  // Flush denormals to 0 if not enabled.
  if (C.isDenormal()) {
    EVT VT = N->getValueType(0);
    EVT SVT = VT.getScalarType();
    if (SVT == MVT::f32 && !Subtarget->hasFP32Denormals())
      return DAG.getConstantFP(0.0, SDLoc(N), VT);

    if (SVT == MVT::f64 && !Subtarget->hasFP64Denormals())
      return DAG.getConstantFP(0.0, SDLoc(N), VT);

    if (SVT == MVT::f16 && !Subtarget->hasFP16Denormals())
      return DAG.getConstantFP(0.0, SDLoc(N), VT);
  }

  if (C.isNaN()) {
    EVT VT = N->getValueType(0);
    APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
    if (C.isSignaling()) {
      // Quiet a signaling NaN.
      return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
    }

    // Make sure it is the canonical NaN bitpattern.
    //
    // TODO: Can we use -1 as the canonical NaN value since it's an inline
    // immediate?
    if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
      return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
  }

  return N->getOperand(0);
}

static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
  switch (Opc) {
  case ISD::FMAXNUM:
    return AMDGPUISD::FMAX3;
  case ISD::SMAX:
    return AMDGPUISD::SMAX3;
  case ISD::UMAX:
    return AMDGPUISD::UMAX3;
  case ISD::FMINNUM:
    return AMDGPUISD::FMIN3;
  case ISD::SMIN:
    return AMDGPUISD::SMIN3;
  case ISD::UMIN:
    return AMDGPUISD::UMIN3;
  default:
    llvm_unreachable("Not a min/max opcode");
  }
}

SDValue SITargetLowering::performIntMed3ImmCombine(
  SelectionDAG &DAG, const SDLoc &SL,
  SDValue Op0, SDValue Op1, bool Signed) const {
  ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
  if (!K1)
    return SDValue();

  ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
  if (!K0)
    return SDValue();

  if (Signed) {
    if (K0->getAPIntValue().sge(K1->getAPIntValue()))
      return SDValue();
  } else {
    if (K0->getAPIntValue().uge(K1->getAPIntValue()))
      return SDValue();
  }

  EVT VT = K0->getValueType(0);
  unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
  if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
    return DAG.getNode(Med3Opc, SL, VT,
                       Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
  }

  // If there isn't a 16-bit med3 operation, convert to 32-bit.
  MVT NVT = MVT::i32;
  unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;

  SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
  SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
  SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);

  SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
  return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
}

static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
    return C;

  if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
    if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
      return C;
  }

  return nullptr;
}

SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
                                                  const SDLoc &SL,
                                                  SDValue Op0,
                                                  SDValue Op1) const {
  ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
  if (!K1)
    return SDValue();

  ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
  if (!K0)
    return SDValue();

  // Ordered >= (although NaN inputs should have folded away by now).
  APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
  if (Cmp == APFloat::cmpGreaterThan)
    return SDValue();

  // TODO: Check IEEE bit enabled?
  EVT VT = Op0.getValueType();
  if (Subtarget->enableDX10Clamp()) {
    // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
    // hardware fmed3 behavior converting to a min.
    // FIXME: Should this be allowing -0.0?
    if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
      return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
  }

  // med3 for f16 is only available on gfx9+, and not available for v2f16.
  if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
    // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
    // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
    // then give the other result, which is different from med3 with a NaN
    // input.
    SDValue Var = Op0.getOperand(0);
    if (!isKnownNeverSNan(DAG, Var))
      return SDValue();

    return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
                       Var, SDValue(K0, 0), SDValue(K1, 0));
  }

  return SDValue();
}

SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
                                               DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;

  EVT VT = N->getValueType(0);
  unsigned Opc = N->getOpcode();
  SDValue Op0 = N->getOperand(0);
  SDValue Op1 = N->getOperand(1);

  // Only do this if the inner op has one use since this will just increases
  // register pressure for no benefit.


  if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
      VT != MVT::f64 &&
      ((VT != MVT::f16 && VT != MVT::i16) || Subtarget->hasMin3Max3_16())) {
    // max(max(a, b), c) -> max3(a, b, c)
    // min(min(a, b), c) -> min3(a, b, c)
    if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
      SDLoc DL(N);
      return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
                         DL,
                         N->getValueType(0),
                         Op0.getOperand(0),
                         Op0.getOperand(1),
                         Op1);
    }

    // Try commuted.
    // max(a, max(b, c)) -> max3(a, b, c)
    // min(a, min(b, c)) -> min3(a, b, c)
    if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
      SDLoc DL(N);
      return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
                         DL,
                         N->getValueType(0),
                         Op0,
                         Op1.getOperand(0),
                         Op1.getOperand(1));
    }
  }

  // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
  if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
    if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
      return Med3;
  }

  if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
    if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
      return Med3;
  }

  // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
  if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
       (Opc == AMDGPUISD::FMIN_LEGACY &&
        Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
      (VT == MVT::f32 || VT == MVT::f64 ||
       (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
       (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
      Op0.hasOneUse()) {
    if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
      return Res;
  }

  return SDValue();
}

static bool isClampZeroToOne(SDValue A, SDValue B) {
  if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
    if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
      // FIXME: Should this be allowing -0.0?
      return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
             (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
    }
  }

  return false;
}

// FIXME: Should only worry about snans for version with chain.
SDValue SITargetLowering::performFMed3Combine(SDNode *N,
                                              DAGCombinerInfo &DCI) const {
  EVT VT = N->getValueType(0);
  // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
  // NaNs. With a NaN input, the order of the operands may change the result.

  SelectionDAG &DAG = DCI.DAG;
  SDLoc SL(N);

  SDValue Src0 = N->getOperand(0);
  SDValue Src1 = N->getOperand(1);
  SDValue Src2 = N->getOperand(2);

  if (isClampZeroToOne(Src0, Src1)) {
    // const_a, const_b, x -> clamp is safe in all cases including signaling
    // nans.
    // FIXME: Should this be allowing -0.0?
    return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
  }

  // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
  // handling no dx10-clamp?
  if (Subtarget->enableDX10Clamp()) {
    // If NaNs is clamped to 0, we are free to reorder the inputs.

    if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
      std::swap(Src0, Src1);

    if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
      std::swap(Src1, Src2);

    if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
      std::swap(Src0, Src1);

    if (isClampZeroToOne(Src1, Src2))
      return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
  }

  return SDValue();
}

SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
                                                 DAGCombinerInfo &DCI) const {
  SDValue Src0 = N->getOperand(0);
  SDValue Src1 = N->getOperand(1);
  if (Src0.isUndef() && Src1.isUndef())
    return DCI.DAG.getUNDEF(N->getValueType(0));
  return SDValue();
}

SDValue SITargetLowering::performExtractVectorEltCombine(
  SDNode *N, DAGCombinerInfo &DCI) const {
  SDValue Vec = N->getOperand(0);

  SelectionDAG &DAG = DCI.DAG;
  if (Vec.getOpcode() == ISD::FNEG && allUsesHaveSourceMods(N)) {
    SDLoc SL(N);
    EVT EltVT = N->getValueType(0);
    SDValue Idx = N->getOperand(1);
    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
                              Vec.getOperand(0), Idx);
    return DAG.getNode(ISD::FNEG, SL, EltVT, Elt);
  }

  return SDValue();
}

static bool convertBuildVectorCastElt(SelectionDAG &DAG,
                                      SDValue &Lo, SDValue &Hi) {
  if (Hi.getOpcode() == ISD::BITCAST &&
      Hi.getOperand(0).getValueType() == MVT::f16 &&
      (isa<ConstantSDNode>(Lo) || Lo.isUndef())) {
    Lo = DAG.getNode(ISD::BITCAST, SDLoc(Lo), MVT::f16, Lo);
    Hi = Hi.getOperand(0);
    return true;
  }

  return false;
}

SDValue SITargetLowering::performBuildVectorCombine(
  SDNode *N, DAGCombinerInfo &DCI) const {
  SDLoc SL(N);

  if (!isTypeLegal(MVT::v2i16))
    return SDValue();
  SelectionDAG &DAG = DCI.DAG;
  EVT VT = N->getValueType(0);

  if (VT == MVT::v2i16) {
    SDValue Lo = N->getOperand(0);
    SDValue Hi = N->getOperand(1);

    // v2i16 build_vector (const|undef), (bitcast f16:$x)
    // -> bitcast (v2f16 build_vector const|undef, $x
    if (convertBuildVectorCastElt(DAG, Lo, Hi)) {
      SDValue NewVec = DAG.getBuildVector(MVT::v2f16, SL, { Lo, Hi  });
      return DAG.getNode(ISD::BITCAST, SL, VT, NewVec);
    }

    if (convertBuildVectorCastElt(DAG, Hi, Lo)) {
      SDValue NewVec = DAG.getBuildVector(MVT::v2f16, SL, { Hi, Lo  });
      return DAG.getNode(ISD::BITCAST, SL, VT, NewVec);
    }
  }

  return SDValue();
}

unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
                                          const SDNode *N0,
                                          const SDNode *N1) const {
  EVT VT = N0->getValueType(0);

  // Only do this if we are not trying to support denormals. v_mad_f32 does not
  // support denormals ever.
  if ((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
      (VT == MVT::f16 && !Subtarget->hasFP16Denormals()))
    return ISD::FMAD;

  const TargetOptions &Options = DAG.getTarget().Options;
  if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
       (N0->getFlags().hasUnsafeAlgebra() &&
        N1->getFlags().hasUnsafeAlgebra())) &&
      isFMAFasterThanFMulAndFAdd(VT)) {
    return ISD::FMA;
  }

  return 0;
}

static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
                           EVT VT,
                           SDValue N0, SDValue N1, SDValue N2,
                           bool Signed) {
  unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
  SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
  SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
  return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
}

SDValue SITargetLowering::performAddCombine(SDNode *N,
                                            DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  EVT VT = N->getValueType(0);
  SDLoc SL(N);
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);

  if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
      && Subtarget->hasMad64_32() &&
      !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
      VT.getScalarSizeInBits() <= 64) {
    if (LHS.getOpcode() != ISD::MUL)
      std::swap(LHS, RHS);

    SDValue MulLHS = LHS.getOperand(0);
    SDValue MulRHS = LHS.getOperand(1);
    SDValue AddRHS = RHS;

    // TODO: Maybe restrict if SGPR inputs.
    if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
        numBitsUnsigned(MulRHS, DAG) <= 32) {
      MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
      MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
      AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
      return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
    }

    if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
      MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
      MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
      AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
      return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
    }

    return SDValue();
  }

  if (VT != MVT::i32)
    return SDValue();

  // add x, zext (setcc) => addcarry x, 0, setcc
  // add x, sext (setcc) => subcarry x, 0, setcc
  unsigned Opc = LHS.getOpcode();
  if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
      Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
    std::swap(RHS, LHS);

  Opc = RHS.getOpcode();
  switch (Opc) {
  default: break;
  case ISD::ZERO_EXTEND:
  case ISD::SIGN_EXTEND:
  case ISD::ANY_EXTEND: {
    auto Cond = RHS.getOperand(0);
    if (!isBoolSGPR(Cond))
      break;
    SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
    SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
    Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
    return DAG.getNode(Opc, SL, VTList, Args);
  }
  case ISD::ADDCARRY: {
    // add x, (addcarry y, 0, cc) => addcarry x, y, cc
    auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
    if (!C || C->getZExtValue() != 0) break;
    SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
    return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
  }
  }
  return SDValue();
}

SDValue SITargetLowering::performSubCombine(SDNode *N,
                                            DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  EVT VT = N->getValueType(0);

  if (VT != MVT::i32)
    return SDValue();

  SDLoc SL(N);
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);

  unsigned Opc = LHS.getOpcode();
  if (Opc != ISD::SUBCARRY)
    std::swap(RHS, LHS);

  if (LHS.getOpcode() == ISD::SUBCARRY) {
    // sub (subcarry x, 0, cc), y => subcarry x, y, cc
    auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
    if (!C || C->getZExtValue() != 0)
      return SDValue();
    SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
    return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
  }
  return SDValue();
}

SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
  DAGCombinerInfo &DCI) const {

  if (N->getValueType(0) != MVT::i32)
    return SDValue();

  auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
  if (!C || C->getZExtValue() != 0)
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  SDValue LHS = N->getOperand(0);

  // addcarry (add x, y), 0, cc => addcarry x, y, cc
  // subcarry (sub x, y), 0, cc => subcarry x, y, cc
  unsigned LHSOpc = LHS.getOpcode();
  unsigned Opc = N->getOpcode();
  if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
      (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
    SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
    return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
  }
  return SDValue();
}

SDValue SITargetLowering::performFAddCombine(SDNode *N,
                                             DAGCombinerInfo &DCI) const {
  if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  EVT VT = N->getValueType(0);

  SDLoc SL(N);
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);

  // These should really be instruction patterns, but writing patterns with
  // source modiifiers is a pain.

  // fadd (fadd (a, a), b) -> mad 2.0, a, b
  if (LHS.getOpcode() == ISD::FADD) {
    SDValue A = LHS.getOperand(0);
    if (A == LHS.getOperand(1)) {
      unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
      if (FusedOp != 0) {
        const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
        return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
      }
    }
  }

  // fadd (b, fadd (a, a)) -> mad 2.0, a, b
  if (RHS.getOpcode() == ISD::FADD) {
    SDValue A = RHS.getOperand(0);
    if (A == RHS.getOperand(1)) {
      unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
      if (FusedOp != 0) {
        const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
        return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
      }
    }
  }

  return SDValue();
}

SDValue SITargetLowering::performFSubCombine(SDNode *N,
                                             DAGCombinerInfo &DCI) const {
  if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
    return SDValue();

  SelectionDAG &DAG = DCI.DAG;
  SDLoc SL(N);
  EVT VT = N->getValueType(0);
  assert(!VT.isVector());

  // Try to get the fneg to fold into the source modifier. This undoes generic
  // DAG combines and folds them into the mad.
  //
  // Only do this if we are not trying to support denormals. v_mad_f32 does
  // not support denormals ever.
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);
  if (LHS.getOpcode() == ISD::FADD) {
    // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
    SDValue A = LHS.getOperand(0);
    if (A == LHS.getOperand(1)) {
      unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
      if (FusedOp != 0){
        const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
        SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);

        return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
      }
    }
  }

  if (RHS.getOpcode() == ISD::FADD) {
    // (fsub c, (fadd a, a)) -> mad -2.0, a, c

    SDValue A = RHS.getOperand(0);
    if (A == RHS.getOperand(1)) {
      unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
      if (FusedOp != 0){
        const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
        return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
      }
    }
  }

  return SDValue();
}

SDValue SITargetLowering::performSetCCCombine(SDNode *N,
                                              DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  SDLoc SL(N);

  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);
  EVT VT = LHS.getValueType();
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();

  auto CRHS = dyn_cast<ConstantSDNode>(RHS);
  if (!CRHS) {
    CRHS = dyn_cast<ConstantSDNode>(LHS);
    if (CRHS) {
      std::swap(LHS, RHS);
      CC = getSetCCSwappedOperands(CC);
    }
  }

  if (CRHS && VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
      isBoolSGPR(LHS.getOperand(0))) {
    // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
    // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
    // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
    // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
    if ((CRHS->isAllOnesValue() &&
         (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
        (CRHS->isNullValue() &&
         (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
      return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
                         DAG.getConstant(-1, SL, MVT::i1));
    if ((CRHS->isAllOnesValue() &&
         (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
        (CRHS->isNullValue() &&
         (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
      return LHS.getOperand(0);
  }

  if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
                                           VT != MVT::f16))
    return SDValue();

  // Match isinf pattern
  // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
  if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
    const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
    if (!CRHS)
      return SDValue();

    const APFloat &APF = CRHS->getValueAPF();
    if (APF.isInfinity() && !APF.isNegative()) {
      unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
      return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
                         DAG.getConstant(Mask, SL, MVT::i32));
    }
  }

  return SDValue();
}

SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
                                                     DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  SDLoc SL(N);
  unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;

  SDValue Src = N->getOperand(0);
  SDValue Srl = N->getOperand(0);
  if (Srl.getOpcode() == ISD::ZERO_EXTEND)
    Srl = Srl.getOperand(0);

  // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
  if (Srl.getOpcode() == ISD::SRL) {
    // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
    // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
    // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x

    if (const ConstantSDNode *C =
        dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
      Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
                               EVT(MVT::i32));

      unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
      if (SrcOffset < 32 && SrcOffset % 8 == 0) {
        return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
                           MVT::f32, Srl);
      }
    }
  }

  APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);

  KnownBits Known;
  TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
                                        !DCI.isBeforeLegalizeOps());
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  if (TLI.ShrinkDemandedConstant(Src, Demanded, TLO) ||
      TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) {
    DCI.CommitTargetLoweringOpt(TLO);
  }

  return SDValue();
}

SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
                                            DAGCombinerInfo &DCI) const {
  switch (N->getOpcode()) {
  default:
    return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
  case ISD::ADD:
    return performAddCombine(N, DCI);
  case ISD::SUB:
    return performSubCombine(N, DCI);
  case ISD::ADDCARRY:
  case ISD::SUBCARRY:
    return performAddCarrySubCarryCombine(N, DCI);
  case ISD::FADD:
    return performFAddCombine(N, DCI);
  case ISD::FSUB:
    return performFSubCombine(N, DCI);
  case ISD::SETCC:
    return performSetCCCombine(N, DCI);
  case ISD::FMAXNUM:
  case ISD::FMINNUM:
  case ISD::SMAX:
  case ISD::SMIN:
  case ISD::UMAX:
  case ISD::UMIN:
  case AMDGPUISD::FMIN_LEGACY:
  case AMDGPUISD::FMAX_LEGACY: {
    if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
        getTargetMachine().getOptLevel() > CodeGenOpt::None)
      return performMinMaxCombine(N, DCI);
    break;
  }
  case ISD::LOAD:
  case ISD::STORE:
  case ISD::ATOMIC_LOAD:
  case ISD::ATOMIC_STORE:
  case ISD::ATOMIC_CMP_SWAP:
  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
  case ISD::ATOMIC_SWAP:
  case ISD::ATOMIC_LOAD_ADD:
  case ISD::ATOMIC_LOAD_SUB:
  case ISD::ATOMIC_LOAD_AND:
  case ISD::ATOMIC_LOAD_OR:
  case ISD::ATOMIC_LOAD_XOR:
  case ISD::ATOMIC_LOAD_NAND:
  case ISD::ATOMIC_LOAD_MIN:
  case ISD::ATOMIC_LOAD_MAX:
  case ISD::ATOMIC_LOAD_UMIN:
  case ISD::ATOMIC_LOAD_UMAX:
  case AMDGPUISD::ATOMIC_INC:
  case AMDGPUISD::ATOMIC_DEC: // TODO: Target mem intrinsics.
    if (DCI.isBeforeLegalize())
      break;
    return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
  case ISD::AND:
    return performAndCombine(N, DCI);
  case ISD::OR:
    return performOrCombine(N, DCI);
  case ISD::XOR:
    return performXorCombine(N, DCI);
  case ISD::ZERO_EXTEND:
    return performZeroExtendCombine(N, DCI);
  case AMDGPUISD::FP_CLASS:
    return performClassCombine(N, DCI);
  case ISD::FCANONICALIZE:
    return performFCanonicalizeCombine(N, DCI);
  case AMDGPUISD::FRACT:
  case AMDGPUISD::RCP:
  case AMDGPUISD::RSQ:
  case AMDGPUISD::RCP_LEGACY:
  case AMDGPUISD::RSQ_LEGACY:
  case AMDGPUISD::RSQ_CLAMP:
  case AMDGPUISD::LDEXP: {
    SDValue Src = N->getOperand(0);
    if (Src.isUndef())
      return Src;
    break;
  }
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:
    return performUCharToFloatCombine(N, DCI);
  case AMDGPUISD::CVT_F32_UBYTE0:
  case AMDGPUISD::CVT_F32_UBYTE1:
  case AMDGPUISD::CVT_F32_UBYTE2:
  case AMDGPUISD::CVT_F32_UBYTE3:
    return performCvtF32UByteNCombine(N, DCI);
  case AMDGPUISD::FMED3:
    return performFMed3Combine(N, DCI);
  case AMDGPUISD::CVT_PKRTZ_F16_F32:
    return performCvtPkRTZCombine(N, DCI);
  case ISD::SCALAR_TO_VECTOR: {
    SelectionDAG &DAG = DCI.DAG;
    EVT VT = N->getValueType(0);

    // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
    if (VT == MVT::v2i16 || VT == MVT::v2f16) {
      SDLoc SL(N);
      SDValue Src = N->getOperand(0);
      EVT EltVT = Src.getValueType();
      if (EltVT == MVT::f16)
        Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);

      SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
      return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
    }

    break;
  }
  case ISD::EXTRACT_VECTOR_ELT:
    return performExtractVectorEltCombine(N, DCI);
  case ISD::BUILD_VECTOR:
    return performBuildVectorCombine(N, DCI);
  }
  return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
}

/// \brief Helper function for adjustWritemask
static unsigned SubIdx2Lane(unsigned Idx) {
  switch (Idx) {
  default: return 0;
  case AMDGPU::sub0: return 0;
  case AMDGPU::sub1: return 1;
  case AMDGPU::sub2: return 2;
  case AMDGPU::sub3: return 3;
  }
}

/// \brief Adjust the writemask of MIMG instructions
SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
                                          SelectionDAG &DAG) const {
  SDNode *Users[4] = { nullptr };
  unsigned Lane = 0;
  unsigned DmaskIdx = (Node->getNumOperands() - Node->getNumValues() == 9) ? 2 : 3;
  unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
  unsigned NewDmask = 0;
  bool HasChain = Node->getNumValues() > 1;

  if (OldDmask == 0) {
    // These are folded out, but on the chance it happens don't assert.
    return Node;
  }

  // Try to figure out the used register components
  for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
       I != E; ++I) {

    // Don't look at users of the chain.
    if (I.getUse().getResNo() != 0)
      continue;

    // Abort if we can't understand the usage
    if (!I->isMachineOpcode() ||
        I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
      return Node;

    // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
    // Note that subregs are packed, i.e. Lane==0 is the first bit set
    // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
    // set, etc.
    Lane = SubIdx2Lane(I->getConstantOperandVal(1));

    // Set which texture component corresponds to the lane.
    unsigned Comp;
    for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
      Comp = countTrailingZeros(Dmask);
      Dmask &= ~(1 << Comp);
    }

    // Abort if we have more than one user per component
    if (Users[Lane])
      return Node;

    Users[Lane] = *I;
    NewDmask |= 1 << Comp;
  }

  // Abort if there's no change
  if (NewDmask == OldDmask)
    return Node;

  unsigned BitsSet = countPopulation(NewDmask);

  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
  int NewOpcode = AMDGPU::getMaskedMIMGOp(*TII,
                                          Node->getMachineOpcode(), BitsSet);
  assert(NewOpcode != -1 &&
         NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
         "failed to find equivalent MIMG op");

  // Adjust the writemask in the node
  SmallVector<SDValue, 12> Ops;
  Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
  Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
  Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());

  MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();

  MVT ResultVT = BitsSet == 1 ?
    SVT : MVT::getVectorVT(SVT, BitsSet == 3 ? 4 : BitsSet);
  SDVTList NewVTList = HasChain ?
    DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);


  MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
                                              NewVTList, Ops);

  if (HasChain) {
    // Update chain.
    NewNode->setMemRefs(Node->memoperands_begin(), Node->memoperands_end());
    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
  }

  if (BitsSet == 1) {
    assert(Node->hasNUsesOfValue(1, 0));
    SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
                                      SDLoc(Node), Users[Lane]->getValueType(0),
                                      SDValue(NewNode, 0));
    DAG.ReplaceAllUsesWith(Users[Lane], Copy);
    return nullptr;
  }

  // Update the users of the node with the new indices
  for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
    SDNode *User = Users[i];
    if (!User)
      continue;

    SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
    DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);

    switch (Idx) {
    default: break;
    case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
    case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
    case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
    }
  }

  DAG.RemoveDeadNode(Node);
  return nullptr;
}

static bool isFrameIndexOp(SDValue Op) {
  if (Op.getOpcode() == ISD::AssertZext)
    Op = Op.getOperand(0);

  return isa<FrameIndexSDNode>(Op);
}

/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
/// with frame index operands.
/// LLVM assumes that inputs are to these instructions are registers.
SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
                                                        SelectionDAG &DAG) const {
  if (Node->getOpcode() == ISD::CopyToReg) {
    RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
    SDValue SrcVal = Node->getOperand(2);

    // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
    // to try understanding copies to physical registers.
    if (SrcVal.getValueType() == MVT::i1 &&
        TargetRegisterInfo::isPhysicalRegister(DestReg->getReg())) {
      SDLoc SL(Node);
      MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
      SDValue VReg = DAG.getRegister(
        MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);

      SDNode *Glued = Node->getGluedNode();
      SDValue ToVReg
        = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
                         SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
      SDValue ToResultReg
        = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
                           VReg, ToVReg.getValue(1));
      DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
      DAG.RemoveDeadNode(Node);
      return ToResultReg.getNode();
    }
  }

  SmallVector<SDValue, 8> Ops;
  for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
    if (!isFrameIndexOp(Node->getOperand(i))) {
      Ops.push_back(Node->getOperand(i));
      continue;
    }

    SDLoc DL(Node);
    Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
                                     Node->getOperand(i).getValueType(),
                                     Node->getOperand(i)), 0));
  }

  return DAG.UpdateNodeOperands(Node, Ops);
}

/// \brief Fold the instructions after selecting them.
/// Returns null if users were already updated.
SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
                                          SelectionDAG &DAG) const {
  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
  unsigned Opcode = Node->getMachineOpcode();

  if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
      !TII->isGather4(Opcode)) {
    return adjustWritemask(Node, DAG);
  }

  if (Opcode == AMDGPU::INSERT_SUBREG ||
      Opcode == AMDGPU::REG_SEQUENCE) {
    legalizeTargetIndependentNode(Node, DAG);
    return Node;
  }

  switch (Opcode) {
  case AMDGPU::V_DIV_SCALE_F32:
  case AMDGPU::V_DIV_SCALE_F64: {
    // Satisfy the operand register constraint when one of the inputs is
    // undefined. Ordinarily each undef value will have its own implicit_def of
    // a vreg, so force these to use a single register.
    SDValue Src0 = Node->getOperand(0);
    SDValue Src1 = Node->getOperand(1);
    SDValue Src2 = Node->getOperand(2);

    if ((Src0.isMachineOpcode() &&
         Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
        (Src0 == Src1 || Src0 == Src2))
      break;

    MVT VT = Src0.getValueType().getSimpleVT();
    const TargetRegisterClass *RC = getRegClassFor(VT);

    MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
    SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);

    SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
                                      UndefReg, Src0, SDValue());

    // src0 must be the same register as src1 or src2, even if the value is
    // undefined, so make sure we don't violate this constraint.
    if (Src0.isMachineOpcode() &&
        Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
      if (Src1.isMachineOpcode() &&
          Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
        Src0 = Src1;
      else if (Src2.isMachineOpcode() &&
               Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
        Src0 = Src2;
      else {
        assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
        Src0 = UndefReg;
        Src1 = UndefReg;
      }
    } else
      break;

    SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 };
    for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I)
      Ops.push_back(Node->getOperand(I));

    Ops.push_back(ImpDef.getValue(1));
    return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
  }
  default:
    break;
  }

  return Node;
}

/// \brief Assign the register class depending on the number of
/// bits set in the writemask
void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
                                                     SDNode *Node) const {
  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();

  MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();

  if (TII->isVOP3(MI.getOpcode())) {
    // Make sure constant bus requirements are respected.
    TII->legalizeOperandsVOP3(MRI, MI);
    return;
  }

  // Replace unused atomics with the no return version.
  int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
  if (NoRetAtomicOp != -1) {
    if (!Node->hasAnyUseOfValue(0)) {
      MI.setDesc(TII->get(NoRetAtomicOp));
      MI.RemoveOperand(0);
      return;
    }

    // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
    // instruction, because the return type of these instructions is a vec2 of
    // the memory type, so it can be tied to the input operand.
    // This means these instructions always have a use, so we need to add a
    // special case to check if the atomic has only one extract_subreg use,
    // which itself has no uses.
    if ((Node->hasNUsesOfValue(1, 0) &&
         Node->use_begin()->isMachineOpcode() &&
         Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
         !Node->use_begin()->hasAnyUseOfValue(0))) {
      unsigned Def = MI.getOperand(0).getReg();

      // Change this into a noret atomic.
      MI.setDesc(TII->get(NoRetAtomicOp));
      MI.RemoveOperand(0);

      // If we only remove the def operand from the atomic instruction, the
      // extract_subreg will be left with a use of a vreg without a def.
      // So we need to insert an implicit_def to avoid machine verifier
      // errors.
      BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
              TII->get(AMDGPU::IMPLICIT_DEF), Def);
    }
    return;
  }
}

static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
                              uint64_t Val) {
  SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
  return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
}

MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
                                                const SDLoc &DL,
                                                SDValue Ptr) const {
  const SIInstrInfo *TII = getSubtarget()->getInstrInfo();

  // Build the half of the subregister with the constants before building the
  // full 128-bit register. If we are building multiple resource descriptors,
  // this will allow CSEing of the 2-component register.
  const SDValue Ops0[] = {
    DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
    buildSMovImm32(DAG, DL, 0),
    DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
    buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
    DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
  };

  SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
                                                MVT::v2i32, Ops0), 0);

  // Combine the constants and the pointer.
  const SDValue Ops1[] = {
    DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
    Ptr,
    DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
    SubRegHi,
    DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
  };

  return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
}

/// \brief Return a resource descriptor with the 'Add TID' bit enabled
///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
///        of the resource descriptor) to create an offset, which is added to
///        the resource pointer.
MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
                                           SDValue Ptr, uint32_t RsrcDword1,
                                           uint64_t RsrcDword2And3) const {
  SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
  SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
  if (RsrcDword1) {
    PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
                                     DAG.getConstant(RsrcDword1, DL, MVT::i32)),
                    0);
  }

  SDValue DataLo = buildSMovImm32(DAG, DL,
                                  RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
  SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);

  const SDValue Ops[] = {
    DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
    PtrLo,
    DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
    PtrHi,
    DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
    DataLo,
    DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
    DataHi,
    DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
  };

  return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
}

//===----------------------------------------------------------------------===//
//                         SI Inline Assembly Support
//===----------------------------------------------------------------------===//

std::pair<unsigned, const TargetRegisterClass *>
SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                               StringRef Constraint,
                                               MVT VT) const {
  if (!isTypeLegal(VT))
    return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);

  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    case 's':
    case 'r':
      switch (VT.getSizeInBits()) {
      default:
        return std::make_pair(0U, nullptr);
      case 32:
      case 16:
        return std::make_pair(0U, &AMDGPU::SReg_32_XM0RegClass);
      case 64:
        return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
      case 128:
        return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
      case 256:
        return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
      case 512:
        return std::make_pair(0U, &AMDGPU::SReg_512RegClass);
      }

    case 'v':
      switch (VT.getSizeInBits()) {
      default:
        return std::make_pair(0U, nullptr);
      case 32:
      case 16:
        return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
      case 64:
        return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
      case 96:
        return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
      case 128:
        return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
      case 256:
        return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
      case 512:
        return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
      }
    }
  }

  if (Constraint.size() > 1) {
    const TargetRegisterClass *RC = nullptr;
    if (Constraint[1] == 'v') {
      RC = &AMDGPU::VGPR_32RegClass;
    } else if (Constraint[1] == 's') {
      RC = &AMDGPU::SGPR_32RegClass;
    }

    if (RC) {
      uint32_t Idx;
      bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
      if (!Failed && Idx < RC->getNumRegs())
        return std::make_pair(RC->getRegister(Idx), RC);
    }
  }
  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}

SITargetLowering::ConstraintType
SITargetLowering::getConstraintType(StringRef Constraint) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    default: break;
    case 's':
    case 'v':
      return C_RegisterClass;
    }
  }
  return TargetLowering::getConstraintType(Constraint);
}

// Figure out which registers should be reserved for stack access. Only after
// the function is legalized do we know all of the non-spill stack objects or if
// calls are present.
void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
  MachineRegisterInfo &MRI = MF.getRegInfo();
  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
  const SIRegisterInfo *TRI = ST.getRegisterInfo();

  if (Info->isEntryFunction()) {
    // Callable functions have fixed registers used for stack access.
    reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
  }

  // We have to assume the SP is needed in case there are calls in the function
  // during lowering. Calls are only detected after the function is
  // lowered. We're about to reserve registers, so don't bother using it if we
  // aren't really going to use it.
  bool NeedSP = !Info->isEntryFunction() ||
    MFI.hasVarSizedObjects() ||
    MFI.hasCalls();

  if (NeedSP) {
    unsigned ReservedStackPtrOffsetReg = TRI->reservedStackPtrOffsetReg(MF);
    Info->setStackPtrOffsetReg(ReservedStackPtrOffsetReg);

    assert(Info->getStackPtrOffsetReg() != Info->getFrameOffsetReg());
    assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
                               Info->getStackPtrOffsetReg()));
    MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
  }

  MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
  MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
  MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG,
                     Info->getScratchWaveOffsetReg());

  TargetLoweringBase::finalizeLowering(MF);
}

void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
                                                     KnownBits &Known,
                                                     const APInt &DemandedElts,
                                                     const SelectionDAG &DAG,
                                                     unsigned Depth) const {
  TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts,
                                                DAG, Depth);

  if (getSubtarget()->enableHugePrivateBuffer())
    return;

  // Technically it may be possible to have a dispatch with a single workitem
  // that uses the full private memory size, but that's not really useful. We
  // can't use vaddr in MUBUF instructions if we don't know the address
  // calculation won't overflow, so assume the sign bit is never set.
  Known.Zero.setHighBits(AssumeFrameIndexHighZeroBits);
}