aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/AMDGPU/Utils/AMDGPUBaseInfo.h
blob: 5b7af8268cdaf6ccf4a1835547fe0272301781c6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
//===- AMDGPUBaseInfo.h - Top level definitions for AMDGPU ------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H
#define LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H

#include "AMDGPU.h"
#include "AMDKernelCodeT.h"
#include "SIDefines.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/AMDHSAKernelDescriptor.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <cstdint>
#include <string>
#include <utility>

namespace llvm {

class Argument;
class FeatureBitset;
class Function;
class GlobalValue;
class MCContext;
class MCRegisterClass;
class MCRegisterInfo;
class MCSection;
class MCSubtargetInfo;
class MachineMemOperand;
class Triple;

namespace AMDGPU {

#define GET_MIMGBaseOpcode_DECL
#define GET_MIMGDim_DECL
#define GET_MIMGEncoding_DECL
#define GET_MIMGLZMapping_DECL
#include "AMDGPUGenSearchableTables.inc"

namespace IsaInfo {

enum {
  // The closed Vulkan driver sets 96, which limits the wave count to 8 but
  // doesn't spill SGPRs as much as when 80 is set.
  FIXED_NUM_SGPRS_FOR_INIT_BUG = 96,
  TRAP_NUM_SGPRS = 16
};

/// Instruction set architecture version.
struct IsaVersion {
  unsigned Major;
  unsigned Minor;
  unsigned Stepping;
};

/// \returns Isa version for given subtarget \p Features.
IsaVersion getIsaVersion(const FeatureBitset &Features);

/// Streams isa version string for given subtarget \p STI into \p Stream.
void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream);

/// \returns True if given subtarget \p STI supports code object version 3,
/// false otherwise.
bool hasCodeObjectV3(const MCSubtargetInfo *STI);

/// \returns Wavefront size for given subtarget \p Features.
unsigned getWavefrontSize(const FeatureBitset &Features);

/// \returns Local memory size in bytes for given subtarget \p Features.
unsigned getLocalMemorySize(const FeatureBitset &Features);

/// \returns Number of execution units per compute unit for given subtarget \p
/// Features.
unsigned getEUsPerCU(const FeatureBitset &Features);

/// \returns Maximum number of work groups per compute unit for given subtarget
/// \p Features and limited by given \p FlatWorkGroupSize.
unsigned getMaxWorkGroupsPerCU(const FeatureBitset &Features,
                               unsigned FlatWorkGroupSize);

/// \returns Maximum number of waves per compute unit for given subtarget \p
/// Features without any kind of limitation.
unsigned getMaxWavesPerCU(const FeatureBitset &Features);

/// \returns Maximum number of waves per compute unit for given subtarget \p
/// Features and limited by given \p FlatWorkGroupSize.
unsigned getMaxWavesPerCU(const FeatureBitset &Features,
                          unsigned FlatWorkGroupSize);

/// \returns Minimum number of waves per execution unit for given subtarget \p
/// Features.
unsigned getMinWavesPerEU(const FeatureBitset &Features);

/// \returns Maximum number of waves per execution unit for given subtarget \p
/// Features without any kind of limitation.
unsigned getMaxWavesPerEU();

/// \returns Maximum number of waves per execution unit for given subtarget \p
/// Features and limited by given \p FlatWorkGroupSize.
unsigned getMaxWavesPerEU(const FeatureBitset &Features,
                          unsigned FlatWorkGroupSize);

/// \returns Minimum flat work group size for given subtarget \p Features.
unsigned getMinFlatWorkGroupSize(const FeatureBitset &Features);

/// \returns Maximum flat work group size for given subtarget \p Features.
unsigned getMaxFlatWorkGroupSize(const FeatureBitset &Features);

/// \returns Number of waves per work group for given subtarget \p Features and
/// limited by given \p FlatWorkGroupSize.
unsigned getWavesPerWorkGroup(const FeatureBitset &Features,
                              unsigned FlatWorkGroupSize);

/// \returns SGPR allocation granularity for given subtarget \p Features.
unsigned getSGPRAllocGranule(const FeatureBitset &Features);

/// \returns SGPR encoding granularity for given subtarget \p Features.
unsigned getSGPREncodingGranule(const FeatureBitset &Features);

/// \returns Total number of SGPRs for given subtarget \p Features.
unsigned getTotalNumSGPRs(const FeatureBitset &Features);

/// \returns Addressable number of SGPRs for given subtarget \p Features.
unsigned getAddressableNumSGPRs(const FeatureBitset &Features);

/// \returns Minimum number of SGPRs that meets the given number of waves per
/// execution unit requirement for given subtarget \p Features.
unsigned getMinNumSGPRs(const FeatureBitset &Features, unsigned WavesPerEU);

/// \returns Maximum number of SGPRs that meets the given number of waves per
/// execution unit requirement for given subtarget \p Features.
unsigned getMaxNumSGPRs(const FeatureBitset &Features, unsigned WavesPerEU,
                        bool Addressable);

/// \returns Number of extra SGPRs implicitly required by given subtarget \p
/// Features when the given special registers are used.
unsigned getNumExtraSGPRs(const FeatureBitset &Features, bool VCCUsed,
                          bool FlatScrUsed, bool XNACKUsed);

/// \returns Number of extra SGPRs implicitly required by given subtarget \p
/// Features when the given special registers are used. XNACK is inferred from
/// \p Features.
unsigned getNumExtraSGPRs(const FeatureBitset &Features, bool VCCUsed,
                          bool FlatScrUsed);

/// \returns Number of SGPR blocks needed for given subtarget \p Features when
/// \p NumSGPRs are used. \p NumSGPRs should already include any special
/// register counts.
unsigned getNumSGPRBlocks(const FeatureBitset &Features, unsigned NumSGPRs);

/// \returns VGPR allocation granularity for given subtarget \p Features.
unsigned getVGPRAllocGranule(const FeatureBitset &Features);

/// \returns VGPR encoding granularity for given subtarget \p Features.
unsigned getVGPREncodingGranule(const FeatureBitset &Features);

/// \returns Total number of VGPRs for given subtarget \p Features.
unsigned getTotalNumVGPRs(const FeatureBitset &Features);

/// \returns Addressable number of VGPRs for given subtarget \p Features.
unsigned getAddressableNumVGPRs(const FeatureBitset &Features);

/// \returns Minimum number of VGPRs that meets given number of waves per
/// execution unit requirement for given subtarget \p Features.
unsigned getMinNumVGPRs(const FeatureBitset &Features, unsigned WavesPerEU);

/// \returns Maximum number of VGPRs that meets given number of waves per
/// execution unit requirement for given subtarget \p Features.
unsigned getMaxNumVGPRs(const FeatureBitset &Features, unsigned WavesPerEU);

/// \returns Number of VGPR blocks needed for given subtarget \p Features when
/// \p NumVGPRs are used.
unsigned getNumVGPRBlocks(const FeatureBitset &Features, unsigned NumSGPRs);

} // end namespace IsaInfo

LLVM_READONLY
int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx);

struct MIMGBaseOpcodeInfo {
  MIMGBaseOpcode BaseOpcode;
  bool Store;
  bool Atomic;
  bool AtomicX2;
  bool Sampler;

  uint8_t NumExtraArgs;
  bool Gradients;
  bool Coordinates;
  bool LodOrClampOrMip;
  bool HasD16;
};

LLVM_READONLY
const MIMGBaseOpcodeInfo *getMIMGBaseOpcodeInfo(unsigned BaseOpcode);

struct MIMGDimInfo {
  MIMGDim Dim;
  uint8_t NumCoords;
  uint8_t NumGradients;
  bool DA;
};

LLVM_READONLY
const MIMGDimInfo *getMIMGDimInfo(unsigned Dim);

struct MIMGLZMappingInfo {
  MIMGBaseOpcode L;
  MIMGBaseOpcode LZ;
};

LLVM_READONLY
const MIMGLZMappingInfo *getMIMGLZMappingInfo(unsigned L);

LLVM_READONLY
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
                  unsigned VDataDwords, unsigned VAddrDwords);

LLVM_READONLY
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels);

LLVM_READONLY
int getMCOpcode(uint16_t Opcode, unsigned Gen);

void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
                               const FeatureBitset &Features);

amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor();

bool isGroupSegment(const GlobalValue *GV);
bool isGlobalSegment(const GlobalValue *GV);
bool isReadOnlySegment(const GlobalValue *GV);

/// \returns True if constants should be emitted to .text section for given
/// target triple \p TT, false otherwise.
bool shouldEmitConstantsToTextSection(const Triple &TT);

/// \returns Integer value requested using \p F's \p Name attribute.
///
/// \returns \p Default if attribute is not present.
///
/// \returns \p Default and emits error if requested value cannot be converted
/// to integer.
int getIntegerAttribute(const Function &F, StringRef Name, int Default);

/// \returns A pair of integer values requested using \p F's \p Name attribute
/// in "first[,second]" format ("second" is optional unless \p OnlyFirstRequired
/// is false).
///
/// \returns \p Default if attribute is not present.
///
/// \returns \p Default and emits error if one of the requested values cannot be
/// converted to integer, or \p OnlyFirstRequired is false and "second" value is
/// not present.
std::pair<int, int> getIntegerPairAttribute(const Function &F,
                                            StringRef Name,
                                            std::pair<int, int> Default,
                                            bool OnlyFirstRequired = false);

/// \returns Vmcnt bit mask for given isa \p Version.
unsigned getVmcntBitMask(const IsaInfo::IsaVersion &Version);

/// \returns Expcnt bit mask for given isa \p Version.
unsigned getExpcntBitMask(const IsaInfo::IsaVersion &Version);

/// \returns Lgkmcnt bit mask for given isa \p Version.
unsigned getLgkmcntBitMask(const IsaInfo::IsaVersion &Version);

/// \returns Waitcnt bit mask for given isa \p Version.
unsigned getWaitcntBitMask(const IsaInfo::IsaVersion &Version);

/// \returns Decoded Vmcnt from given \p Waitcnt for given isa \p Version.
unsigned decodeVmcnt(const IsaInfo::IsaVersion &Version, unsigned Waitcnt);

/// \returns Decoded Expcnt from given \p Waitcnt for given isa \p Version.
unsigned decodeExpcnt(const IsaInfo::IsaVersion &Version, unsigned Waitcnt);

/// \returns Decoded Lgkmcnt from given \p Waitcnt for given isa \p Version.
unsigned decodeLgkmcnt(const IsaInfo::IsaVersion &Version, unsigned Waitcnt);

/// Decodes Vmcnt, Expcnt and Lgkmcnt from given \p Waitcnt for given isa
/// \p Version, and writes decoded values into \p Vmcnt, \p Expcnt and
/// \p Lgkmcnt respectively.
///
/// \details \p Vmcnt, \p Expcnt and \p Lgkmcnt are decoded as follows:
///     \p Vmcnt = \p Waitcnt[3:0]                      (pre-gfx9 only)
///     \p Vmcnt = \p Waitcnt[3:0] | \p Waitcnt[15:14]  (gfx9+ only)
///     \p Expcnt = \p Waitcnt[6:4]
///     \p Lgkmcnt = \p Waitcnt[11:8]
void decodeWaitcnt(const IsaInfo::IsaVersion &Version, unsigned Waitcnt,
                   unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt);

/// \returns \p Waitcnt with encoded \p Vmcnt for given isa \p Version.
unsigned encodeVmcnt(const IsaInfo::IsaVersion &Version, unsigned Waitcnt,
                     unsigned Vmcnt);

/// \returns \p Waitcnt with encoded \p Expcnt for given isa \p Version.
unsigned encodeExpcnt(const IsaInfo::IsaVersion &Version, unsigned Waitcnt,
                      unsigned Expcnt);

/// \returns \p Waitcnt with encoded \p Lgkmcnt for given isa \p Version.
unsigned encodeLgkmcnt(const IsaInfo::IsaVersion &Version, unsigned Waitcnt,
                       unsigned Lgkmcnt);

/// Encodes \p Vmcnt, \p Expcnt and \p Lgkmcnt into Waitcnt for given isa
/// \p Version.
///
/// \details \p Vmcnt, \p Expcnt and \p Lgkmcnt are encoded as follows:
///     Waitcnt[3:0]   = \p Vmcnt       (pre-gfx9 only)
///     Waitcnt[3:0]   = \p Vmcnt[3:0]  (gfx9+ only)
///     Waitcnt[6:4]   = \p Expcnt
///     Waitcnt[11:8]  = \p Lgkmcnt
///     Waitcnt[15:14] = \p Vmcnt[5:4]  (gfx9+ only)
///
/// \returns Waitcnt with encoded \p Vmcnt, \p Expcnt and \p Lgkmcnt for given
/// isa \p Version.
unsigned encodeWaitcnt(const IsaInfo::IsaVersion &Version,
                       unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt);

unsigned getInitialPSInputAddr(const Function &F);

LLVM_READNONE
bool isShader(CallingConv::ID CC);

LLVM_READNONE
bool isCompute(CallingConv::ID CC);

LLVM_READNONE
bool isEntryFunctionCC(CallingConv::ID CC);

// FIXME: Remove this when calling conventions cleaned up
LLVM_READNONE
inline bool isKernel(CallingConv::ID CC) {
  switch (CC) {
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
    return true;
  default:
    return false;
  }
}

bool hasXNACK(const MCSubtargetInfo &STI);
bool hasMIMG_R128(const MCSubtargetInfo &STI);
bool hasPackedD16(const MCSubtargetInfo &STI);

bool isSI(const MCSubtargetInfo &STI);
bool isCI(const MCSubtargetInfo &STI);
bool isVI(const MCSubtargetInfo &STI);
bool isGFX9(const MCSubtargetInfo &STI);

/// Is Reg - scalar register
bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI);

/// Is there any intersection between registers
bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI);

/// If \p Reg is a pseudo reg, return the correct hardware register given
/// \p STI otherwise return \p Reg.
unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI);

/// Convert hardware register \p Reg to a pseudo register
LLVM_READNONE
unsigned mc2PseudoReg(unsigned Reg);

/// Can this operand also contain immediate values?
bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo);

/// Is this floating-point operand?
bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo);

/// Does this opearnd support only inlinable literals?
bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo);

/// Get the size in bits of a register from the register class \p RC.
unsigned getRegBitWidth(unsigned RCID);

/// Get the size in bits of a register from the register class \p RC.
unsigned getRegBitWidth(const MCRegisterClass &RC);

/// Get size of register operand
unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
                           unsigned OpNo);

LLVM_READNONE
inline unsigned getOperandSize(const MCOperandInfo &OpInfo) {
  switch (OpInfo.OperandType) {
  case AMDGPU::OPERAND_REG_IMM_INT32:
  case AMDGPU::OPERAND_REG_IMM_FP32:
  case AMDGPU::OPERAND_REG_INLINE_C_INT32:
  case AMDGPU::OPERAND_REG_INLINE_C_FP32:
    return 4;

  case AMDGPU::OPERAND_REG_IMM_INT64:
  case AMDGPU::OPERAND_REG_IMM_FP64:
  case AMDGPU::OPERAND_REG_INLINE_C_INT64:
  case AMDGPU::OPERAND_REG_INLINE_C_FP64:
    return 8;

  case AMDGPU::OPERAND_REG_IMM_INT16:
  case AMDGPU::OPERAND_REG_IMM_FP16:
  case AMDGPU::OPERAND_REG_INLINE_C_INT16:
  case AMDGPU::OPERAND_REG_INLINE_C_FP16:
  case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
  case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
    return 2;

  default:
    llvm_unreachable("unhandled operand type");
  }
}

LLVM_READNONE
inline unsigned getOperandSize(const MCInstrDesc &Desc, unsigned OpNo) {
  return getOperandSize(Desc.OpInfo[OpNo]);
}

/// Is this literal inlinable
LLVM_READNONE
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi);

LLVM_READNONE
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi);

LLVM_READNONE
bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi);

LLVM_READNONE
bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi);

bool isArgPassedInSGPR(const Argument *Arg);

/// \returns The encoding that will be used for \p ByteOffset in the SMRD
/// offset field.
int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset);

/// \returns true if this offset is small enough to fit in the SMRD
/// offset field.  \p ByteOffset should be the offset in bytes and
/// not the encoded offset.
bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset);

/// \returns true if the intrinsic is divergent
bool isIntrinsicSourceOfDivergence(unsigned IntrID);

} // end namespace AMDGPU
} // end namespace llvm

#endif // LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H